JPS62184089A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPS62184089A
JPS62184089A JP2543486A JP2543486A JPS62184089A JP S62184089 A JPS62184089 A JP S62184089A JP 2543486 A JP2543486 A JP 2543486A JP 2543486 A JP2543486 A JP 2543486A JP S62184089 A JPS62184089 A JP S62184089A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
general formula
transmittance
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2543486A
Other languages
Japanese (ja)
Inventor
Rei Miyazaki
礼 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2543486A priority Critical patent/JPS62184089A/en
Publication of JPS62184089A publication Critical patent/JPS62184089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower an optical threshold voltage, improve steepness and, at the same time, increase the speed of response of transmission to the change in voltage, by forming a liquid crystal compsn. through a combination of any of four particular components. CONSTITUTION:A liq. crystal compsn. comprising at least one member selected from among compds. (A) of formula I, at least one member selected from among compds. (B) of formula II, at least one member selected from among compds. (C) of formula III, and at least one member selected from among compds. (C) of formula IV. In the above formulae, R1 and R2 are each a 1-12C straight- chain alkyl group; R3 is a 1-8C straight-chain alkyl group; R4 and R5 are each a 1-12C straight-chain alkyl group; and R6 is a 1-10C straight-chain alkyl group. It is pref. that the components A, B, C, and D be blended in proportions of 7-72wt%, 5-38wt%, 2-80wt%, and 5-30wt%, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表示装置用液晶組成物、特に電界効果モ〒ドに
於てダイナミック駆動特性が良好なる液晶組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal composition for display devices, particularly to a liquid crystal composition that has good dynamic drive characteristics in field effect mode.

〔発明の概要〕[Summary of the invention]

本発明は、液晶組成物において、少なくとも一般式R1
−0−o−0−R2で表わされる化合物、一般式R3−
0−4ぺ←CN  で表わされる化合物、一般式a 4
−Q−@−0−Rs  で表わされる化合物、一般式R
6−o−000−o−C′Nテ表ワサレル化合物ヲ用イ
ルことにより、光学的しきい値電圧の低下、急峻性の向
上、応答速度を屈めるようにしたものである〔従来の技
術〕 従来、表示装置用ネマチック液晶組成物は、例えば特開
昭64−85694号公報などに明示されているように
、一般式R+COO−@−0−R’ (RBlは各々任
意の炭素数の直鎖アルキル基を示す)で表わされる化合
物(以後本文中に於てmeHと略記する)などのNn液
晶をベースにして、コレラニ一般式R″−o−000−
o−CN(R′ハ任意の炭素数の直鎖アルキル基を示す
)で表わされる化合物(以後本文中に於てP−11iと
略記する)などのNp液晶を添加し光学的しきい値電圧
を低下せしめる。但し、)!p液晶の添加社が多くなる
と後述の急峻性などの電気光学特性が低下するので必要
以上にNp液晶を添加することは得策でない。更に上記
Nn液晶及びNp液晶に加えて一般式R″′一番やべi
cy (R/FF  は任意の炭素数の直鎖アルキル基
を示す)で表わされる化合物などを添加する事により透
明点を高くし液晶温度範囲を広くしている。
The present invention provides a liquid crystal composition in which at least general formula R1
-0-o-0-R2, general formula R3-
Compound represented by 0-4pe←CN, general formula a 4
-Q-@-0-Rs Compound represented by general formula R
By using a 6-o-000-o-C'N compound, the optical threshold voltage is lowered, the steepness is improved, and the response speed is decreased. ] Conventionally, nematic liquid crystal compositions for display devices have been prepared using the general formula R+COO-@-0-R' (where RB1 is a straight line with an arbitrary number of carbon atoms), as disclosed in, for example, Japanese Unexamined Patent Publication No. 64-85694. Based on Nn liquid crystals such as compounds represented by a chain alkyl group (hereinafter abbreviated as meH in the text), the general formula R''-o-000-
By adding Np liquid crystal such as a compound represented by o-CN (R' represents a linear alkyl group having an arbitrary number of carbon atoms) (hereinafter abbreviated as P-11i in the text), the optical threshold voltage decreases. however,)! It is not a good idea to add more Np liquid crystal than necessary because as the number of P liquid crystals added increases, the electro-optical properties such as steepness, which will be described later, deteriorate. Furthermore, in addition to the above Nn liquid crystal and Np liquid crystal, the general formula R'''Ichiban Yabei
By adding a compound represented by cy (R/FF represents a linear alkyl group having an arbitrary number of carbon atoms), the clearing point is raised and the liquid crystal temperature range is widened.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

今日、ネマチック液晶組成物に髪求される特性の条件は
、 ■ 電圧−透過率曲線の光学的しきい値電圧付近の立ち
上がりが急峻であること(以後本文中に於て急峻性と略
記する) ■ 電圧の変化に対して透過率の応答速度が早いこと ■ 室温を中心として広い温度範囲で駆動できること、
即ち広いネマチック液晶範囲を持つこと ■ 化学的に安定で耐湿性・耐光性に優れること ■ 駆動電圧(または光学的しきい値電圧)が自由に選
べること などがある。
Today, the characteristics required for nematic liquid crystal compositions are: 1. The rise of the voltage-transmittance curve near the optical threshold voltage is steep (hereinafter abbreviated as steepness in the text). ■ Fast response speed of transmittance to changes in voltage ■ Capable of driving in a wide temperature range centered around room temperature,
That is, it must have a wide nematic liquid crystal range; It must be chemically stable and have excellent moisture resistance and light resistance; and it must be able to freely select the driving voltage (or optical threshold voltage).

