JPS62100583A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPS62100583A
JPS62100583A JP24092585A JP24092585A JPS62100583A JP S62100583 A JPS62100583 A JP S62100583A JP 24092585 A JP24092585 A JP 24092585A JP 24092585 A JP24092585 A JP 24092585A JP S62100583 A JPS62100583 A JP S62100583A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
compound
transmittance
crystal composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24092585A
Other languages
Japanese (ja)
Inventor
Takaaki Tanaka
孝昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24092585A priority Critical patent/JPS62100583A/en
Publication of JPS62100583A publication Critical patent/JPS62100583A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a nematic liquid crystal composition composed of specific four kinds of compounds, drivable over a wide temperature range and having steep rise, quick response, moderate optical threshold voltage and good dynamic driving characteristics. CONSTITUTION:The objective liquid crystal composition is composed of (A) the compound of formula I (R1 and R2 are 1-12C straight-chain alkyl), (B) the compound of formula II (R3 is 1-12C straight-chain alkyl; R4 is 1-10C straight-chain alkoxy or alkyl), (C) the compound of formula III (R5 is 1-10C straight-chain alkyl) and (D) the compound of formula IV (R6 and R7 are 1-10C straight-chain alkyl). The amounts of the components A-D are preferably 7-62(wt)%, 2-80%, 5-30% and 3-30%, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表示装置用液晶組成物、特に電界効果モードに
於てダイナミック駆動特性が良好なる液晶組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal composition for display devices, and particularly to a liquid crystal composition that has good dynamic drive characteristics in field effect mode.

〔発明の概要〕[Summary of the invention]

本発明は液晶組成物において、少なくとも一般式 R1
→HトOR2で表わされる化合物、一般式 R31H鼾
R4で表わされる化合物、一般式R5−o−C0O−o
−CN1及び一般式Ra−@−忰〈HトR,tで表わさ
れる化合物を用いることにより、急峻性が優れるように
したものである。
The present invention provides a liquid crystal composition having at least the general formula R1
→Compound represented by H-OR2, general formula R31H-R4, general formula R5-o-C0O-o
By using a compound represented by -CN1 and the general formula Ra-@-HtR,t, the steepness is excellent.

〔従来の技術〕[Conventional technology]

従来、表示装置用液晶組成物は、例えば特開昭54−8
3694号公報などに示されているように、一般式R+
COO−■−〇−R’ (R,R’は各々任意の炭素数
の直鎖アルキル基を示す)で表わされる化合物(以後本
文中に於てECHと略記する)などのNn液晶をベース
にして、これらに一般式R′→Σ−COO+CN(R“
は任意の炭素数の直鎖アルキル基を示す)で表わされる
化合物(以後本文中に於てP−Eと略記する)などのN
p液晶を添加し、光学的しきい値電圧を低下せしめる。
Conventionally, liquid crystal compositions for display devices have been disclosed, for example, in Japanese Patent Application Laid-Open No. 54-8
As shown in Publication No. 3694, etc., the general formula R+
Based on Nn liquid crystals such as the compound represented by COO-■-〇-R' (R and R' each represent a linear alkyl group with an arbitrary number of carbon atoms) (hereinafter abbreviated as ECH in the text). Then, the general formula R′→Σ−COO+CN(R“
represents a straight-chain alkyl group with any number of carbon atoms (hereinafter abbreviated as P-E in the text).
P liquid crystal is added to lower the optical threshold voltage.

但しNp液晶の添加量が多くなると後述の急峻性などの
電気光学特性が低下するので必要以上にNp液晶を添加
することは得策でない。
However, if the amount of Np liquid crystal added increases, electro-optical properties such as steepness, which will be described later, will deteriorate, so it is not a good idea to add more Np liquid crystal than necessary.

〔本発明が解決しようとする問題点及び目的〕今日ネマ
チック液晶組成物に要求される特性の条件は ■ 電圧−透過率曲線の光学的しきい値電圧の付近の立
ち上がりが急峻であること(以後本文中に於て急峻性と
略記する) ■ 電圧の変化に対して透過率に応答速度が速いこと ■ 室温を中心として広い温度範囲で駆動できること、
即ち広いネマチック液晶範囲を持つこと ■ 化学的に安定で耐湿性・制光性に優れること ■ 駆動電圧(まだは光学的しきい値電圧)が自由に選
べること などがある。
[Problems and objectives to be solved by the present invention] The characteristics required of nematic liquid crystal compositions today are: (1) The rise of the voltage-transmittance curve near the optical threshold voltage is steep (hereinafter referred to as (abbreviated as "steepness" in the text) ■ Fast response speed in transmittance to changes in voltage ■ Capable of driving in a wide temperature range centered around room temperature
In other words, it must have a wide nematic liquid crystal range, ■ It must be chemically stable and have excellent moisture resistance and light control properties, and ■ The driving voltage (currently the optical threshold voltage) can be freely selected.

