JPS62213279A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62213279A
JPS62213279A JP5732686A JP5732686A JPS62213279A JP S62213279 A JPS62213279 A JP S62213279A JP 5732686 A JP5732686 A JP 5732686A JP 5732686 A JP5732686 A JP 5732686A JP S62213279 A JPS62213279 A JP S62213279A
Authority
JP
Japan
Prior art keywords
layer
gaas
doped
type
superlattice structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5732686A
Other languages
Japanese (ja)
Other versions
JP2538872B2 (en
Inventor
Kenichi Imamura
健一 今村
Kazuaki Ishii
和明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5732686A priority Critical patent/JP2538872B2/en
Publication of JPS62213279A publication Critical patent/JPS62213279A/en
Application granted granted Critical
Publication of JP2538872B2 publication Critical patent/JP2538872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Abstract

PURPOSE:To prevent thermal deterioration such as the decrease of electron density, by a method wherein excellent contact can be obtained without a thermal treatment for alloying by arranging an ohmic contact electrode in contact with an indium galium arsenide layer. CONSTITUTION:The following layers are formed in order on a semi-insulative GaAs substrate 1 by, for example, a molecular beam epitaxial growth method; a non-doped i-type GaAs layer 2 of about 1mum thick, for example, a GaAs/AlAs superlattice structure 3 composed of 7 cycles of an Si-doped n-type GaAs layer 3a of about 5nm thick and a non-doped i-type AlAs layer 3b of about 2nm thick, and an Si-doped n-type InGaAs layer 5 of total thickness of 100-200nm wherein the component ratio of indium is gradually increased to about 5nm thickness, for example, from GaAs to In0.5Ga0.5As. Two-dimensional electron gas 2e is formed in the vicinity of a boundary between the i-type GaAs layer 2 and the GaAs/AlAs superlattice structure 3 on the semiconductor substrate. A gate-forming region of the semiconductor substrate is subjected to a recess- etching, Cr of about 50nm and Au of about 300nm are laminated as an electrode material layer, and souce.drain electrodes 5 and a gate electrode 6 are simultaneously formed.

Description

【発明の詳細な説明】 〔概要〕 この発明は、砒化ガリウム/砒化アルミニウム超格子構
造から供給される2次元電子ガスをチャネルとする半導
体装置にかかり、 オーミックコンタクト電極を砒化インジウムガリウム層
に接して配設することにより、合金化熱処理を行うこと
なく良好なコンタクトを得て、電子密度の低下等の熱劣
化を防止するものである。
[Detailed Description of the Invention] [Summary] The present invention relates to a semiconductor device in which a two-dimensional electron gas supplied from a gallium arsenide/aluminum arsenide superlattice structure is used as a channel, and an ohmic contact electrode is connected to an indium gallium arsenide layer. By providing this, good contact can be obtained without performing alloying heat treatment, and thermal deterioration such as a decrease in electron density can be prevented.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置、特に空間分離ドーピングと界面量
子化による高移動度のキャリアをチャネルとする例えば
高電子移動度電界効果トランジスタ(IIEMT)等の
半導体装置の改善に関する。
The present invention relates to improvements in semiconductor devices, particularly semiconductor devices such as high electron mobility field effect transistors (IIEMTs) that use high-mobility carriers as channels through spatial separation doping and interface quantization.

例えばHHMTは、ノンドープの砒化ガリウム(GaA
S)層とn型砒化アルミニウムガリウム(AIGaAs
)F[等のへテロ接合界面近傍に2次元状態の電子を形
成し、不純物をドーピングする領域とキャリアが移動す
る領域とを空間的に分離してキャリア移動度を増大し、
高速デバイスとして強い期待が寄せられている。
For example, HHMT is made of undoped gallium arsenide (GaA
S) layer and n-type aluminum gallium arsenide (AIGaAs
) F[, etc., to form electrons in a two-dimensional state near the heterojunction interface, and spatially separate the region where impurities are doped and the region where carriers move to increase carrier mobility,
There are strong expectations for it as a high-speed device.