単純マトリクス表示体に於てダイナミック駆動をした時
、駆動回路によりて選択tli権部または非選択電極部
の液晶に印加される実効電圧を各々VOn、VOffと
し、走査電極の本数を算木とすれば比’V On / 
V Of fは Von/Voff = 77(JT−1丁・・・(1)
なる関係があり、nが多くなるにつれて比VomVof
fも小さくなって行く。
When a simple matrix display is dynamically driven, the effective voltage applied by the drive circuit to the liquid crystal of the selected tli right part or the non-selected electrode part is set to VOn and VOff, respectively, and the number of scanning electrodes is set as arithmetic. Bahi'V On /
V Off is Von/Voff = 77 (JT-1 block...(1)
There is a relationship such that as n increases, the ratio VomVof
f also becomes smaller.

一方、液晶表示装置の一つであるツイスト・ネマチック
・モードの液晶セルを直交偏光子間に゛置き、第1図に
示す電気光学特性測定装置を用いて該セル4の透過率を
光電増倍管で観察しながら駆動回路6により該セル4に
印加する実効電圧を変えて行くと第2図に示される如き
夾効寛圧−相対透過率曲線が得られる。電圧を上げて行
き透過率が変化し始める実効電圧を光学的しきい値電圧
vth(本明細書中に於ては透過率を10%だけ変化さ
せるのに必要な実効電圧値をvthとする。)、更に電
圧を上げて行き透過率が光学的飽和電圧をvaatC本
明細書中に於ては透過率を90%変化させるのに必要な
実効電圧値をVgatとする)とすると、非選択電極部
では印加される実効電圧v /−14Pr −hi 4
− a fir I −dkい砧11j、 FF V 
t hより小さければ、即ち Voff≦v th   ・−・−(2)であれば電圧
が印加されていない時と比較してその透過率は変化せず
全く選択されなく、選択電極部では印加される実効電圧
VOn  が飽和電圧Vsatより大きければ、即ち VOn≧V s a t  ……(8)であれば透過率
は十分変化し選択された事になる従9て(3)式を(2
)式で割れば □≧□  ・・・・・・(4) Voff      Vth となり、この関係式が成り立つ時非選択電極と選択電極
の透過率の差が十分となる。更に(1)式と(4)式か
ら となる。走査線の本数nが多くなるにつれて右辺は小さ
くなり1に近づいて行く。このため選択電極と非選択電
極で十分なコントラストを得るには、Vaat/Vth
も1に近い方が有利となる。即ち第2fiAの実効電圧
−相対透過率曲線の光学的しきい値電圧から光学的飽和
電圧にかけての曲線の勾配が急峻な程、コントラストを
一定(または良くした上に)走査線本数を増やす事がで
きる。以上が条件■が必要となる理由である。しかし従
来、電気光学特性に於ける温度依存性の除失が重要視さ
れていた為条件■そのものを改良する具体的方策が示さ
れておらず問題である。これに対して温度依存性はIC
が安価になった現在温度補償回路に組み込む事により容
易に取り除く事ができるように成った。
On the other hand, a twisted nematic mode liquid crystal cell, which is one type of liquid crystal display device, was placed between orthogonal polarizers, and the transmittance of the cell 4 was measured by photoelectric multiplication using the electro-optical characteristic measuring device shown in FIG. By changing the effective voltage applied to the cell 4 by the drive circuit 6 while observing with a tube, an effective relaxation pressure-relative transmittance curve as shown in FIG. 2 is obtained. The effective voltage at which the transmittance begins to change as the voltage is increased is the optical threshold voltage vth (in this specification, the effective voltage value required to change the transmittance by 10% is defined as vth). ), and as the voltage is further increased, the transmittance becomes the optical saturation voltage (vaatC, in this specification, the effective voltage value required to change the transmittance by 90% is Vgat), then the non-selective electrode In the section, the applied effective voltage v /-14Pr -hi 4
- a fir I -dk ikinuti 11j, FF V
If it is smaller than t h, that is, Voff≦v th ・−・−(2), the transmittance does not change compared to when no voltage is applied and is not selected at all, and no voltage is applied at the selection electrode section. If the effective voltage VOn is larger than the saturation voltage Vsat, that is, VOn≧V sat (8), the transmittance changes sufficiently and the selection has been made.
), □≧□ (4) Voff Vth When this relational expression holds true, the difference in transmittance between the non-selective electrode and the selective electrode becomes sufficient. Furthermore, it consists of equations (1) and (4). As the number n of scanning lines increases, the right side becomes smaller and approaches 1. Therefore, in order to obtain sufficient contrast between the selected electrode and the non-selected electrode, Vaat/Vth
The closer to 1, the more advantageous. In other words, the steeper the slope of the effective voltage-relative transmittance curve of the second fiA from the optical threshold voltage to the optical saturation voltage, the more the number of scanning lines can be increased while keeping the contrast constant (or improving it). can. The above is the reason why condition (2) is necessary. However, conventionally, emphasis has been placed on eliminating temperature dependence in electro-optic characteristics, and thus no concrete measures have been proposed to improve condition (2) itself, which is a problem. On the other hand, the temperature dependence is IC
Now that it has become cheaper, it has become possible to easily remove it by incorporating it into a temperature compensation circuit.