単純マトリクス表示体に於てダイナミック駆動をした時
、駆動回路によって選択電極部または非選択電極部の液
晶に印加される実効電圧を各々Vo n、 Vo f 
f  どし、走査電極の本数をn本とすレバ、比Von
/Voffは Vo n/Vo f f =Aフチー1−i)ワ(−、
r= −1) ・−11)なる関係があり、nが多くな
るにつれて比V o n/Voff  も小さくなって
行く。
When a simple matrix display is dynamically driven, the effective voltages applied to the liquid crystal of the selected electrode part or the non-selected electrode part by the driving circuit are Vo n and Vo f , respectively.
f and the number of scanning electrodes is n, the ratio Von
/Voff is Vo n/Vof f = A foot 1-i) wa (-,
There is the following relationship: r=-1) -11), and as n increases, the ratio V on/Voff also decreases.

一方、液晶表示装置の一つであるツイスト・ネマチック
・モードの液晶セルを直交偏光子間に置き、第1図に示
す電気光学特性測定装置を用いて該セル4の透過率を光
電増倍管で観察しながら駆動回路6により該セル4に印
加する実効電圧を変えて行くと第2図に示される如き実
効電圧−相対透過率曲線が得られる。電圧を上げて行き
透過率が変化し始める実効電圧を光学的しきい値電圧v
th  (本明細書中に於ては透過率を10%だけ変化
させるのに必要な実効電圧値をvthとする)、更に電
圧を上げて行き透過率が光学的飽和電圧をVsat(本
明細書に於ては透過率を90%変化させるのに必要な実
効電圧値をVsatとする)とすると、非選択電極部で
は印加される実効電圧Voffが光学的しきい値電圧v
th  より小さければ、即ち、 V o f f <V t h           
   −−(2)であれば電圧が印加されていない時と
比較してその透過率は変化せず全く選択されなく、選択
電極部では印加される実効電圧Vonが飽和電圧Vsa
tより大きければ、即ち Van≧v s a t            ・=
 −(3)であれば透過率は十分変化し選択された事に
なる従って(6)式を(2)式で割れば Von、     Vsat となり、この関係式が成シ立つ時非選択電極と選択電極
の透過率の差が十分となる。更に(1)式と(4)式か
ら となる。走査線の本数nが多くなるにつれ右辺は小さく
なり1に近づいて行く。このだめ選択電極と非選択電極
で十分なコントラストを得るにはVsat/Vthも1
に近い方が有利となる。即ち第2図の電圧−透過率曲線
の光学的しきい値電圧から光学的飽和電圧にかけての勾
配が急峻な程、コントラストを一定(または良くした上
に)走査線本数を増やす事ができる。以上が条件■が必
要となる理由である。しかし従来、電気光学特性に於け
る温度依存性の除去が重要視されていた為条件■そのも
のを改良する具体的方策が示されておらず問題である。
On the other hand, a twisted nematic mode liquid crystal cell, which is one type of liquid crystal display device, is placed between orthogonal polarizers, and the transmittance of the cell 4 is measured using the electro-optic characteristic measuring device shown in FIG. By changing the effective voltage applied to the cell 4 by the drive circuit 6 while observing the cell 4, an effective voltage-relative transmittance curve as shown in FIG. 2 is obtained. The optical threshold voltage v is the effective voltage at which the transmittance begins to change as the voltage is increased.
th (in this specification, the effective voltage value required to change the transmittance by 10% is vth), and as the voltage is further increased, the transmittance increases the optical saturation voltage to Vsat (in this specification, the effective voltage value required to change the transmittance by 10% is vth). (in this case, the effective voltage value required to change the transmittance by 90% is Vsat), then the effective voltage Voff applied to the non-selected electrode portion is equal to the optical threshold voltage v
If it is smaller than th, that is, V o f f <V th
--If (2), the transmittance does not change compared to when no voltage is applied and is not selected at all, and the effective voltage Von applied at the selection electrode section is the saturation voltage Vsa.
If it is larger than t, that is, Van≧v s a t ・=
- If it is (3), the transmittance has changed sufficiently and it has been selected.Therefore, dividing equation (6) by equation (2) gives Von, Vsat, and when this relational expression holds, it is selected as a non-selected electrode. The difference in transmittance of the electrodes is sufficient. Furthermore, it consists of equations (1) and (4). As the number n of scanning lines increases, the right side becomes smaller and approaches 1. In order to obtain sufficient contrast between the selected electrode and the non-selected electrode, Vsat/Vth must also be 1.
It is advantageous to be closer to . That is, the steeper the slope from the optical threshold voltage to the optical saturation voltage of the voltage-transmittance curve shown in FIG. 2, the more the number of scanning lines can be increased while maintaining (or improving) the contrast. The above is the reason why condition (2) is necessary. However, since conventionally, emphasis has been placed on eliminating temperature dependence in electro-optical characteristics, no concrete measures have been proposed to improve condition (2) itself, which is a problem.

これに対し2て温度依存性は】Cが安価になった現在温
度補償回路を駆動回路に組み込む事により容易に取り除
く事が出来るように成った0 他の問題点として応答速度がある。
On the other hand, temperature dependence can now be easily removed by incorporating a temperature compensation circuit into the drive circuit as C has become less expensive.Another problem is the response speed.

静止画像を表示する場合応答速度はそれ程問題とならな
い、しかしコンピュータ端末やワード・プロセッサーな
どの様に画像を頻繁に切り換える必要のある場合、高速
応答性が要求されるようになる。テレビ画像などの動画
を表示する場合更に速い応答性が要求されるのは言うま
でもない。
When displaying still images, response speed is not so important, but when images need to be changed frequently, such as in computer terminals and word processors, high-speed response is required. Needless to say, even faster response is required when displaying moving images such as television images.

