JPS6221262A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6221262A
JPS6221262A JP60160705A JP16070585A JPS6221262A JP S6221262 A JPS6221262 A JP S6221262A JP 60160705 A JP60160705 A JP 60160705A JP 16070585 A JP16070585 A JP 16070585A JP S6221262 A JPS6221262 A JP S6221262A
Authority
JP
Japan
Prior art keywords
elements
region
capacitor
wiring
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60160705A
Other languages
Japanese (ja)
Inventor
Michiaki Ishida
石田 通彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60160705A priority Critical patent/JPS6221262A/en
Publication of JPS6221262A publication Critical patent/JPS6221262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To adjust timing simply, by arranging timing adjusting elements comprising a capacitor and resistors on a plurality of chips, and performing connection and cutting of these elements and circuits by changing a small number of mask patterns. CONSTITUTION:Resistor elements 5 comprising P-type diffused regions are formed on the surface of a substrate 1 in a wiring region, where Al wires are provided, in a comb shape. A capacitor forming electrode 8 comprising poly Si forms a gate capacitor on an oxide film in the wiring region. The Al wires in regions 30 and 31 shown by broken lines are cut. The Al wire in a broken region 32 is connected. The mask of the Al wires is changed so that the above described connection and cutting are obtained. Thus, the resistor elements comprising the P-type diffused regions and the capacitor element comprising the gate capacitor of a P-channel transistor are connected to the output node of an inverter circuit. In this way, the delay amount is made large.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、遅延回路を有する半導体集積回路装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a semiconductor integrated circuit device having a delay circuit.

(ロ)従来の技術 LI!I工の設計にあっては、容量素子および抵抗素子
はチップ面積を小さくすることから、システムにとって
必要不可欠なものだけがパターンデザインされるのが通
例である。
(b) Conventional technology LI! In I-engineering design, since the chip area of capacitive elements and resistive elements is to be reduced, it is usual that only those elements essential to the system are pattern-designed.

しかしながら、このような設計法では、テスト診断後に
、設計変更やエラーの発生に伴って回路修正を行なう場
合には、大槻模な修正にならざるを得ない難点がある。
However, such a design method has the disadvantage that, after a test diagnosis, when a circuit is modified in response to a design change or an error occurs, the modification must be made in a large scale.

まt、配線領域あるいは電@線領域には、トランジスタ
素子が形成しにぐいことが知らnている。
Furthermore, it is known that it is difficult to form a transistor element in a wiring region or an electric wire region.

こnは、例えば、電子通信学会5EID84−72スシ
ミュレータ0ADDIIiT刻の第66頁に記載さ電!
ているように、MOE+)ランジスタのソース・ドレイ
ンのコンタクトが十分とnな−tめlC%チャンネルコ
ンダクタンスが変調するからである。このことを第2図
%第4図、第5因に示すようK。
This is described, for example, on page 66 of IEICE 5EID84-72 Simulator 0ADDIIiT edition.
This is because if the source/drain contacts of the MOE+ transistor are sufficiently connected, the channel conductance of the MOE+ transistor will be modulated. This is shown in Figure 2, Figure 4, and Factor 5.

配線領域シよび電源線領域に相補型MOBインバータ回
路を形成した場合を例にあげて説明する。
An example in which complementary MOB inverter circuits are formed in a wiring area and a power line area will be described.

第4因は上面図、第5図は第4図の要部断面図、第2図
は等価回路図である。
The fourth factor is a top view, FIG. 5 is a sectional view of the main part of FIG. 4, and FIG. 2 is an equivalent circuit diagram.