〔従来の技術〕[Conventional technology]

空間分離ドーピングとキャリアの界面量子化により高移
動度を実現している半導体装置の例として、HEMTの
一例の模式側断面図を第2図(al、(blに示す。
As an example of a semiconductor device that achieves high mobility through spatial separation doping and interfacial quantization of carriers, a schematic side sectional view of an example of a HEMT is shown in FIGS.

同図(a)に示すl(EMTの従来例では、半絶縁性G
aAs基板11上にノンドープのi形GaAs層12と
、これより電子親和力が小さく例えば濃度2 XIO”
ell−”程度のドナー不純物がドープされたn型A 
1xGa 、 + 、As層13と、これと同程度以上
にドナー不純物がドープされたn型GaAs層14とが
設けられ、n型AlGaAs層13からi形GaAs層
12へ遷移した電子によってペテロ接合界面近傍に2次
元電子ガス12eが形成される。この2次元電子ガス1
2eは不純物散乱による移動度低下が殆どなく、格子散
乱が低下する例えば77に程度以下の低温において最も
高い移動度が得られる。
l shown in (a) of the same figure (in the conventional example of EMT, semi-insulating G
A non-doped i-type GaAs layer 12 is formed on the aAs substrate 11 and has a lower electron affinity than the non-doped i-type GaAs layer 12, for example, at a concentration of 2XIO".
n-type A doped with donor impurities of the order of ell-”
A 1xGa, +, As layer 13 and an n-type GaAs layer 14 doped with donor impurities to the same extent or higher are provided, and electrons transferred from the n-type AlGaAs layer 13 to the i-type GaAs layer 12 form a Peter junction interface. A two-dimensional electron gas 12e is formed nearby. This two-dimensional electron gas 1
In 2e, there is almost no decrease in mobility due to impurity scattering, and the highest mobility can be obtained at a low temperature of, for example, 77 degrees or lower, where lattice scattering decreases.

この半導体基体のn型GaAs層14上にソース、ドレ
イン電極15を例えば金ゲルマニウム/金(AuGe/
^U)を用い、n型AlGaAs電子供給層工3上にゲ
ート電極16を例えばチタン/白金/金(Ti/PL/
Au)を用いて設け、ゲート電極16によるショットキ
空乏層で2次元電子ガス12eの面密度を制御してトラ
ンジスタ動作が行われる。なお15Aはソース、ドレイ
ン電極15と半導体基体との間に形成された合金化領域
である。
Source and drain electrodes 15 are formed on the n-type GaAs layer 14 of this semiconductor substrate, for example, using gold germanium/gold (AuGe/
For example, a gate electrode 16 is formed on the n-type AlGaAs electron supply layer 3 using titanium/platinum/gold (Ti/PL/
A Schottky depletion layer formed by the gate electrode 16 controls the areal density of the two-dimensional electron gas 12e to perform transistor operation. Note that 15A is an alloyed region formed between the source/drain electrode 15 and the semiconductor substrate.

この構造のn型AIHGaI−XAs電子供給層13と
i型GaAsチャネル層12との伝導帯のエネルギー準
位差が少ない場合には2次元電子ガス12eの面密度N
sが小さくなるために、通常伝導帯の準位差を0.25
eV程度以上、従ってn型^13(Ga+−JS電子供
給層13の^li成比Xを0.3程度以上とすることが
望ましい。
When the energy level difference in the conduction band between the n-type AIHGaI-XAs electron supply layer 13 and the i-type GaAs channel layer 12 in this structure is small, the areal density N of the two-dimensional electron gas 12e is
In order to reduce s, the level difference in the conduction band is usually set to 0.25.
It is desirable to set the ^li ratio X of the n-type ^13 (Ga+-JS electron supply layer 13 to about 0.3 or more).

