JPS62211236A - Holding material for plate-like member - Google Patents

Holding material for plate-like member

Info

Publication number
JPS62211236A
JPS62211236A JP5245686A JP5245686A JPS62211236A JP S62211236 A JPS62211236 A JP S62211236A JP 5245686 A JP5245686 A JP 5245686A JP 5245686 A JP5245686 A JP 5245686A JP S62211236 A JPS62211236 A JP S62211236A
Authority
JP
Japan
Prior art keywords
plate
holding
fluid
gap
shaped body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5245686A
Other languages
Japanese (ja)
Other versions
JPH0446864B2 (en
Inventor
Hiromitsu Tokisue
裕充 時末
Nobuo Tsumaki
妻木 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5245686A priority Critical patent/JPS62211236A/en
Publication of JPS62211236A publication Critical patent/JPS62211236A/en
Publication of JPH0446864B2 publication Critical patent/JPH0446864B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sheets, Magazines, And Separation Thereof (AREA)
  • Manipulator (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)

Abstract

PURPOSE:To make it possible to contactlessly hold a plate-like material with a strong holding force, by providing a holding member for forming an averaged clearance between itself and a plate-like material, and further by providing a fluid jetting section for applying a pressure higher than the atmospheric pressure to the plate opposing the holding surface of the holding member and a fluid sucking section for applying a pressure lower than the atmospheric pressure. CONSTITUTION:In the case of a suction force is set to be balanced with the weight of the plate-like material 1 when the space (h) of a gap 3 is a designated gap space hc that is, a plate-like material 1 is located as shown by the broken line, if the plate-like material 1 is shifted to a position as indicated by the solid line so that the space (h) of the gap 3 increases to a value hb exceeding the space hc, the suction force becomes larger than the weight of the plate-like material 1. Accordingly, the plate-like material 1 located at the position indicated by the solid line is exerted with the a recovery force in the direction in which the plate-like material is returned to the position having the designed space hc. Similarly, even if the space (h) of the gap 3 becomes a value ha which is smaller than the space hc, the plate-like material 1 is exerted with a recovery force in the direction in which the plate-like material 1 is returned to the position having the space hc. With this arrangement, the plate-like material 1 is stably held being floated in a non-contact condition with the gap 3 having the space hc between the holding surface 2A of the holding member 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は板状体の保持装置に係り、特に、板状体の表面
に流体の吸引力と噴出力とを作用させて、板状体を非接
触状態で保持する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a holding device for a plate-shaped body, and in particular, the present invention relates to a holding device for a plate-shaped body, and in particular, it applies suction force and ejection force of fluid to the surface of the plate-shaped body to hold the plate-shaped body. The present invention relates to a device for holding a device in a non-contact state.

〔従来の技術〕[Conventional technology]

従来、板状体を流体の吸引力により保持する装置として
1例えば特開昭58−141536号公報に示されるよ
うに、保持すべき板状体の中心から外周方向に向って流
体を噴出し、ベルヌイの原理により板状体を非接触で吸
着するものがある。
Conventionally, as a device for holding a plate-shaped body by suction force of fluid, as shown in Japanese Unexamined Patent Publication No. 58-141536, for example, there is a device that jets fluid from the center of the plate-shaped body to be held toward the outer circumference. There is a device that adsorbs plate-like objects without contact using Bernoulli's principle.

また、他の方策として、特公昭51−” 40343号
公帽に示されるように、吸込管と、この吸込管の周囲に
設けた吐出管とを組合せて、この吸込管および吐出管か
ら流体を流入および流出させることによって板状体を吸
込管及び吐出管の先端との間で無接触で保持するものが
ある。
As another measure, as shown in Japanese Patent Publication No. 40343, a suction pipe and a discharge pipe provided around the suction pipe are combined to drain fluid from the suction pipe and the discharge pipe. There is one that holds the plate-like body between the tips of the suction pipe and the discharge pipe without contact by flowing in and out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年、半導体製造の微細化に伴い、半導体ウェハのよう
な板状体を非接触で搬送することが要求されている。こ
の要求に対し、前述した前者の装置はベルヌイの原理に
より板状体を吸着するものであるため、板状体とその支
持面との間に広いすきまをもって、このすきまに多量の
流体を流す必要があるにのとき、このすきま内の流体は
非粘性流れとなっている。このため、保持されている板
状体に何等かの外力が作用すると、板状体は支持面から
離れ落下することがある。また後者の装置では板状体に
流体力が作用する領域は吸込管入口および吐出管出口に
限られることおよび非接触保持された板状体の面に対し
て直角方向の変位に対する吐出管内流量の変化が小さい
ことから、板状体に対する保持力、特に保持復元力が小
さいので、保持安定性が欠けるという問題があった。
In recent years, with the miniaturization of semiconductor manufacturing, it has become necessary to transport plate-shaped objects such as semiconductor wafers in a non-contact manner. In response to this requirement, the former device described above adsorbs plate-like objects using Bernoulli's principle, so it is necessary to create a wide gap between the plate-like object and its supporting surface and to flow a large amount of fluid into this gap. When , the fluid within this gap is an inviscid flow. Therefore, if some external force acts on the held plate-like body, the plate-like body may separate from the support surface and fall. In addition, in the latter device, the area where fluid force acts on the plate is limited to the inlet of the suction pipe and the outlet of the discharge pipe, and the flow rate in the discharge pipe changes with respect to the displacement in the direction perpendicular to the surface of the plate, which is held in a non-contact manner. Since the change is small, the holding force against the plate-like body, especially the holding restoring force, is small, so there is a problem that holding stability is lacking.