本発明は以上の問題点を解決するもので、その目的とす
るところは表示肢位用のネマチック液晶組成物の急峻性
を改良しダイナミック駆動特性を向上させ、かつネマチ
ック液晶温度範囲を広くし動作温度範囲を広げ、更に化
学的に安定なネマチック液晶組成物を提供する事にある
The present invention has been made to solve the above problems, and its purpose is to improve the steepness of a nematic liquid crystal composition for display positions, improve dynamic drive characteristics, and widen the nematic liquid crystal temperature range for operation. The object of the present invention is to provide a nematic liquid crystal composition that has a wider temperature range and is chemically stable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の液晶組成物は、少なくとも一般式が下記Aで表
わされる化合物の少なくとも一種、一般式が下記Bで表
わされる化合物の少なくとも一種、一般式が下記Cで表
わされる化合物の少なくとも・一種、及び一般式が下記
りで表わされる化合物の少なくとも一種から成る事を特
徴とする。
The liquid crystal composition of the present invention includes at least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, at least one compound whose general formula is represented by the following C, and It is characterized by comprising at least one type of compound whose general formula is represented by the following.

A・・・・・・Rl +Q−0−R2 R−−R3−9−Q−R4 C−−Rs@−COO−<G−CN ■〕 ・・・・・・ R5−40−〇−()〜@−Rフ
但し、 Ro及びR2は炭素数1〜12個の直鎖アルギル基。
A...Rl +Q-0-R2 R--R3-9-Q-R4 C--Rs@-COO-<G-CN ■] ...... R5-40-〇-( )~@-RF However, Ro and R2 are straight chain argyl groups having 1 to 12 carbon atoms.

R3は炭素数1〜12個の直鎖アルギル基。R3 is a straight chain argyl group having 1 to 12 carbon atoms.

R,4は炭素数1〜10個の直鎖アルコギシオたけアル
キル基。
R and 4 are linear alkoxyalkyl groups having 1 to 10 carbon atoms.

R5は炭素数1〜10個の直鎖アルキル基。R5 is a straight chain alkyl group having 1 to 10 carbon atoms.

R6及びR7は炭素数1〜10個の直鎖アルギル基、を
表わす。
R6 and R7 represent a straight chain argyl group having 1 to 10 carbon atoms.

一般式Aで表わされる化合物(以下本文中に於て化合物
Aと略記する)は応答速度を速くするために有効なNn
液晶であり7重量%未満では効果が小さくその含有量は
多い程良い。しかし透明点が比較的低いため含有量が6
2重量%を越えるとネマチック液晶範囲を狭くするため
好ましくない。
The compound represented by the general formula A (hereinafter abbreviated as compound A in the text) is an effective Nn compound for increasing the response speed.
It is a liquid crystal, and if it is less than 7% by weight, the effect is small, so the higher the content, the better. However, because the clearing point is relatively low, the content is 6.
If it exceeds 2% by weight, it is not preferable because it narrows the nematic liquid crystal range.

従って化合物Aの含有量は7重量り〜62重量%が望ま
しい。
Therefore, the content of compound A is preferably 7 to 62% by weight.

一般式Bで表わされる化合物(以下本文中に於て化合物
Bと略記する)は急峻性を高め、応答速度を速くするた
めに用いたものであり、その含有量は2重量%〜80重
量%が望ましい。
The compound represented by general formula B (hereinafter abbreviated as compound B in the text) is used to enhance steepness and speed up response speed, and its content ranges from 2% to 80% by weight. is desirable.

一般式〇で表わされる化合物(以下本文中に於て化合物
Cと略記する)は、Np液晶であり、その含有量の多少
により光学的しきい値電圧を低くまだは高くできる。光
学的しきい値電圧が低ければそれに対応して液晶駆動用
回路の最大定格出力電圧も低くて済み、安価なICが使
えるため有利となる。しかしP−E液晶の含有量を多く
しすぎると電気光学特性が低下し、液晶温度範囲が狭く
なるなどの好ましくない影響が出るため、含有量は5゛
重量%〜30重蓋%が望ましい。
The compound represented by the general formula (hereinafter abbreviated as compound C in the text) is an Np liquid crystal, and depending on its content, the optical threshold voltage can be made low or high. If the optical threshold voltage is low, the maximum rated output voltage of the liquid crystal driving circuit can be correspondingly low, which is advantageous because inexpensive ICs can be used. However, if the content of P-E liquid crystal is too large, the electro-optical properties will deteriorate and the liquid crystal temperature range will be narrowed, so that the content is preferably 5% by weight to 30% by weight.

一般式りで表わされる化合物(以後本文中に於て化合物
りと略記する)はネマチック液晶組成物の透明点を高く
するのに有効である。5重量%以下では効果が小さく、
含有量は多い程良い。しかしながら30重量%を越える
と低温でスメクチック相を示すので好ましくない。従っ
て3重量%〜30重t%が望ましい。
The compound represented by the general formula (hereinafter abbreviated as "compound" in the text) is effective in increasing the clearing point of a nematic liquid crystal composition. If it is less than 5% by weight, the effect is small;
The higher the content, the better. However, if it exceeds 30% by weight, it exhibits a smectic phase at low temperatures, which is not preferable. Therefore, 3% to 30% by weight is desirable.