しかしながら他方において、AI>IGaI−xAs混
晶のAI組成比Xが0.25程度より大きいときには、
ドープしたシリコン(St)等のドナー準位が急激に深
くなる。この深いドナー準位は、200に程度以下で赤
外線が入射すれば電子が伝導帯に励起され、光照射を停
止しても伝導電子がドナー準位に落ちないPPC(pe
rsistent photo conducttvi
ty)等の現象を示してOxセンターと呼ばれるが、こ
れにより、ドーピング量を増加しても高いキャリア濃度
が得られず、特に低温における2次元電子ガス面密度N
sの低下、従って伝達コンダクタンスg、の低下を招い
ている。また光が入射したり、ホットエレクトロンがチ
ャネルからAlGaAs層に飛び込むことにより、2次
元電子ガス面密度Ns、電子移動度μ7及び閾値電圧V
い等が変動する現象が現れ、低周波雑音の原因ともなっ
ている。
However, on the other hand, when the AI composition ratio X of the AI>IGaI-xAs mixed crystal is larger than about 0.25,
The donor level of doped silicon (St) etc. becomes deep rapidly. This deep donor level is a PPC (pe
rsistent photo conducttvi
However, due to this phenomenon, even if the amount of doping is increased, a high carrier concentration cannot be obtained, and the two-dimensional electron gas areal density N is particularly low at low temperatures.
This results in a decrease in s and therefore a decrease in transfer conductance g. In addition, when light enters or hot electrons jump from the channel into the AlGaAs layer, two-dimensional electron gas surface density Ns, electron mobility μ7 and threshold voltage V
A phenomenon in which the frequency of noise fluctuates appears, which is also a cause of low-frequency noise.

このAlGaAs混晶内の深いドナー準位に起因する問
題に対処するものとして第2図(b)に示す従来例があ
る。本従来例では前記従来例のn型^1.Ga1−。
There is a conventional example shown in FIG. 2(b) that deals with the problem caused by the deep donor level in the AlGaAs mixed crystal. In this conventional example, the n-type^1. Ga1-.

As層13に代えて、電子供給層をGaAs層23aと
AlAs層23bとからなる超格子構造23とし、Ga
As層23aに例えば濃度5×IO”C11−’程度に
ドナー不純物をドーピングし、AlAs層23bはノン
ドープとしている。
Instead of the As layer 13, the electron supply layer is a superlattice structure 23 consisting of a GaAs layer 23a and an AlAs layer 23b.
The As layer 23a is doped with a donor impurity to a concentration of, for example, about 5×IO''C11-', and the AlAs layer 23b is undoped.

この改善により、AlGaAs混晶層を電子供給層とす
るHEMTが、例えば温度77Kにおいて電子移動度μ
n ’ I X 10’cm”/ν、S、2次元電子ガ
ス面密度Ns’q1.2 X 10” cn+−”程度
であるのに対して、GaAs/AlAs超格子構造を電
子供給層とする同等のHEMTは、2次元電子ガス面密
度Ns ”= 3.0 X 10” cm−”程度が同
等の電子移動度μ7で得られ、闇値電圧Vいの変動等の
問題も改善されると報告されている。
With this improvement, HEMTs with an AlGaAs mixed crystal layer as an electron supply layer have an electron mobility of μ at a temperature of 77K, for example.
n' I An equivalent HEMT can obtain a two-dimensional electron gas surface density Ns "= 3.0 x 10" cm with an equivalent electron mobility μ7, and problems such as fluctuations in the dark voltage V can also be improved. It has been reported.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如< GaAs/AlAs超格子構造によりAl
GaAs混晶における深いドナー準位に起因する問題が
改善されるが、HEMT素子を実際に完成した状態では
、エピタキシャル成長直後の半導体基体に比較して、2
次元電子ガス面密度Nsの低下、従ってシート抵抗の増
大などの劣化を層化ずる。
As mentioned above, Al
Although the problem caused by the deep donor level in the GaAs mixed crystal is improved, in the actually completed state of the HEMT device, compared to the semiconductor substrate immediately after epitaxial growth, the
This results in layered deterioration such as a decrease in the dimensional electron gas areal density Ns and therefore an increase in sheet resistance.

製造プロセス中のこの劣化の最大要因は熱処理である。The biggest factor in this degradation during the manufacturing process is heat treatment.