他の問題点として応答速度がある。Another problem is response speed.

静止画像を表示する場合応答速度はそれ程間順とならな
い。しかしコンビ具−夕端末やワード・プロセッサーな
どの様に画像を頻繁に切シ換える必要のある場合、高速
応答性が要求されるようになる。テレビ画像などの動画
を表示する場合更に迷い応答性が要求されるのは言うま
でもない。
When displaying still images, the response speed is not so consistent. However, in cases where images need to be changed frequently, such as in combination terminals and word processors, high-speed responsiveness is required. Needless to say, even more responsiveness is required when displaying moving images such as television images.

本発明は以上の問題点を解決するもので、その目的とす
るところは表示装置用のネマチック液晶組成物の急峻性
を改良しダイナミック駆動特性を向上させ、かつネマチ
ック液晶温度範囲を広くし動作温度範囲を広げ、更に化
学的に安定なネマチック液晶組成物を提供する小にある
The present invention has been made to solve the above problems, and its purpose is to improve the steepness of nematic liquid crystal compositions for display devices, improve dynamic drive characteristics, and widen the nematic liquid crystal temperature range to increase the operating temperature. It is possible to expand the scope and provide more chemically stable nematic liquid crystal compositions.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の液晶組成物は少なくとも一般式が下記Aで表わ
される化合物の少なくとも一種、一般式が下記Bで表わ
される化合物の少なくとも一種、一般式が下記Cで表わ
される化合物の少なくとも一種、及び一般式が下記りで
表わされる化合物の少なくとも一種から成る事を特徴と
する。
The liquid crystal composition of the present invention comprises at least one compound whose general formula is represented by the following formula A, at least one compound whose general formula is represented by the following formula B, at least one compound whose general formula is represented by the following formula C, and the general formula is characterized by comprising at least one of the compounds shown below.

A ・−−−−−Rx−8−@−0−R2B・・・・・
−Rm→ト÷−@−ON C・−−−−−R4−9−@−0−R1iD・・・…R
R6−o−C00−o−C但し、 R8及びR8は炭素数1〜12個の直鎮アルキル基 R,は炭素数1〜8個の直鎖アルキル基R4及びR,は
炭素数1〜12個の直鎖アルキル基 R6は炭素数1〜10個の直鎖アルキル基を表わす。
A ・----Rx-8-@-0-R2B・・・・・・
-Rm→T÷-@-ON C・-----R4-9-@-0-R1iD......R
R6-o-C00-o-C However, R8 and R8 are straight chain alkyl groups R having 1 to 12 carbon atoms, and R4 and R are straight chain alkyl groups having 1 to 8 carbon atoms. The straight chain alkyl group R6 represents a straight chain alkyl group having 1 to 10 carbon atoms.

一般式Aで表わされる化合物(以後本文中に於て化合物
Aと略記する)は応答速度を速くするために有効なNn
液晶であり7i11%未満では効果が小さくその含有量
は多い程良い。しかし透明点が比較的低いため化合物A
の含有量が72重社%を越えるとネマチック液晶組成物
の透明点も低くなり、ひいてはネマチック液晶組成物の
ネマチック液晶範囲を狭くするため好ましくない。従っ
て化合物Aの含有量は7重量%〜72重組%が鼠ましい
The compound represented by the general formula A (hereinafter abbreviated as compound A in the text) is an effective Nn compound for increasing the response speed.
Since 7i is a liquid crystal, if it is less than 11%, the effect is small, so the higher the content, the better. However, because the clearing point is relatively low, compound A
If the content exceeds 72%, the clearing point of the nematic liquid crystal composition will be lowered, and the nematic liquid crystal range of the nematic liquid crystal composition will be narrowed, which is not preferable. Therefore, the content of compound A is preferably 7% by weight to 72% by weight.

一般式Bで表わされる化合物(以後本文中に於て化合物
Bと略記する)はNp液晶でありその含有量の多少によ
り光学的しきい値電圧を低くまた高くできる。また、透
明点を高くするのに有利である。しかし、含有Mを多く
し過ぎると急峻性などの電気光学特性の性能を低下させ
、また、共晶!J(r!? −A、 l1l−17Nプ
シ−A(+−k / fpハ調キア騒田占悠Tσ)効果
が得られず低温に於て析出するように成る。
The compound represented by general formula B (hereinafter abbreviated as compound B in the text) is an Np liquid crystal, and the optical threshold voltage can be lowered or increased depending on its content. It is also advantageous in increasing the clearing point. However, if the content of M is too large, the performance of electro-optical properties such as steepness will deteriorate, and eutectic! J(r!? -A, 11l-17Npsi-A(+-k/fpc) effect is not obtained and it precipitates at low temperature.

従って化合物Bの含有量は、5重f[1%から38重鉦
%が望ましい。
Therefore, the content of compound B is preferably from 5% to 38%.