〔実施例〕〔Example〕

以下、本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

尚、液晶組成物の特性の測定は次の如く行った。The characteristics of the liquid crystal composition were measured as follows.

第1図は電気光学特性に対する測定系を表わしたもので
ある。測定セル4はガラス製基板の片面に蒸着などの操
作により酸化錫などの透明電極を毀け、更にその面を有
機薄膜で覆い配向処理を施した上、スペーサーの役割を
兼ねたナイロン・フィルム製の枠を間に挾んで液晶を封
入した時液晶層が所望の厚みと成るように二枚の該ガラ
ス基板を対向させて固定したものであり、該セルの両面
には各々一枚ずつの偏光板を電圧が印加されていない時
光が透過シ2、電圧が印加された時光が遮断されるよう
に偏光軸の向きを調整して貼付けである。
FIG. 1 shows a measurement system for electro-optical characteristics. The measurement cell 4 is made of a nylon film that also serves as a spacer by breaking a transparent electrode made of tin oxide or other material on one side of a glass substrate by vapor deposition, then covering that surface with an organic thin film, and subjecting it to alignment treatment. The two glass substrates are fixed facing each other so that the liquid crystal layer has the desired thickness when the liquid crystal is sealed with a frame between them, and one polarized light plate is placed on each side of the cell. The direction of the polarization axis is adjusted and pasted so that light passes through the plate when no voltage is applied, and light is blocked when voltage is applied.

面、本文中に於てガラス基板とガラス基板の間隔(即ち
液晶層の厚さ)をセル厚と略記する。白色光源1から出
た光線はレンズ系3を通りセル4に垂直方向から入射し
、後方に設けられた検出器でその透過光強度が測定され
る。この時セル4には駆動回路5によって任意の実効値
電圧を持つ周波数1キロ・ヘルツの交番矩形電圧を印加
されている。第1図の測定系を用いて液晶セルを測定し
た実効電圧−相対透過率曲線が第2図である。第2図に
於て透過率は通常の印加電圧範囲で最も明るくなった時
及び最も暗くなった時の透過率を各々100%及び0%
として表わし印加電圧を透過率100%の電圧から始め
て除々に上げて行き透過率が10%だけ変化した時の実
効値電圧を光学的しきい値電圧vth また更に印加電
圧を上げて透過率が100%の時から90%変化した時
の実効値電圧を光学的飽和電圧Vsatと各々定める。
In this paper, the distance between the glass substrates (i.e., the thickness of the liquid crystal layer) is abbreviated as the cell thickness. A light beam emitted from a white light source 1 passes through a lens system 3 and enters a cell 4 from a perpendicular direction, and the intensity of the transmitted light is measured by a detector provided at the rear. At this time, an alternating rectangular voltage having a frequency of 1 kilohertz and having an arbitrary effective value voltage is applied to the cell 4 by the driving circuit 5. FIG. 2 shows an effective voltage-relative transmittance curve obtained by measuring a liquid crystal cell using the measurement system shown in FIG. In Figure 2, the transmittance is 100% and 0%, respectively, when it becomes brightest and when it becomes darkest in the normal applied voltage range.
The applied voltage is gradually increased starting from the voltage at which the transmittance is 100%, and the effective value voltage when the transmittance changes by 10% is the optical threshold voltage vth.Also, when the applied voltage is further increased, the transmittance is 100%. The effective value voltage when the voltage changes by 90% from the time of % is defined as the optical saturation voltage Vsat.

この時、電圧−透過率曲線の光学的しきい値電圧付近の
立ち上がp(即ち急峻性)は下式に於けるβ値として定
められる。
At this time, the rise p (that is, the steepness) of the voltage-transmittance curve near the optical threshold voltage is determined as the β value in the following equation.

Vsat vth 点燈時(マトリクス・セルに於て選択された時)の実効
値電圧(Von と表わす)がVsatに等り。
Vsat vth The effective value voltage (expressed as Von) when turned on (when selected in the matrix cell) is equal to Vsat.

く、非点燈時(非選択時)の実効値電圧(Voffと表
わす)がvthに等しい電気信号が印加された時各々透
過率が90%及び10Φと成り、両案の点燈及び非点燈
が認識される事と成る。更に言えばVanがV s a
 tよりやや太き(、Voffがvthよりやや小さけ
れば各々の透過率は90%以上と10%以下と成る。こ
の時Vo n /Vo f f )Vs s t /v
th=βである。これとは逆にVonがVsatより小
さく、Voffがvth  より大きければ各々の透過
率は90%以下と10%以上と成り視認性が悪くなって
しまう。即ちVon/Voff <Vsat/vth=
βなる信号電圧が印加された場合視認性が悪くなるので
ある。この様にβ値が電気信号の実効電圧比Vo n 
/ Vo f f  よシ小さければ視認性の良い画像
表示が得られ、同じ画像表示を得るのにβ値が小さい程
Von/Voff比も小さく済む。
When an electrical signal with an effective value voltage (denoted as Voff) equal to vth when not lit (non-selected) is applied, the transmittance becomes 90% and 10Φ, respectively. The light will be recognized. Furthermore, Van is Vsa
Slightly thicker than t (, if Voff is slightly smaller than vth, each transmittance will be 90% or more and 10% or less. In this case, Vo n /Voff f )Vs s t /v
th=β. On the contrary, if Von is smaller than Vsat and Voff is larger than vth, the respective transmittances will be 90% or less and 10% or more, resulting in poor visibility. That is, Von/Voff <Vsat/vth=
When a signal voltage of β is applied, visibility deteriorates. In this way, the β value is the effective voltage ratio of the electrical signal Vo n
/ Vo f f The smaller the β value, the better the visibility of the image display can be obtained, and the smaller the β value, the smaller the Von/Voff ratio will be required to obtain the same image display.