すなわちn型GaAs層14上にオーミックコンタクト
電極材料として、例えば金ゲルマニウム合金(AuGe
)を厚さ20am、金(Au)を厚さ280nm程度積
層被着、バターニングし、温度450℃、1分間程度の
熱処理により電極材料と半導体基体とを合金化して、ソ
ース、ドレイン電極15のオーミックコンタクト抵抗を
低減しているが、この熱処理の過程でGaAs層23a
にドープしたSiの拡散などにより超格子構造に損傷を
生じている。
That is, as an ohmic contact electrode material, for example, a gold germanium alloy (AuGe
) to a thickness of 20 am, gold (Au) to a thickness of about 280 nm, buttering is performed, and the electrode material and the semiconductor substrate are alloyed by heat treatment at a temperature of 450° C. for about 1 minute to form source and drain electrodes 15. Although the ohmic contact resistance is reduced, during this heat treatment process, the GaAs layer 23a
The superlattice structure is damaged due to diffusion of doped Si.

HEMT等の界面量子化されたキャリアを利用する。Uses interfacial quantized carriers such as HEMT.

半導体装置のキャリア増大は重要な課題であり、その効
果を損なう要因の排除が強く要望されている。
Increasing the number of carriers in semiconductor devices is an important issue, and there is a strong desire to eliminate factors that impair its effectiveness.

C問題点を解決するための手段〕 前記問題点は、ノンドープの砒化ガリウム層と、ドナー
不純物を含む砒化ガリウム層とノンドープの砒化アルミ
ニウム層とからなる超格子構造と、ドナー不純物を含む
砒化インジウムガリウム層とが積層されて、該ノンドー
プの砒化ガリウム層の 。
Means for Solving Problem C] The problem is a superlattice structure consisting of a non-doped gallium arsenide layer, a gallium arsenide layer containing donor impurities, and a non-doped aluminum arsenide layer, and an indium gallium arsenide layer containing donor impurities. layers of the non-doped gallium arsenide layer.

該超格子構造との界面近傍に、該超格子構造から遷移す
る電子により2次元電子ガスが形成され、オーミックコ
ンタクト電極が該砒化インジウムガリウム層に接して配
設されてなる本発明による半導体装置により解決される
In the semiconductor device according to the present invention, a two-dimensional electron gas is formed near the interface with the superlattice structure by electrons transitioning from the superlattice structure, and an ohmic contact electrode is disposed in contact with the indium gallium arsenide layer. resolved.

〔作 用〕[For production]

本発明によれば、ドナー不純物を含むGaAs層とノン
ドープのAlAs層とからな4超格子構造から電子が遷
移して、ノンドープのGaAs層の該超格子構造との界
面近傍に2次元電子ガスが形成される半導体装置におい
て、そのオーミックコンタクト電極をドナー不純物を含
むInxGa1−x^S層に接して配設する。
According to the present invention, electrons are transferred from a four-superlattice structure consisting of a GaAs layer containing donor impurities and an undoped AlAs layer, and a two-dimensional electron gas is generated near the interface between the undoped GaAs layer and the superlattice structure. In the semiconductor device to be formed, the ohmic contact electrode is disposed in contact with the InxGa1-x^S layer containing donor impurities.

In、Ga+−xAs混晶はGaAs結晶よりエネルギ
ーバンドギャップEgが狭(、GaAsのEg″−1,
42eVに対して例えばIno、 5Gao、5Asは
Bg #0.76eVであり、合金化熱処理を行わない
で低抵抗のオーミックコンタクトを得ることができる。
In, Ga+-xAs mixed crystal has a narrower energy bandgap Eg than GaAs crystal (Eg''-1 of GaAs,
For example, Bg #42eV is 0.76eV for Ino, 5Gao, and 5As, and a low resistance ohmic contact can be obtained without performing alloying heat treatment.