一般式Cで表わされる化合物(以後本文中に於て化合物
Cと略記する)は従来の単なるNn液晶及びNp液晶か
ら成るネマチック液晶組成物に添加する小により急峻性
を向上させ、かつネマチック液晶温度範囲も広げるため
に用いたものであり2wt%未満では効果がなくその含
有量は多い程良い。しかしsowt%を越えると共晶組
成からのズレが大きく成り過ぎて凝固点降下の効果が得
られず低温に於て析出するように成るため2本社%〜8
0瓦社外が望ましい。
The compound represented by the general formula C (hereinafter abbreviated as compound C in the text) is added to a conventional nematic liquid crystal composition consisting of a simple Nn liquid crystal and an Np liquid crystal to improve the steepness and the nematic liquid crystal temperature. It is used to widen the range, and if it is less than 2 wt%, it will not be effective, so the higher the content, the better. However, if it exceeds sowt%, the deviation from the eutectic composition becomes too large and the effect of lowering the freezing point cannot be obtained and precipitation occurs at low temperatures.
0 tile outside is preferable.

一般式りで表わされる化合物(以後本文中に於て化合物
りと略記する)はNp液晶でありその含有にの多少によ
り光学的しきい値電圧を低くまた高くできる。光学的し
きい値電圧が低ければそれに比例して液晶駆動用回路の
最大定格出力電圧も低くて済み、安価な工Cが使えるた
め有利となる、しかしP−に液晶の含有量を多くし過ぎ
ると急峻性などの電気光学特性の性能を低下させ、透明
点を低くし液晶温度範囲を狭くするなどの好ましくない
影響が出る可能性があるのでこの含有用は過度にしない
方が良い。即ち5重R%から30重社%が望ましく、よ
り望ましくは8重!1%から22.5重社%である。
The compound represented by the general formula (hereinafter abbreviated as "compound" in the text) is an Np liquid crystal, and depending on its content, the optical threshold voltage can be lowered or increased. If the optical threshold voltage is low, the maximum rated output voltage of the liquid crystal driving circuit will be proportionally low, which is advantageous because inexpensive engineering C can be used, but the liquid crystal content in P- will be too large. It is better not to add too much of this material, as this may cause undesirable effects such as deterioration of electro-optical properties such as steepness, lowering of the clearing point, and narrowing of the liquid crystal temperature range. That is, 5-fold R% to 30-fold R% is desirable, more preferably 8-fold R%! 1% to 22.5%.

〔実施例〕〔Example〕

以下、本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

尚、液晶組成物の特性の測定は次の如く行った、第1図
は電気光学特性に対する測定系を表わしたものである。
The characteristics of the liquid crystal composition were measured as follows. FIG. 1 shows the measurement system for the electro-optical characteristics.

測定セル4はガラス製基板の片面に蒸着などの操作によ
り酸化錫などの透明電極を設け、更にその而を有IIA
藩膜で覆い配向処理を施した上、スペーサーの役制を兼
ねたナイロン・フィルム製の枠を間に挾んで液晶を封入
した時液晶層が所望の厚みと成るよう゛に2枚の該ガラ
ス基板を対向させて固定したものであり、該セルの両面
には各々1枚づつの偏光板を電圧が印加されていない時
光が透過し、電圧が印加された時光が遮断されるように
偏光軸の向きを調整して貼付けである。尚、本文中に於
てガラス基板とガラス基板の間隔(即ち、液晶層の厚さ
)をセル厚と略記する。白色光源1から出た光線はレン
ズ系3を通りセル4に垂直方向から入射し、後方に設け
られた検出器でその透過光強度が測定される。この時セ
ル4には駆動回i&255によって任意の実効値電圧を
持つ周波ii1.1キ四・ヘルツの交番矩形電圧を印加
されている。第1図の測定系を用いて液晶セルを測定し
た実効電圧−相対透過率曲線がi2図である。第2図に
於て透過率は通常の印加電圧範囲で最も明るくなりた時
及び最も賠くなりた時の透過率を各々100%及び0%
として表わし印加電圧を透過率100′%の電圧から始
めて徐々に上げて行き透過率が10%だけ変化した時の
実効値電圧を光学的しきい値電圧vthまた更に印加電
圧を上げて透過率が100%の時から90%変化した時
の実効値電圧を光学的飽和電圧Vsatと各々定める。
The measurement cell 4 has a transparent electrode made of tin oxide or the like formed by vapor deposition on one side of a glass substrate, and further includes a transparent electrode made of tin oxide.
Two sheets of the glass were covered with a film and subjected to alignment treatment, and a nylon film frame that also served as a spacer was sandwiched between them so that the liquid crystal layer would have the desired thickness when the liquid crystal was sealed. The substrates are fixed facing each other, and there is one polarizing plate on each side of the cell, and the polarization axis is set so that light passes through when no voltage is applied and is blocked when voltage is applied. Adjust the orientation and paste. In the text, the distance between the glass substrates (ie, the thickness of the liquid crystal layer) is abbreviated as cell thickness. A light beam emitted from a white light source 1 passes through a lens system 3 and enters a cell 4 from a perpendicular direction, and the intensity of the transmitted light is measured by a detector provided at the rear. At this time, an alternating rectangular voltage having an arbitrary effective value voltage and a frequency ii1.1 K4.hertz is applied to the cell 4 by the driving circuit i&255. Diagram i2 is an effective voltage-relative transmittance curve obtained by measuring a liquid crystal cell using the measurement system shown in FIG. In Figure 2, the transmittance is 100% and 0%, respectively, when it is the brightest and the lowest in the normal applied voltage range.
The applied voltage is gradually increased starting from the voltage at which the transmittance is 100'%, and the effective value voltage when the transmittance changes by 10% is the optical threshold voltage vth.If the applied voltage is further increased, the transmittance is The effective value voltage when the voltage changes from 100% to 90% is defined as the optical saturation voltage Vsat.