単純マド’Jクス表示体では走査線本数を多くする程V
on/Voffが小さくなるためβ値も小さい(1に近
づく)事が必要である。以上β値はVon/Voffが
許容される最小値を示すためマルチプレックス特性の指
標となる。
In a simple Mado'Jx display, the larger the number of scanning lines, the more
Since on/Voff becomes small, the β value also needs to be small (close to 1). Since the β value indicates the minimum value of Von/Voff that is allowed, it serves as an index of multiplex characteristics.

印加電圧の変化に対する応答速度は次の通りとする。印
加する実効値電圧を瞬間的にvth からVsatへ切
シ換えた時定常状態での各々の実効電圧に対する透過率
同志の差の90%だけ透過率が変化するのに要する時間
(即ち透過率が90%から18%へ変化するのに要する
時間)をミ’J秒単位でTon表わし、同様にV s 
a tからvthへ実効値電圧を瞬間的に切り換ヌた時
定常状態での各々の実効電圧に対する透過率同志の差の
90%だけ透過率が変化するのに要する時間(透過率が
10%から82%へ変化するのに要する時間)をミIJ
秒単位でToffと表わす。Ton  とToffを足
したT (ミIJ秒単位)を以て応答速度の指標とする
The response speed to changes in applied voltage is as follows. When the applied effective voltage is instantaneously switched from vth to Vsat, the time required for the transmittance to change by 90% of the difference between the transmittances for each effective voltage in a steady state (that is, the transmittance The time required to change from 90% to 18% is expressed in Ton in J seconds, and similarly, V s
When the effective value voltage is instantaneously switched from a t to vth, the time required for the transmittance to change by 90% of the difference between the transmittances for each effective voltage in a steady state (the time required for the transmittance to change by 90%) (time required to change from 82% to 82%)
It is expressed as Toff in seconds. The sum of Ton and Toff (T (in microIJ seconds)) is used as an index of response speed.

尚、一般に印加電圧を0から任意の電圧υ(V)へ瞬間
的に切り換えてから透過率が0の状態から90%へ変化
するのに要する時間をton、印加電圧をυから0へ瞬
間的に切り換えてから透過率が100%の状態から10
%変化するのに要する時間をtoffとすると下記の式
で表わされる事が知られている(参考文献: M、 5
chadt、  日本学術振興会情報科学用有機材料第
142委員会A部会(液晶グループ)第11回研究会資
料、1978年)。
Generally, the time required for the transmittance to change from 0 to 90% after instantaneously switching the applied voltage from 0 to an arbitrary voltage υ (V) is ton, and the time required for the transmittance to change from 0 to 90% is ton, and the time required for the transmittance to change from 0 to 90% is ton. After switching to , the transmittance changed from 100% to 10%.
It is known that if the time required for a % change is toff, it can be expressed by the following formula (References: M, 5
chadt, Japan Society for the Promotion of Science, 142nd Committee on Organic Materials for Information Science, Subcommittee A (Liquid Crystal Group) 11th Research Meeting Materials, 1978).

ton =η/(ε0ΔεE2−K(−)2)=d2・
η/(ε0Δeυ2−にπ2)toff−+7/K()
” =d2・η/にπ2 (ここでηけバルク粘度、ε0は真空誘′r!L率、J
εは相対誘電率の異方性、EH電場、Kはに21+に2
2 2 K22 ) / 4なる弾性定数項、dはセル
厚を各々表わし、η、ΔεおよびKは液晶組成物に個有
である)。従ってton及びtoffは共にd2に比例
して長くなる。
ton = η/(ε0ΔεE2−K(−)2)=d2・
η/(ε0Δeυ2− to π2)toff−+7/K()
” = d2・η/π2 (where η is the bulk viscosity, ε0 is the vacuum dielectric constant, r!L rate, J
ε is the anisotropy of relative permittivity, EH electric field, K is 21+2
22K22)/4, d each represents the cell thickness, η, Δε and K are specific to the liquid crystal composition). Therefore, both ton and toff become longer in proportion to d2.

本実施例で定義したTなる応答速度もセル厚と密接な関
係があり、定性的ではあるがセル厚が薄いとTは短かく
、セル厚が厚いと長い傾向を見出した。これらの関係は
当業者ならば納得するに難くない。従って同じ液晶組成
物を用いて液晶表示体を作った場合セル厚を薄くする程
応答速度を速くする事ができる。
The response speed T defined in this example also has a close relationship with the cell thickness, and although qualitatively, it was found that T tends to be short when the cell thickness is thin, and long when the cell thickness is thick. These relationships are not difficult for those skilled in the art to understand. Therefore, when a liquid crystal display is made using the same liquid crystal composition, the response speed can be increased as the cell thickness becomes thinner.