この電極材料としては例えばクロム/金(Cr/Au)
が適しており、この電極材料でInxGa1−gAs混
晶層にオーミックコンタクトするソース、ドレイン電極
と、GaAs/AlAs超格子構造にショットキコンタ
クトするゲート電極とを同時に形成することも可能であ
る。
Examples of this electrode material include chromium/gold (Cr/Au).
is suitable, and it is possible to simultaneously form source and drain electrodes in ohmic contact with the InxGa1-gAs mixed crystal layer and gate electrodes in Schottky contact with the GaAs/AlAs superlattice structure using this electrode material.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図はHEMTにかかる本発明の実施例を示す模式側
断面図である。
FIG. 1 is a schematic side sectional view showing an embodiment of the present invention related to a HEMT.

本実施例の半導体基体は分子線エピタキシャル成長法(
MB2法)等により、半絶縁性GaAs基板1上に、厚
さ例えばIJ1111程度のノンドープのi型GaAs
層2、例えば濃度5XIO’″cn+−’程度にSiを
ドープして厚さ5 nm程度のn型GaAs層3aとノ
ンドープで厚さ例えば2am程度のi型AlAs層3b
との7周期からなるGaAs/AlAs超格子構造3、
例えば厚さ約5゜nmの範囲でGaAsからIno、 
5Gao、SASまで次第にインジウム(In)の組成
比を増加し全厚さ100〜200nm程度で、濃度1×
1019CII+弓程度にStをドープしたn型InG
aAs層4を順次成長している。この半導体基体のi型
GaAs層2のGaAs/AlAs超格子構造3との界
面近傍に2次元電子ガス2eが形成される。 この半導
体基体のゲート形成領域をリセスエッチングし、電極材
料層としてCr約5011ffI、Au約300nmを
積層して、ソース、ドレイン電極5、ゲート電極6を同
時に形成している。なお合金化領域を形成する熱処理は
実施しない。
The semiconductor substrate of this example was grown using the molecular beam epitaxial growth method (
MB2 method) etc., a non-doped i-type GaAs with a thickness of about IJ1111, for example, is deposited on the semi-insulating GaAs substrate 1.
Layer 2, for example, an n-type GaAs layer 3a doped with Si to a concentration of about 5XIO'''cn+-' and having a thickness of about 5 nm, and an undoped i-type AlAs layer 3b having a thickness of about 2 am, for example.
GaAs/AlAs superlattice structure 3 consisting of 7 periods of
For example, in a thickness range of approximately 5 nm, from GaAs to Ino,
The composition ratio of indium (In) was gradually increased up to 5Gao and SAS, and the total thickness was about 100 to 200 nm, and the concentration was 1×.
1019CII + n-type InG doped with St to a bow level
The aAs layer 4 is grown sequentially. A two-dimensional electron gas 2e is formed near the interface between the i-type GaAs layer 2 and the GaAs/AlAs superlattice structure 3 of the semiconductor substrate. The gate formation region of this semiconductor substrate is recess-etched, and about 5011 ffI of Cr and about 300 nm of Au are laminated as an electrode material layer to simultaneously form a source electrode, a drain electrode 5, and a gate electrode 6. Note that heat treatment for forming alloyed regions is not performed.

本実施例では、エピタキシャル成長直後に例えば温度7
7Kにおいて電子移動度μa ’q l X 10’c
m”/V、3% 2次元電子ガス面密度Ns ’ 3.
OX 10” cra−”程度である半導体基体を用い
て、HBMT素子完成後に同温度において有意差のない
2次元電子ガス面密度Nsが得られ、同一半導体基体に
オーミック電極材料としてAuGe/Auを用い、温度
450℃、1分間程度の合金化熱処理を実施した比較試
料が、2次元電子ガス面密度N5=1.2xlO”cm
−”程度であるのに比較して本発明の効果が実証されて
いる。
In this embodiment, for example, the temperature is 7
At 7K, electron mobility μa 'q l X 10'c
m''/V, 3% Two-dimensional electron gas surface density Ns' 3.
By using a semiconductor substrate of approximately OX 10"cra-", a two-dimensional electron gas areal density Ns with no significant difference was obtained at the same temperature after completion of the HBMT element, and by using the same semiconductor substrate with AuGe/Au as the ohmic electrode material. , a comparison sample subjected to alloying heat treatment at a temperature of 450°C for about 1 minute has a two-dimensional electron gas areal density N5 = 1.2xlO"cm
The effect of the present invention has been demonstrated compared to that of "-".