こnらの図において、←!!(49−・包均はアルミ配
線であり囮α力はアルミ配線でa戊した電源線で、顛は
VDD 線、(471はVs4である*  (51)は
N型基板い0に形成されたP型りエル領域、  (52
)(52)はソース主ドレイン領斌となるP型拡散領域
、(53)(53)は同じぐソース又はドレイン領域と
なるN型拡散領域である。(54)はポリシコンで形成
さnたゲート電極、  (56)は埋め込ざ酸化膜、(
57)はダート酸化膜、(58)は層間絶縁膜である。
In these figures, ←! ! (49--The overall average is aluminum wiring, the decoy alpha power is a power line cut out with aluminum wiring, the main line is VDD line, (471 is Vs4 * (51) is formed on an N-type substrate. P-type Riel area, (52
) (52) is a P-type diffusion region which becomes a source main drain region, and (53) (53) is an N-type diffusion region which also becomes a source or drain region. (54) is a gate electrode formed of polysilicon, (56) is a buried oxide film, (
57) is a dirt oxide film, and (58) is an interlayer insulating film.

(樽はPチャンネルMOSトランジスタとNチャンネル
MO8)ランジスタの夫々のドレインを接続するアルミ
配線、 (60)はアルミ配線(441とポリシリコン
を接続するコンタクトホール、 (61)ないしく64
)はアルミ配線と各拡散領域を接続するコンタクトホー
ルである。
(The barrel is a P-channel MOS transistor and an N-channel MO8) Aluminum wiring connects each drain of the transistor, (60) is a contact hole connecting aluminum wiring (441 and polysilicon), (61) or 64
) are contact holes connecting the aluminum wiring and each diffusion region.

尚・配線(頬部は第2図のインバータ回路のノードと対
応している。
Note that the wiring (the cheeks correspond to the nodes of the inverter circuit in Figure 2).

第4図から明らかな如(、この配線領域ある匹は電源領
域にMOS)ランジスタを形成しt場合、ソース・ドレ
インのコンタクトが充分にとnず、チャンネルコンダク
タンスが変調するという難点がある。
As is clear from FIG. 4, when a transistor is formed in this wiring area (some of which are MOS transistors in the power supply area), there is a problem in that the source/drain contacts are not sufficient and the channel conductance is modulated.

(ハ)発明が解決しようとする問題点 本発明は、遅延回路を有する半導体集積回路装置ニオい
て、テスト診断後の遅延回路のタイミング修正が容量素
子と抵抗素子だけで行なえる場合に、チップ面積の増大
もなくタイミングの修正を少ないマスクの変更で行なえ
るようにすることを目的とする。
(c) Problems to be Solved by the Invention The present invention provides a semiconductor integrated circuit device having a delay circuit, and when the timing correction of the delay circuit after test diagnosis can be performed using only capacitive elements and resistive elements, It is an object of the present invention to make it possible to correct timing by changing a small number of masks without increasing the amount of noise.

に)問題点を解決するtめの手段   一本発明は、遅
延回路を有する半導体集積回路装置において、配線領域
または電源線領域などに、容it素子および抵抗素子か
らなるタイミング調整用素子を多数配置し、前記タイミ
ング調整用素子を適宜接続あるいは切断して、タイミン
グを調整することを特徴とする。
B.) Third Means for Solving the Problems First, the present invention provides a semiconductor integrated circuit device having a delay circuit, in which a large number of timing adjustment elements including capacitance elements and resistance elements are disposed in a wiring area or a power supply line area. The timing adjustment device is characterized in that the timing is adjusted by appropriately connecting or disconnecting the timing adjusting element.

(ホ)作 用 未発明によnば、容ffi素子と抵抗素子をあらかじめ
多数チップ上に配置しているので、テスト診断後のタイ
ミング調整の修整が容量素子と抵抗素子だけで行なえる
場合#Cは、この修正に前述した容量素子と抵抗素子を
用いれば良く、修正が極めて簡単になる、また、調整用
の容量素子および抵抗素子を、チップ上でトランジスタ
を形成していない領域に配置しておけば、チップ面積が
増大することもない。
(E) Effect According to the invention, since a large number of capacitors and resistors are arranged on the chip in advance, timing adjustment after test diagnosis can be performed using only capacitors and resistors.# For C, the above-mentioned capacitive element and resistive element can be used for this modification, making the modification extremely simple.Also, the capacitive element and resistive element for adjustment can be placed in an area where no transistor is formed on the chip. If this is done, the chip area will not increase.