この時、実効電圧−相対透過率曲線の光学的しきい値電
圧付近の立ち上がり(即ち、急峻性)は下式に於けるβ
値として定められる。
At this time, the rise (that is, the steepness) of the effective voltage-relative transmittance curve near the optical threshold voltage is determined by β in the following equation.
Defined as a value.

VSat !” vth 点燈時(マトリクス・セルに於て選択された時]の実効
値電圧(VOn  と表わす)が’Vaat&:等しく
、非点燈時(非選択時)の実効電圧(V o f fと
表わす)がvth  に等しい電気信号が印加され“た
時各々透過率が90%及び10%と成り、画素の点燈及
び非点燈゛が認識される事と成る。更に言えばVOn 
 がVSatよりやや大きく、VOffがvthよりや
や小さければ各々の透過率は90%以上と10%以下と
成る。この時V On / V Of f ) V E
l a t/Vth==βである。これとは逆にVOn
がVsatより小さく、vOffがvth より大きけ
れば各々の透過率は90%以下と10%以上と成り視認
性が悪くな9てしまう。即ち、V o n/V o f
 f(V sat/Vth==βなる信号電圧が印加さ
れた場合視認性が悪くなるのである。この様にβ値が電
気信号の実効電圧比V On / V Of fより小
さければ視認性の自いIN 5k W示−h1μ名−面
11泪II景象混スのrβ値が小さい程VOn/VOf
f比も小さく済む。単純マ) 9クス表示体では走査線
本数を多くする程V On / V Of fが小さく
なるためβ値も小さい(1に近づく)小が必要である。
VSat! ” vth The effective value voltage (expressed as VOn) when the light is on (when selected in the matrix cell) is equal to 'Vaat&:, and the effective voltage when the light is not on (when not selected) (V o f f and When an electric signal equal to vth is applied, the transmittance becomes 90% and 10%, respectively, and it is recognized whether the pixel is lit or not.Moreover, VOn
If is slightly larger than VSat and Voff is slightly smaller than vth, the respective transmittances will be 90% or more and 10% or less. At this time, V On / V Of f ) V E
l a t/Vth==β. On the contrary, VOn
If is smaller than Vsat and vOff is larger than vth, the respective transmittances will be 90% or less and 10% or more, resulting in poor visibility. That is, V on/V of
When a signal voltage of f(V sat/Vth==β is applied, visibility deteriorates. In this way, if the β value is smaller than the effective voltage ratio of the electric signal V On / V Off f, visibility becomes poor. The smaller the rβ value of the IN 5k W display-h1μ name-surface 11 tears II landscape mixture, the more VOn/VOf
The f ratio can also be made small. In a simple 9x display, as the number of scanning lines increases, V On /V Off decreases, so the β value must also be small (approaching 1).

以上β値はVon/Voffが許容される最小値を示す
ためマルチプレックス特性の指標となる。
Since the β value indicates the minimum value of Von/Voff that is allowed, it serves as an index of multiplex characteristics.

印加電圧の変化に対する応答速度は次の通りとする。印
加する実効値電圧を瞬間的にvth からvaatへ切
シ換えた時定常状態での各々実効値電圧5対する通過率
同志の差の90%だけ透過率が変化するのに要する時間
(即ち透過率が90%から18%へ変化するのに要する
時間)をミリ秒単位でTon  と表わし、同様にVa
atからvth へ実効値電圧を瞬間的に切シ換えた時
定常状態での各々の実効電圧に対する透過率同志の差の
90%だけ透過率が変化するのに要する時間(透過率が
10%から82%へ変化するのに要する時間)をミリ秒
単位でToffと表わす。Ton  とToffを足し
たT(ミリ秒単位)を以て応答速度の指標とする。
The response speed to changes in applied voltage is as follows. When the applied effective value voltage is instantaneously switched from vth to vaat, the time required for the transmittance to change by 90% of the difference between the transmittances for each effective value voltage of 5 in a steady state (i.e., the transmittance The time required for the value to change from 90% to 18% is expressed as Ton in milliseconds, and similarly, Va
When the effective value voltage is instantaneously switched from at to vth, the time required for the transmittance to change by 90% of the difference between the transmittances for each effective voltage in a steady state (the time required for the transmittance to change from 10% to The time required for the change to 82%) is expressed as Toff in milliseconds. T (in milliseconds), which is the sum of Ton and Toff, is used as an index of response speed.