一方、急峻性βはセル厚d(μ)と屈折率異方性Δnの
積であるΔnodが0.8〜1.0付近の時最も小さく
なる(最良となる)事が見出されている(参考文献:山
崎淑夫、竹下裕、永田光夫、宮地幸夫、Proeaad
ings  of  the 3rdInternat
ional Display Re5earch″JA
PAN DISPLAY  ’85”、320頁; 1
983年、■5ID)。従ってコントラストを重視する
場合セル厚dをΔnodが0.8〜1.0付近に成る様
に液晶表示体を作るのが最も得策であり、液晶組成物の
急峻性の比較もこのセル厚で行うのが最も妥当であると
考えられる。応答時間も先に記した如くセル厚と関係す
るため液晶組成物の応答時間を比較するには適当な厚み
で測定する事が必要である。
On the other hand, it has been found that the steepness β is the smallest (best) when Δnod, which is the product of the cell thickness d (μ) and the refractive index anisotropy Δn, is around 0.8 to 1.0. (References: Yoshio Yamazaki, Yutaka Takeshita, Mitsuo Nagata, Yukio Miyaji, Proeaad
ings of the 3rd International
ional Display Re5earch”JA
PAN DISPLAY '85'', page 320; 1
983, ■5 ID). Therefore, if contrast is important, it is best to make a liquid crystal display with a cell thickness d such that Δnod is around 0.8 to 1.0, and the steepness of liquid crystal compositions is also compared using this cell thickness. is considered to be the most appropriate. As mentioned above, the response time is also related to the cell thickness, so in order to compare the response times of liquid crystal compositions, it is necessary to measure at an appropriate thickness.

以上を鑑み、本実施例では急峻性、応答速度及び光学的
しきい値電圧の測定は全て急峻性βが最小となるセル厚
のセルを用いて測定した。
In view of the above, in this example, steepness, response speed, and optical threshold voltage were all measured using a cell having a cell thickness that minimized steepness β.

測定温度は全て摂氏20度とした。The measurement temperature was 20 degrees Celsius in all cases.

また配向の均一性を高めるため本発明のネマチック液晶
組成物に微量のコレステリック物質を添加したものをセ
ルに封止した。
Further, in order to improve the uniformity of alignment, the nematic liquid crystal composition of the present invention with a trace amount of cholesteric substance added thereto was sealed in a cell.

ネマチック液晶相の安定性はセルに封入した状態で高温
液晶性及び低温液晶性を以て表わした。
The stability of the nematic liquid crystal phase was expressed by high-temperature liquid crystallinity and low-temperature liquid crystallinity when sealed in a cell.

即ち年平均気温の平年値が東京で15℃、部組で22℃
である(総理府統計局線「日本の統計」昭和55年度版
 6.7頁)から室温を20℃と仮定しセルを恒温槽に
設置し、それより更に30℃高い温度に於てネマチック
相が安定か否かを高温液晶性と称することにし、ネマチ
ック相が安定なら○印、等方性液体(1sotropi
eliquid)なら工で表わす。低温液晶性はセルを
設置した恒温槽の温度を20℃から始め1日につき5℃
づつ下げて行った時、室温として仮定した20℃より3
0℃低くなった時(即ち恒温検温If−10℃)ネマチ
ック液晶相が安定か否かを低温液晶性と称し、ネマチッ
ク相が安定ならO印を、スメクチック液晶相なら固体状
態を呈しているかまたは析出を生じていればX印を以っ
て表わ、す。
In other words, the average annual temperature is 15℃ in Tokyo and 22℃ in Bugumi.
(Prime Office Statistics Bureau, Japan Statistics, 1982 edition, p. 6.7), assuming the room temperature is 20℃, the cell is placed in a constant temperature bath, and at a temperature 30℃ higher than that, the nematic phase is formed. Whether or not it is stable is referred to as high-temperature liquid crystallinity.If the nematic phase is stable, it is marked as an isotropic liquid (1sotropic liquid).
eliquid) is expressed in engineering. For low-temperature liquid crystallinity, the temperature of the constant temperature bath in which the cell is installed starts from 20℃ and is increased to 5℃ per day.
When lowering the temperature step by step, the temperature decreased by 3 degrees from the assumed room temperature of 20℃.
Whether or not the nematic liquid crystal phase is stable when the temperature drops by 0℃ (i.e., constant temperature If-10℃) is referred to as low-temperature liquid crystallinity. If precipitation occurs, it is indicated by an X mark.

〔実施例−1,2,3) 本発明による実施例−1,2及び3の組成ならびに特性
をそれぞれ第1表、第2表、第3表に示す。但し本実施
例は化合物Bとして一般式R31H鼾R4(式中R3は
炭素数1〜12個の直鎖アルキル基%R4は炭素数1〜
10個の直鎖アルコキシまたはアルキル基を示す)で表
わされる化合物を含有していることを特徴としている。
[Examples 1, 2, and 3] The compositions and properties of Examples 1, 2, and 3 according to the present invention are shown in Tables 1, 2, and 3, respectively. However, in this example, Compound B was selected from the general formula R31HR4 (wherein R3 is a linear alkyl group having 1 to 12 carbon atoms, R4 is a straight chain alkyl group having 1 to 12 carbon atoms,
It is characterized by containing a compound represented by 10 linear alkoxy or alkyl groups.