(へ)実施例 本発明の一実施例を第1図ないし第3図に従い説明する
。木−例は、スタティック型半導体メモリ、ダイナミッ
ク型半導体メモリなどの周辺回路に設けた入力2771
回路などの遅延回路において、タイミング修正等に用い
らnる。
(F) Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 3. Tree - An example is an input 2771 provided in a peripheral circuit such as a static type semiconductor memory or a dynamic type semiconductor memory.
It is used for timing correction, etc. in delay circuits such as circuits.

第1図は、容量素子と抵抗素子を遅延素子として用いた
場合の上面図である。
FIG. 1 is a top view when a capacitive element and a resistive element are used as delay elements.

第1図において、(l)はN型半導体基板、]2)はこ
の基板fll量面に形成さn7tP型クエル領域である
In FIG. 1, (l) is an N-type semiconductor substrate, and ]2) is an n7tP-type quell region formed on the full surface of this substrate.

(3)は基板(11表面に形成さfltPチャンネルM
OSトランジスタのソースおよびドレイン領域となるP
型拡散領域、(4)はフェル領域(2)に形成さn)t
NチャンネセルO8)ランジスタのソースおよびドレイ
ン領域となるN型拡散領域である。(5)は後述するア
ルミ配線が投けられる配線領域の基板Illll上にく
し形に形成さnたP型拡散領域からなる抵抗素子、(6
)は配線領域の基板f11表面表面形成しtゲート容量
のP型不純物領域である。(7)はゲート酸化膜上に配
役さnttポリシリコンによるゲート電極、(8)は配
線領域の酸化膜上に配設されたダート容量を形成するポ
リシリコンよりなる容量形成電極である。11αないし
く至)は配線領域に眉間絶縁膜を介して、抵抗素子(5
)および容ffi素子(8)上に配役さntアルミニウ
ム電極よりなる電極配線で。
(3) FltP channel M formed on the surface of the substrate (11)
P becomes the source and drain regions of the OS transistor.
The type diffusion region, (4) is formed in the felt region (2)n)t
N-channel cell O8) This is an N-type diffusion region that becomes the source and drain regions of a transistor. (5) is a resistance element consisting of a P-type diffusion region formed in a comb shape on a substrate Illll in a wiring area where aluminum wiring, which will be described later, is thrown;
) is a P-type impurity region formed on the surface of the substrate f11 in the wiring region and having a t-gate capacitance. (7) is a gate electrode made of NTT polysilicon placed on the gate oxide film, and (8) is a capacitance forming electrode made of polysilicon that forms a dirt capacitance and is placed on the oxide film in the wiring region. The resistance element (5
) and electrode wiring consisting of nt aluminum electrodes placed on the ffi element (8).

メモリセル、や他の周辺回路等と接続する。αdαηは
同じ層間絶縁膜を介して配役さn、7tアルミニウム電
極よりなる電源配線で、a−はVDD l!電源線αη
uvatsW1[!lhる・舖は、両トランジスタの夫
々のドレインを接続するアルミ電極、翰伐りは、ポリシ
リコンとアルミ電極とを接続するコンタクトホール、(
22ないし□□□は拡散領域とアルミ電極とを接続する
コンタクトホールである。
Connect to memory cells and other peripheral circuits. αdαη is a power supply wiring consisting of n, 7t aluminum electrodes placed through the same interlayer insulating film, and a- is VDD l! Power line αη
uvatsW1[! The aluminum electrode connects the respective drains of both transistors, and the contact hole connects the polysilicon and aluminum electrode.
22 to □□□ are contact holes connecting the diffusion region and the aluminum electrode.