尚、一般に印加電圧を0がら任意の電圧ν(1へ瞬間的
に切シ換えてから透過率が0の状態から90%へ変化す
るのに要する時間をton  、印加電圧をνから0へ
瞬間的に切シ換えてから透過率が100%の状態から1
0%変化するのに髪する時間を、toffとすると下記
の式で表わされる事が知られている(参考文献: M、
5chadt、日本学術振興会情報科学用有機材料第1
42委員会A部金(液晶グループ)第11@研究会資料
 1978年)。
In general, the time required for the transmittance to change from 0 to 90% after instantaneously switching the applied voltage from 0 to an arbitrary voltage ν (1) is ton, and when the applied voltage is instantaneously changed from ν to 0, the time required for the transmittance to change from 0 to 90% is ton. After changing the transmittance from 100% to 1
It is known that if the time required for the hair to change by 0% is toff, it can be expressed by the following formula (References: M,
5chadt, Japan Society for the Promotion of Science Organic Materials for Information Science No. 1
42 Committee A Division Gold (Liquid Crystal Group) No. 11 @Study Group Materials 1978).

ton=η/(goΔtW” −K(7)! )=d!
mη/(ε0Δ#E!  Kπ3)toff=η/K(
7)” =d2・η/Xπ2 (ここで、ηはバルク粘度、coは真空誘電率、Δeは
相対誘電率の異方性、Eは電場、Kはに、1+Kss 
 2 K2t )/ 4  なる弾性定数項、dはセル
厚を各々表わし、η、ΔeおよびXは液晶組成物に個有
である)。従ってton及びtoff  は共にd!に
比例して長くなる。
ton=η/(goΔtW”−K(7)!)=d!
mη/(ε0Δ#E! Kπ3)toff=η/K(
7)" = d2・η/Xπ2 (where η is the bulk viscosity, co is the vacuum permittivity, Δe is the anisotropy of the relative permittivity, E is the electric field, and K is the 1+Kss
2 K2t )/4, d each represents the cell thickness, η, Δe and X are specific to the liquid crystal composition). Therefore, both ton and toff are d! becomes longer in proportion to

本実施例で定翰したTなる応答速度もセル厚と密接な関
係があり、定性的ではあるがセル厚が薄いとTは短かく
、セル厚が厚いと長い傾向を見出した。これらの関係は
当業者ならば納得するに難しくない。従って同じ液晶組
成物を用いて液晶表示体を作った場合セル厚を薄くする
程、応答速度を速くする事ができる。
The response speed T determined in this example also has a close relationship with the cell thickness, and although qualitatively, it was found that the thinner the cell, the shorter the T, and the thicker the cell, the longer the T. These relationships are not difficult for those skilled in the art to understand. Therefore, when a liquid crystal display is made using the same liquid crystal composition, the thinner the cell thickness is, the faster the response speed can be.

一方、急峻性βはセル厚d(μ]と屈折率異方性Δnの
積であるΔnadがα8〜1. Q付近の時、最も小さ
くなる(最良となる)事が見出されている (参考文献
:山崎淑夫、竹下 裕、永田光夫、宮地幸夫、 pro
ceedinga of the 3rl工nteer
national Display Re5earch
 Conforence ’、rAPjVDI8PLA
Y ’ 83’、 320頁:1983年、■5ID)
On the other hand, it has been found that the steepness β is the smallest (best) when Δnad, which is the product of the cell thickness d (μ) and the refractive index anisotropy Δn, is around α8 to 1.Q ( References: Yoshio Yamazaki, Yutaka Takeshita, Mitsuo Nagata, Yukio Miyaji, pro
ceedinga of the 3rl engineer
national display research
Conforce', rAPjVDI8PLA
Y'83', 320 pages: 1983, ■5ID)
.

従ってコントラストを重視する場合、セル厚dをΔno
dが、α8〜1,0付近に成る様に液晶表示体を作るの
が最も得策であり、液晶組成物の急峻性の比較もこのセ
ル厚で行うのが最も妥当であると考えられる。応答時間
も先に記した如くセル厚と関係するため液晶組成物の応
答時間を比較するには適当な厚みで測定する事が必要で
ある。
Therefore, when emphasis is placed on contrast, the cell thickness d should be set to Δno
It is most advisable to manufacture a liquid crystal display so that d is around α8 to 1.0, and it is considered most appropriate to compare the steepness of liquid crystal compositions using this cell thickness. As mentioned above, the response time is also related to the cell thickness, so in order to compare the response times of liquid crystal compositions, it is necessary to measure at an appropriate thickness.

以上を鑑み、本実施例では急峻性、応答速度及び、光学
的しきい値電圧の測定は全て急峻性βが最小となるセル
厚のセルを用いて測定した。
In view of the above, in this example, steepness, response speed, and optical threshold voltage were all measured using a cell having a cell thickness that minimized steepness β.

測定温度は全て摂氏20度とした。The measurement temperature was 20 degrees Celsius in all cases.

また配向の均一性を高めるため本発明のネマチック液晶
組成物にff&量のコレステリンク物質を添加したもの
をセルに封止した。
Further, in order to improve the uniformity of alignment, a nematic liquid crystal composition of the present invention to which a cholesterinic substance was added in an amount of ff was sealed in a cell.

ネマチック液晶相の安定性はセルに封入した状態で高温
液晶性及び低温液晶性を以て表わした。
The stability of the nematic liquid crystal phase was expressed by high-temperature liquid crystallinity and low-temperature liquid crystallinity when sealed in a cell.