また、従来例としてECH及びP−Eを含有して成る液
晶組成物の組成及び特性を第4表に示す。
Further, Table 4 shows the composition and characteristics of a liquid crystal composition containing ECH and PE as a conventional example.

従来例−1で急峻性を表わすβ値が1.265であ、の
に対して実施例−1のβ値は1.23 、実施例−2の
β値は1.22、実施例−3のβ値は1.24であり、
極めて良好である。すなわち単純マトリクス電極を用い
た液晶パネルに於て透過率を選択電極で10%以下(暗
状態)に、非選択電極で90%以上(明状態)にするた
めには、従来例−1では走査電極の数は17本以下しか
駆動できないのに対して実施例−1では25本以上、実
施列−2では26本以上、実施例−6では23本以上駆
動することができる。
Conventional Example-1 had a β value representing steepness of 1.265, whereas Example-1 had a β value of 1.23, Example-2 had a β value of 1.22, and Example-3. The β value of is 1.24,
Very good. In other words, in order to achieve a transmittance of 10% or less (dark state) for selective electrodes and 90% or more (bright state) for non-selective electrodes in a liquid crystal panel using simple matrix electrodes, in Conventional Example-1, scanning is required. Whereas only 17 or less electrodes can be driven, 25 or more electrodes can be driven in Example-1, 26 or more in Example-2, and 23 or more in Example-6.

光学的しきい値電圧も従来例が2□59Vであるのに対
して、実施例−3では2.59■と改善されている。
The optical threshold voltage was also improved to 2.59V in Example-3, whereas it was 2□59V in the conventional example.

応答速度は従来例−1が444ミリ秒であるのに対して
、実施例−1が105. S ミIJ秒、実施例−2が
106.2ミリ秒、実施例−5では100.1ミリ秒と
、いずれもかなり改善されている。
The response speed of Conventional Example-1 is 444 milliseconds, while that of Example-1 is 105. S miIJ seconds, Example-2 was 106.2 milliseconds, and Example-5 was 100.1 milliseconds, both of which were considerably improved.

実施例−1,2及び5はいずれも摂氏50度における高
温液晶性を持っており、低温液晶性に関しでは、実施例
−1で摂氏マイナス20度、実施例−2で摂氏マイナス
15gt%実施例−6では摂氏マイナス40度まで十分
安定で、通常の表示体に用いるには十分広いネマチック
液晶温度範囲を有している。特に実施例−3については
摂氏マイナス40度から摂氏50度までの極めて広いネ
マチック範囲を有しており、従ってかなり厳しい条件下
においても表示体として使用可能である。
Examples-1, 2, and 5 all have high-temperature liquid crystallinity at 50 degrees Celsius, and regarding low-temperature liquid crystallinity, Example-1 has a temperature of -20 degrees Celsius, and Example-2 has a temperature of -15gt%. -6, it is sufficiently stable up to minus 40 degrees Celsius, and has a sufficiently wide nematic liquid crystal temperature range for use in ordinary displays. In particular, Example 3 has an extremely wide nematic range from -40 degrees Celsius to 50 degrees Celsius, and therefore can be used as a display material even under fairly severe conditions.

以上、従来例−1のβ値が1゜265であるのに対して
、本発明による実施例−1のβ値は1゜23、実施例−
2のβ値が1.22、実施例−3では1.24であり、
いずれも極めて良好、光学的しきい値電圧も低く、応答
速度も速い。更にネマチック液晶温度範囲も十分である
As mentioned above, while the β value of Conventional Example-1 is 1°265, the β value of Example-1 according to the present invention is 1°23, and the β value of Example-1 is 1°265.
The β value of 2 is 1.22, and 1.24 in Example-3,
Both are extremely good, with low optical threshold voltage and fast response speed. Furthermore, the nematic liquid crystal temperature range is also sufficient.

第1表 第3表 第4表 〔発明の効果〕 以上述べたように、本発明によれば、少なくとも一般式
R1→ト昏−OR2で表わされる化合物、一般式R3+
■−R4で表わされる化合物、一般式Rs −+COO
→>CNで表わされる化合物、及び一般式R64Hンo
−@−R7で表わされる化合物を用いてネマチック液晶
組成物を構成した事により、最もネマチック液晶範囲の
広いもので摂氏マイナス40度から摂氏50度まで駆動
でき、急峻性に優れ、応答速度が速く、シかも光学的し
きい値電圧も適当であり、ダイカミツク駆動特性に優れ
たネマチック液晶組成物を得る事ができた。
Table 1 Table 3 Table 4 [Effects of the Invention] As described above, according to the present invention, at least a compound represented by the general formula R1→TO-OR2, a compound represented by the general formula R3+
■Compound represented by -R4, general formula Rs -+COO
→>Compounds represented by CN and general formula R64H
By constructing a nematic liquid crystal composition using the compound represented by -@-R7, the widest nematic liquid crystal range can be driven from -40 degrees Celsius to 50 degrees Celsius, and has excellent steepness and fast response speed. A nematic liquid crystal composition with an appropriate optical threshold voltage and excellent dielectric drive characteristics could be obtained.