尚、電極a41CL5は第2図のインバータ回路のノー
ド≠に対応している。
Note that the electrode a41CL5 corresponds to the node≠ of the inverter circuit in FIG.

このようにして、第2図に示す、インバータ回路が形成
さnlまt、抵抗素子+51および容量素子(8)は配
線領域に形成しているtめ、チップ面積は大きくならな
い。
In this way, the inverter circuit shown in FIG. 2 is formed, and the resistive element 51 and the capacitive element (8) are formed in the wiring area, so that the chip area does not become large.

而して、このように構成した周辺回路を宵する半導体集
積回路装置をテスト診断した後、所定のタイミングが得
られずに、イン、<−夕回路の遅延を大きくする必要が
ある。
After testing and diagnosing a semiconductor integrated circuit device that uses peripheral circuits configured in this manner, the predetermined timing cannot be obtained and it is necessary to increase the delay of the input circuit.

このような場合、本実施例では抵抗素子と容量素子とを
接続して第3図の等価回路で示すように。
In such a case, in this embodiment, a resistive element and a capacitive element are connected as shown in the equivalent circuit of FIG.

抵抗素子と容量素子とを接続する。すなわち、第1図破
線で示した領域間と賄)のアルミ配線を勇断し、破領域
Gカのアルミ配線を接続するように、アルミ配線のマス
クを改良する。このようにマスクを改良することにより
、インバータ回路の出力ノードにP型拡散領域からなる
抵抗素子とPチャンネルトランジスタのゲート容量から
なる容量素子を接続して遅延を大き(する。
A resistive element and a capacitive element are connected. That is, the mask for the aluminum wiring is improved so that the aluminum wiring between the areas indicated by the broken lines in FIG. 1 is broken, and the aluminum wiring in the broken area G is connected. By improving the mask in this way, a resistive element made of a P-type diffusion region and a capacitive element made of the gate capacitance of a P-channel transistor are connected to the output node of the inverter circuit to increase the delay.

尚、m述したよりに、トランジスタとして用いる場合は
、チャンネルコンダクタンスが又聞しないように、ソー
ス・ドレインと金属とのコンタクトは十分とる必要があ
るが容量素子として用いる場合は拡散層と電源線とのコ
ンタクトは比較的少なくても良いので、配線領域等の金
属が多くパターンデデインさルている領域にも容易に容
量素子を形成できる。
As mentioned above, when used as a transistor, it is necessary to have sufficient contact between the source/drain and the metal so that the channel conductance does not change again, but when used as a capacitive element, there must be sufficient contact between the diffusion layer and the power supply line. Since the number of contacts may be relatively small, a capacitive element can be easily formed even in a region where a large amount of metal is patterned, such as a wiring region.

一!た本実施例では、容量にはゲート容量を、抵抗には
拡散抵抗を用いているが、特にとnに限定するものでは
ない。
one! In this embodiment, the gate capacitor is used as the capacitor, and the diffused resistor is used as the resistor, but the value is not limited to n.