即ち年平均気温の平年値が東京で15℃、那覇で22℃
である(総理府統計局編「日本の統計」昭和55年度版
 6.7頁)から室温を20℃と仮定しセ/pを恒温槽
に設置し、それより更に30℃高い温度に於てネマチッ
ク相が安定か否かを高温液晶性と称することにし、ネマ
チック相が安定ならO印、等方性液体(1sotrop
ic 1iqu1d)  な楢の温度を20℃から始め
1日につき5℃ずつ下げて行りた時、室温として仮定し
た20℃より30℃低くなりた時(即ち、恒温槽!A度
−10”C)、ネマチック液晶相が安定か否かを低温液
晶性と称し、ネマチック液晶相が安定なら○印を、スメ
クチック液晶相ならsmを、固体状態を呈しているかま
たは析出を生じていればx印を以って表わす。
In other words, the average annual temperature is 15℃ in Tokyo and 22℃ in Naha.
(Japanese Statistics, compiled by the Statistics Bureau of the Prime Minister's Office, 1980 edition, p. 6.7), assuming that the room temperature is 20°C, the ce/p is placed in a thermostatic chamber, and the nematic cell is heated to a temperature 30°C higher than that. Whether the phase is stable or not is referred to as high-temperature liquid crystallinity.If the nematic phase is stable, it is marked O, and it is an isotropic liquid (1sotrop
ic 1iq1d) When the temperature of the oak was started from 20℃ and was lowered by 5℃ per day, when it became 30℃ lower than the assumed room temperature of 20℃ (i.e., a constant temperature bath! A degree - 10"C ), whether or not the nematic liquid crystal phase is stable is referred to as low-temperature liquid crystallinity. If the nematic liquid crystal phase is stable, mark it with an ○, if it is a smectic liquid crystal phase, mark it with sm, and if it is in a solid state or if precipitation occurs, mark it with an x. It is expressed as follows.

〔実施例−1〕 本発明による実施例−1の組成及び特性を第1表に示す
。但し、本実施例は化合物Bとして一般弐R3−o−@
−@−ca  C式1’l’l R3ハ炭素数1〜8個
の直鎮アルキル基を示す)で表わされる化合物及び化合
物Cとシテ一般弐R4−Q−o−0−as  C式t4
zR4及びR5は炭素数1〜12個の直鎖アルキル基を
示す)で表わされる化合物を含有して成る小を特徴とし
ている6 また、従来例としてEOH及びP−Eを含有して成る液
晶組成物の組成及び特性を第2表に示す従来例−1で急
峻性を表わすβ値が1.265であるのに対して、実施
例−1のβ値は1.208とたいへん良好である。即ち
、単純マトリクス電圧を用いた液晶パネルに於て透過率
を選択電極で10%以下(暗状態)に、非選択電極で9
0%以上(明状態)に各々するためには、従来例−1で
は走査電極の数は、17本以下しか駆動できないのに対
して実施例−1では29本以上駆動することができる。
[Example-1] Table 1 shows the composition and properties of Example-1 according to the present invention. However, in this example, as compound B, general 2R3-o-@
-@-ca C formula 1'l'l R3 represents a straight alkyl group having 1 to 8 carbon atoms) and compound C and shite general 2 R4-Q-o-0-as C formula t4
zR4 and R5 represent straight chain alkyl groups having 1 to 12 carbon atoms) 6 In addition, as a conventional example, a liquid crystal composition containing EOH and P-E The composition and properties of the product are shown in Table 2. Conventional Example-1 has a β value representing steepness of 1.265, while Example-1 has a very good β value of 1.208. In other words, in a liquid crystal panel using a simple matrix voltage, the transmittance is set to 10% or less (dark state) for selective electrodes and 9% for non-selective electrodes.
In order to achieve 0% or more (bright state), conventional example-1 can drive only 17 or less scanning electrodes, whereas embodiment-1 can drive 29 or more scanning electrodes.

光学的しきい値電圧vthも従来例−1が2.59Vで
あるのに対して、実施例−1のvthは1.98Vと大
幅に低下している。
The optical threshold voltage vth is also 2.59V in Conventional Example-1, whereas vth in Example-1 is significantly lower to 1.98V.

更に、応答速度も従来例−1がaaazv秒であるのに
対して、実施例−1は210ミリ秒とかなり速くなって
いる。
Furthermore, the response speed of Conventional Example-1 is aaazv seconds, whereas Example-1 is considerably faster at 210 milliseconds.

実施例−1は摂氏50度に於ける高温液晶性及び摂氏マ
イナス10度に於ける低温液晶性もあり十分安定で、通
常の表示体に用いるのには十分広いネマチック液晶温度
範囲を有している。更に、詳しくは、高温側では摂氏5
8度に於ても液晶性を有し、苛酷な条件下での表示体に
も用いることが可能である。
Example-1 has high-temperature liquid crystallinity at 50 degrees Celsius and low-temperature liquid crystallinity at -10 degrees Celsius, and is sufficiently stable, and has a sufficiently wide nematic liquid crystal temperature range for use in ordinary displays. There is. Furthermore, in detail, on the high temperature side, the temperature is 5 degrees Celsius.
It has liquid crystal properties even at 8 degrees, and can be used for displays even under severe conditions.

以上、本発明による実施例−1は、従来例−1と比較し
て、光学的しきい値電圧vthが大幅に低くなり、β値
が大きく改善されている。更に応答速度も速く、ネマチ
ック液晶温度範囲も十分広い。
As described above, in Example-1 according to the present invention, as compared with Conventional Example-1, the optical threshold voltage vth is significantly lowered and the β value is greatly improved. Furthermore, the response speed is fast and the nematic liquid crystal temperature range is sufficiently wide.