本発明によるネマチック液晶組成物を用いれば各種表示
素子に於て優れた表示コントラストを得るのに多大な効
果がある。
Use of the nematic liquid crystal composition according to the present invention is highly effective in obtaining excellent display contrast in various display elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に於て用いた測定装置を表わすハード図
、第2図は該測定装置を用いて一般的に得られる相対透
過率−実効電圧の変化を示した曲線図。 1・・・光源      2・・・光線6・・・レンズ
及びフィルター系 4・・−セル 5・・・受光部(光電増培管) 以上 魚U!バー■包 第1図 兜勿勉FL  (v) 笑効gLFL−和1L5.卑紅食目 第2図
FIG. 1 is a hardware diagram showing the measuring device used in the examples, and FIG. 2 is a curve diagram showing changes in relative transmittance versus effective voltage generally obtained using the measuring device. 1...Light source 2...Light beam 6...Lens and filter system 4...-Cell 5...Light receiving part (photomultiplier tube) That's it for fish U! Bar ■ Bao Figure 1 Kabuto Mutsutomu FL (v) Laughing effect gLFL-Japanese 1L5. Diagram 2

Claims (1)

【特許請求の範囲】 少なくとも一般式が下記Aで表わされる化合物の少なく
とも一種、一般式が下記Bで表わされる化合物の少なく
とも一種、一般式が下記Cで表わされる化合物の少なく
とも一種、及び一般式が下記Dで表わされる化合物の少
なくとも一種から成る事を特徴とする液晶組成物。 A・・・・・・・・・▲数式、化学式、表等があります
▼ B・・・・・・・・・▲数式、化学式、表等があります
▼ C・・・・・・・・・▲数式、化学式、表等があります
▼ D・・・・・・・・・▲数式、化学式、表等があります
▼ 但し、 R_1及びR_2は炭素数1〜12個の直鎖アルキル基
、 R_3は炭素数1〜12個の直鎖アルキル基、R_4は
炭素数1〜10個の直鎖アルコキシまたはアルキル基、 R_5は炭素数1〜10個の直鎖アルキル基R_6及び
R_7は炭素数1〜10個の直鎖アルキル基、を表わす
[Scope of Claims] At least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, at least one compound whose general formula is represented by the following C, and whose general formula is A liquid crystal composition comprising at least one compound represented by D below. A・・・・・・・・・▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ B・・・・・・・・・▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ C・・・・・・・・・▲There are mathematical formulas, chemical formulas, tables, etc.▼ D・・・・・・・・・▲There are mathematical formulas, chemical formulas, tables, etc.▼ However, R_1 and R_2 are linear alkyl groups with 1 to 12 carbon atoms, and R_3 is a straight-chain alkyl group with 1 to 12 carbon atoms. A straight chain alkyl group having 1 to 12 carbon atoms, R_4 is a straight chain alkoxy or alkyl group having 1 to 10 carbon atoms, R_5 is a straight chain alkyl group having 1 to 10 carbon atoms, R_6 and R_7 are straight chain alkyl groups having 1 to 10 carbon atoms. represents a straight chain alkyl group.
JP24092585A 1985-10-28 1985-10-28 Liquid crystal composition Pending JPS62100583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24092585A JPS62100583A (en) 1985-10-28 1985-10-28 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24092585A JPS62100583A (en) 1985-10-28 1985-10-28 Liquid crystal composition

Publications (1)

Publication Number Publication Date
JPS62100583A true JPS62100583A (en) 1987-05-11

Family

ID=17066685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24092585A Pending JPS62100583A (en) 1985-10-28 1985-10-28 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS62100583A (en)

Similar Documents

Publication Publication Date Title
JPS62100583A (en) Liquid crystal composition
JPH0699683B2 (en) Nematic liquid crystal composition
JPS62100581A (en) Liquid crystal composition
JP3205598B2 (en) Liquid crystal display device and driving method thereof
JPS62100585A (en) Liquid crystal composition
JPS6245685A (en) Liquid crystal composition
JPS6213484A (en) Liquid crystal composition
JPS62218479A (en) Liquid crystal composition
JPS6245684A (en) Liquid crystal composition
JPH01247482A (en) Liquid crystal composition
JPS6245686A (en) Liquid crystal composition
JPS62100584A (en) Liquid crystal composition
JPS61271384A (en) Liquid crystal composition
JPS62184089A (en) Liquid crystal composition
JPS62184090A (en) Liquid crystal composition
JPS62243683A (en) Liquid crystal composition
JPS61271383A (en) Liquid crystal composition
JPS61275386A (en) Liquid crystal composition
JPS6121186A (en) Nematic liquid crystal composition
JPS6346289A (en) Liquid crystal composition
JPS62218481A (en) Liquid crystal composition
JPH0222382A (en) Liquid crystal composition
JPS62243682A (en) Liquid crystal composition
JPS61236893A (en) Liquid crystal composition
JPH01240592A (en) Liquid crystal composition