(ト)発明の詳細 な説明し念ように、本発明製画によnば、容量素子およ
び抵抗素子からなるタイミング調整素子と回路との接続
あるいは切断を少数マスクのパターン変更で行えるよう
に、あらかじめタイミング調整素子をチップ上に配置し
ているので、テスト診断後に修正がある場合にもこnら
の素子を用いnは良(、修正が少数のマスク変更で済み
、修正が大ym単になる。しかも、こnら調整素子を配
線領域等に配置しておけば、チップ面積の増加は糧めて
小さl/1゜
(g) Detailed explanation of the invention As a reminder, according to the invention, the timing adjustment element consisting of a capacitive element and a resistive element can be connected or disconnected from a circuit by changing the pattern of a small number of masks. Since the timing adjustment elements are placed on the chip in advance, even if there is a correction after test diagnosis, these elements can be used and the correction can be made with a small number of mask changes, making the correction very simple. Moreover, if these adjustment elements are placed in the wiring area, the increase in chip area can be reduced to 1/1°.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は未発明の一実施例を示す上面図、第2因および
第3図は第1図の状忠別における等価回路因、第4図は
従来例を説明するtめの上面図、第5図は第4図の要部
断面図である。 fllfi−一半導体基板、F21 (51)−フェル
領域、(3)(52)−P型鉱散領域、 +41 (5
3) −N型拡散領域、(5)−抵抗素子、+81−P
型不純物領域、()l (54)−・ゲート電極、(8
1,−容量形成電極、1101(111Q2+031Q
41(15−911配線・口6071・−電源配線。 出m人三洋市機株式会社
FIG. 1 is a top view showing an uninvented embodiment, FIGS. 2 and 3 are equivalent circuit factors in the configuration shown in FIG. 1, and FIG. FIG. 5 is a sectional view of the main part of FIG. 4. fllfi - one semiconductor substrate, F21 (51) - Fell region, (3) (52) - P-type mineralization region, +41 (5
3) -N type diffusion region, (5) -resistance element, +81-P
type impurity region, ()l (54)--gate electrode, (8
1, - capacitance forming electrode, 1101 (111Q2+031Q
41 (15-911 wiring/port 6071--power supply wiring. Sanyo City Machinery Co., Ltd.)

Claims (1)

【特許請求の範囲】[Claims] (1)遅延回路を有する半導体集積回路装置において、
配線領域または電源線領域などに、容量素子および抵抗
素子からなるタイミング調整用素子を多数配置し、前記
タイミング調整用素子を適宜接続あるいは切断して、タ
イミングを調整したことを特徴とする半導体集積回路装
置。
(1) In a semiconductor integrated circuit device having a delay circuit,
A semiconductor integrated circuit characterized in that a large number of timing adjustment elements including capacitive elements and resistive elements are arranged in a wiring region or a power supply line region, and the timing is adjusted by connecting or disconnecting the timing adjustment elements as appropriate. Device.
JP60160705A 1985-07-19 1985-07-19 Semiconductor integrated circuit device Pending JPS6221262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60160705A JPS6221262A (en) 1985-07-19 1985-07-19 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60160705A JPS6221262A (en) 1985-07-19 1985-07-19 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6221262A true JPS6221262A (en) 1987-01-29

Family

ID=15720681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60160705A Pending JPS6221262A (en) 1985-07-19 1985-07-19 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6221262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059450A (en) * 1999-12-30 2001-07-06 박종섭 Layout delay of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059450A (en) * 1999-12-30 2001-07-06 박종섭 Layout delay of semiconductor device

Similar Documents

Publication Publication Date Title
US4516312A (en) Method for constructing delay circuits in a master slice IC
US4951111A (en) Integrated circuit device
JPH0638468B2 (en) Semiconductor integrated circuit device
JPS6221262A (en) Semiconductor integrated circuit device
JPH0113223B2 (en)
JPS60244058A (en) Semiconductor integrated circuit device
JP2676406B2 (en) Semiconductor storage circuit device
JPH0532908B2 (en)
JPH0677442A (en) Manufacture of semiconductor integrated circuit
JPH0786420A (en) Semiconductor device
JPS6342532Y2 (en)
JPS60214553A (en) Bipolar integrated circuit device
JPH0513542B2 (en)
JPH0114708B2 (en)
JPH04127565A (en) Semiconductor device provided with resistance element
JPH04359473A (en) Insulation gate type field effect transistor
JPH05198680A (en) Semiconductor integrated circuit device
JPS5931058A (en) Variable resistor
JPH05175439A (en) Semiconductor electrostatic protection circuit
JPS63252442A (en) Integrated circuit
JPS61226949A (en) Semiconductor device and manufacture thereof
JPH0828482B2 (en) Clip method in gate array master slice integrated circuit device
JPS62249472A (en) Complementary semiconductor integrated circuit device
JPH0548047A (en) Semiconductor device
JPH0421344B2 (en)