なお本発明は)IEMTにその適用を限られるものでは
なく、例えばホットエレクトロントランジスタ、共鳴ホ
ットエレクトロントランジスタの高速化のためにそのベ
ース層に2次元電子ガスを用いる際に本発明を適用して
ベース抵抗を低減するなど、空間分離ドーピングと界面
量子化による高移動度のキャリアを用いる半導体装置全
般に適用することが可能である。
Note that the present invention is not limited to application to IEMTs; for example, the present invention can be applied to the base layer of hot electron transistors and resonant hot electron transistors when a two-dimensional electron gas is used in their base layer to speed up the operation. It can be applied to all semiconductor devices that use high-mobility carriers through space separation doping and interface quantization, such as reducing resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、空間分離ドーピング
と界面量子化による高移動度のキャリアを利用するRE
NT等の半導体装置において、GaAs/AlAs超格
子構造の電子供給層に、2次元電子ガス面密度の低下、
シート抵抗の増大などの劣化をもたらす熱損傷を製造工
程中に与えることなく、良好な特性の半導体装置が実現
される。
As explained above, according to the present invention, RE using high mobility carriers by spatially separated doping and interface quantization is achieved.
In semiconductor devices such as NTs, the electron supply layer of the GaAs/AlAs superlattice structure has a decrease in the two-dimensional electron gas surface density,
A semiconductor device with good characteristics can be realized without causing thermal damage that causes deterioration such as an increase in sheet resistance during the manufacturing process.

【図面の簡単な説明】 第1図はHEMTにかかる本発明の実施例の模式側断面
図、 第2図はHEMTの従来例の模式側断面図である。 図において、 1は半絶縁性GaAs基板、 2はノンドープのGaAs層、 2eは2次元電子ガス、 3はGaAs/AlAs超格子構造、 3aはn型GaAs層、 3bはノンドープのAlAs層、 4はn型InxGa+−Js層、 5はCr/Auソース、ドレイン電極、6はCr/Au
ゲート電極を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side sectional view of an embodiment of the present invention related to a HEMT, and FIG. 2 is a schematic side sectional view of a conventional HEMT. In the figure, 1 is a semi-insulating GaAs substrate, 2 is a non-doped GaAs layer, 2e is a two-dimensional electron gas, 3 is a GaAs/AlAs superlattice structure, 3a is an n-type GaAs layer, 3b is a non-doped AlAs layer, 4 is a non-doped AlAs layer. n-type InxGa+-Js layer, 5 Cr/Au source, drain electrode, 6 Cr/Au
The gate electrode is shown.

Claims (1)

【特許請求の範囲】 1)ノンドープの砒化ガリウム層と、ドナー不純物を含
む砒化ガリウム層とノンドープの砒化アルミニウム層と
からなる超格子構造と、ドナー不純物を含む砒化インジ
ウムガリウム層とが積層されて、該ノンドープの砒化ガ
リウム層の該超格子構造との界面近傍に、該超格子構造
から遷移する電子により2次元電子ガスが形成され、 オーミックコンタクト電極が該砒化インジウムガリウム
層に接して配設されてなることを特徴とする半導体装置
。 2)前記2次元電子ガスを制御するゲート電極が前記超
格子構造に接して配設され、かつ前記オーミックコンタ
クト電極と該ゲート電極とが共に半導体基体上にクロム
を被着し、該クロム層上に金を被着して形成されてなる
ことを特徴とする特許請求の範囲第1項記載の半導体装
置。
[Scope of Claims] 1) A superlattice structure consisting of a non-doped gallium arsenide layer, a gallium arsenide layer containing donor impurities and a non-doped aluminum arsenide layer, and an indium gallium arsenide layer containing donor impurities are laminated, A two-dimensional electron gas is formed near the interface between the non-doped gallium arsenide layer and the superlattice structure by electrons transitioning from the superlattice structure, and an ohmic contact electrode is disposed in contact with the indium gallium arsenide layer. A semiconductor device characterized by: 2) A gate electrode for controlling the two-dimensional electron gas is disposed in contact with the superlattice structure, and both the ohmic contact electrode and the gate electrode deposit chromium on the semiconductor substrate, and the chromium layer is coated on the chromium layer. 2. The semiconductor device according to claim 1, wherein the semiconductor device is formed by depositing gold on the semiconductor device.
JP5732686A 1986-03-14 1986-03-14 Semiconductor device Expired - Lifetime JP2538872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5732686A JP2538872B2 (en) 1986-03-14 1986-03-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5732686A JP2538872B2 (en) 1986-03-14 1986-03-14 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62213279A true JPS62213279A (en) 1987-09-19
JP2538872B2 JP2538872B2 (en) 1996-10-02