第1表 第2表 〔発明の効果〕 以上述べたように、本発明によれば、少なくとも一般式
R1−@−@−0− R2で表わされる化合物、一般式
R3−←4−@−ON  で表わされる化合物、一般式
Ra −Q(o) O−R5で表わされる化合物、一般
式R6+OOO+ON で表わされる化合物を用いてネ
マチック液晶組成物を構成した事によりネマチック液晶
温度範凹が摂氏マイナス10度から摂氏58度と広く、
急峻性が優れ応答速度が速く、更に、光学的しきい値電
圧が低く、ダイナミック駆動特性に優れたネマチック液
晶組成物を得ることができる。
Table 1 Table 2 [Effects of the Invention] As described above, according to the present invention, at least a compound represented by the general formula R1-@-@-0-R2, a compound represented by the general formula R3-←4-@-ON By constructing a nematic liquid crystal composition using a compound represented by the general formula Ra -Q(o) O-R5, and a compound represented by the general formula R6+OOO+ON, the nematic liquid crystal temperature range can be reduced by -10 degrees Celsius. to 58 degrees Celsius,
It is possible to obtain a nematic liquid crystal composition that has excellent steepness, fast response speed, low optical threshold voltage, and excellent dynamic drive characteristics.

本発明によるネマチック液晶組成物を用いればツイスト
ネマチックモードを始めとし、ゲスト・ホスト効果モー
ド(ゲスト液晶として)などの表示累子に於て優れた表
示コントラストを得るのに多大の効果がある。
The use of the nematic liquid crystal composition according to the present invention is highly effective in obtaining excellent display contrast in display elements such as twisted nematic mode and guest-host effect mode (as guest liquid crystal).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に於て用−た測定装置を表わすハード図
、第2図は該測定装置を用いて一般的に得られる相対透
過率−実効電圧の変化を示した曲tililv!J。 1・・・・・・光 源 2・・・・・・光 線 3・・・・・・レンズ及びフィルター系4・・・用セ 
ル 5・・・・・・受光部(光電増倍管) 以上
FIG. 1 is a hardware diagram showing the measuring device used in the examples, and FIG. 2 is a diagram showing the change in relative transmittance versus effective voltage generally obtained using the measuring device. J. 1...Light source 2...Light ray 3...Lens and filter system 4...Set
5... Light receiving section (photomultiplier tube) Above

Claims (1)

【特許請求の範囲】 少なくとも一般式が下記Aで表わされる化合物の少なく
とも一種、一般式が下記Bで表わされる化合物の少なく
とも一種、一般式が下記Cで表わされる化合物の少なく
とも一種、及び一般式が下記Dで表わされる化合物の少
なくとも一種から成る事を特徴とする液晶組成物。 A・・・・・・▲数式、化学式、表等があります▼ B・・・・・・▲数式、化学式、表等があります▼ C・・・・・・▲数式、化学式、表等があります▼ D・・・・・・▲数式、化学式、表等があります▼ (但し、 R_1及びR_2は炭素数1〜12個の直鎖アルキル基 R_3は炭素数1〜8個の直鎖アルキル基 R_4及びR_5は炭素数1〜12個の直鎖アルキル基 R_6は炭素数1〜10個の直鎖アルキル基を表わす。 )
[Scope of Claims] At least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, at least one compound whose general formula is represented by the following C, and whose general formula is A liquid crystal composition comprising at least one compound represented by D below. A・・・・・・▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ B・・・・・・▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ C・・・・・・▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ D・・・・・・▲ Numerical formulas, chemical formulas, tables, etc. and R_5 represents a straight chain alkyl group having 1 to 12 carbon atoms, and R_6 represents a straight chain alkyl group having 1 to 10 carbon atoms.)
JP2543486A 1986-02-07 1986-02-07 Liquid crystal composition Pending JPS62184089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2543486A JPS62184089A (en) 1986-02-07 1986-02-07 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2543486A JPS62184089A (en) 1986-02-07 1986-02-07 Liquid crystal composition

Publications (1)

Publication Number Publication Date
JPS62184089A true JPS62184089A (en) 1987-08-12

Family

ID=12165875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2543486A Pending JPS62184089A (en) 1986-02-07 1986-02-07 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS62184089A (en)

Similar Documents

Publication Publication Date Title
JPH01213390A (en) Ferroelectric liquid crystal composition and liquid crystal display element
JPS63125593A (en) Liquid crystal composition
JPS62184089A (en) Liquid crystal composition
JPS62100581A (en) Liquid crystal composition
US3950264A (en) Schiff-base liquid crystals doped to raise dynamic scattering cutoff frequency
JPS6245685A (en) Liquid crystal composition
JPS62184090A (en) Liquid crystal composition
JPS6213484A (en) Liquid crystal composition
JPS6245686A (en) Liquid crystal composition
JPS62218479A (en) Liquid crystal composition
JPS62100583A (en) Liquid crystal composition
JPS6245684A (en) Liquid crystal composition
JPH0699683B2 (en) Nematic liquid crystal composition
JPS62218482A (en) Liquid crystal composition
JPS62100585A (en) Liquid crystal composition
JPS62243682A (en) Liquid crystal composition
JPS61243887A (en) Liquid crystal composition
JP3205598B2 (en) Liquid crystal display device and driving method thereof
JPS62215687A (en) Liquid crystal composition
JPH01247482A (en) Liquid crystal composition
JPS62218480A (en) Liquid crystal composition
JPS61275386A (en) Liquid crystal composition
JPS62100584A (en) Liquid crystal composition
JPS62215686A (en) Liquid crystal composition
JPS6346289A (en) Liquid crystal composition