Family

ID=13052448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5732686A Expired - Lifetime JP2538872B2 (en) 1986-03-14 1986-03-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2538872B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349242A (en) * 1989-07-17 1991-03-04 Agency Of Ind Science & Technol Field effect transistor and its manufacture
US5932890A (en) * 1992-05-08 1999-08-03 The Furukawa Electric Co., Ltd. Field effect transistor loaded with multiquantum barrier
US6262444B1 (en) 1997-04-23 2001-07-17 Nec Corporation Field-effect semiconductor device with a recess profile
JP2003060300A (en) * 2001-08-14 2003-02-28 Furukawa Electric Co Ltd:The Surface emitting laser and array thereof
US7692298B2 (en) * 2004-09-30 2010-04-06 Sanken Electric Co., Ltd. III-V nitride semiconductor device comprising a concave shottky contact and an ohmic contact
CN114005866A (en) * 2021-09-13 2022-02-01 西安电子科技大学广州研究院 GaN high-electron-mobility heterojunction structure, preparation method, diode and transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349242A (en) * 1989-07-17 1991-03-04 Agency Of Ind Science & Technol Field effect transistor and its manufacture
US5932890A (en) * 1992-05-08 1999-08-03 The Furukawa Electric Co., Ltd. Field effect transistor loaded with multiquantum barrier
US6262444B1 (en) 1997-04-23 2001-07-17 Nec Corporation Field-effect semiconductor device with a recess profile
JP2003060300A (en) * 2001-08-14 2003-02-28 Furukawa Electric Co Ltd:The Surface emitting laser and array thereof
US7692298B2 (en) * 2004-09-30 2010-04-06 Sanken Electric Co., Ltd. III-V nitride semiconductor device comprising a concave shottky contact and an ohmic contact
CN114005866A (en) * 2021-09-13 2022-02-01 西安电子科技大学广州研究院 GaN high-electron-mobility heterojunction structure, preparation method, diode and transistor

Also Published As

Publication number Publication date
JP2538872B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JPH01128577A (en) Semiconductor device
EP0381396A1 (en) Compound semiconductor devices
US5254863A (en) Semiconductor device such as a high electron mobility transistor
GB2285175A (en) High electron mobility transistor
JPH06140435A (en) Compound semiconductor substrate having hetero junction and field effect transistor using same
JPH10209436A (en) Semiconductor device
JPS62213279A (en) Semiconductor device
JP3447438B2 (en) Field effect transistor
JPH098285A (en) Hetero-junction semiconductor device
JPS61158183A (en) Electrical field effect type semiconductor device
JPH04343438A (en) Field effect transistor
JPS63272080A (en) Semiconductor device
JPH0362303B2 (en)
JP2730511B2 (en) Heterojunction field effect transistor
JPS62266874A (en) Semiconductor device
JPH0260225B2 (en)
JP2980630B2 (en) Compound semiconductor device
JPS61230379A (en) Semiconductor device
JPH0468775B2 (en)
JP3156252B2 (en) Field effect transistor
JPS63172A (en) Semiconductor device
JPS61241972A (en) Compound semiconductor device
JPH01183164A (en) High electron mobility field effect transistor
JPH035059B2 (en)
JPH06151469A (en) Compound semiconductor device