本発明は板状体を強い保持力をもって非接触で保持する
ことができる板状体の保持装置を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plate-shaped object holding device that can hold a plate-shaped object with a strong holding force and without contact.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記の目的は、流体力によって板状体を非接触
で保持する装置において、板状体との間に平面的なすき
まを形成するための保持面を備える保持体と、この保持
体の保持面に設けられ、この保持面に対向する板状体に
対して大気圧以上の圧力を発生する流体噴出部と、前記
流体噴出部の周囲に位置するように、保持体の保持面に
設けられ、板状体に対して大気圧以下の圧力を発生する
絞りを備えた流体吸引部とを備えることにより達成され
る。
The above-mentioned object of the present invention is to provide a device for holding a plate-shaped body in a non-contact manner by fluid force, and to provide a holder having a holding surface for forming a planar gap between the plate-shaped body and the holder. a fluid ejecting part that is provided on the holding surface of the holding body and generates pressure equal to or higher than atmospheric pressure against the plate-shaped body facing the holding surface; This is achieved by providing a fluid suction section provided with a constriction that generates a pressure equal to or lower than atmospheric pressure against the plate-shaped body.

〔作用〕[Effect]

流体噴出部の周囲に位置する流体吸引部は、流体の吸引
により保持面と板状体との間のすきま内の平均圧力を大
気圧以下にする。この負圧により、板状体の重量を支持
する。一方、流体噴出部は絞りを通して加圧流体を保持
面と板状体との間のすきまに供給する。これにより、こ
の部分のすきま内の圧力はすきま間隔が大きくなれば減
少し、すきま間隔が小さくなれば増加する。このため、
板状体は流体吸引部によって得られる負圧力との相互作
用により、保持面に対して一定の微少なすきま間隔を保
って非接触で支持される。また、保持面と板状体との間
のすきまには、ベルヌイ原理を用いた保持装置において
生じる非粘性流れに対して粘性流れが生じるので、すき
まの間隔が小さくなり、板状体に対して強い保持力を発
生する。
The fluid suction section located around the fluid ejection section reduces the average pressure within the gap between the holding surface and the plate-like body to below atmospheric pressure by suctioning the fluid. This negative pressure supports the weight of the plate-shaped body. On the other hand, the fluid jet section supplies pressurized fluid to the gap between the holding surface and the plate-like body through the throttle. As a result, the pressure within the gap in this area decreases as the gap distance increases, and increases as the gap distance decreases. For this reason,
Due to the interaction with the negative pressure obtained by the fluid suction section, the plate-shaped body is supported without contact with the holding surface while maintaining a constant minute gap. In addition, in the gap between the holding surface and the plate-shaped body, a viscous flow occurs in the gap between the plate-shaped body and the non-viscous flow that occurs in a holding device using the Bernoulli principle. Generates strong holding force.

〔実施例〕 以下本発明の実施例を図面を参照して説明する。〔Example〕 Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は本発明の装置の一実施例を示すも
ので、これらの図において、1は非接触に保持すべき例
えば半導体ウェハのような板状体を示す。2は板状体1
の保持体である。板状体1は保持体2の保持面2Aに対
して間隔■(を有するすきま3を介して非接触状態で保
持される。保持体2の保持面2Aの中央部にはポケット
状の開口部4が設けられている。この開口部4は絞り5
を通して加圧流体供給孔6に連通している。この加圧流
体供給孔6は加圧流体供給管路7を通して加圧流体供給
源8に連結している。保持体2の保持面2Aには開口部
4を取り囲むように環状溝9が設けられている。この環
状溝9は流体吸引孔10および管路11を通して流体吸
引源12に連結している。保持体2の周囲には、保持し
た板状体1の面方向の移動を阻止する阻止部材13が設
けられている。第1図において矢印14は重力が働く方
向を示している。
1 and 2 show an embodiment of the apparatus of the present invention, and in these figures, numeral 1 indicates a plate-shaped object, such as a semiconductor wafer, which is to be held in a non-contact manner. 2 is plate-shaped body 1
It is a holding body. The plate-shaped body 1 is held in a non-contact state with respect to the holding surface 2A of the holding body 2 through a gap 3 having a distance of . 4. This opening 4 has a diaphragm 5.
It communicates with the pressurized fluid supply hole 6 through the pressurized fluid supply hole 6 . The pressurized fluid supply hole 6 is connected to a pressurized fluid supply source 8 through a pressurized fluid supply conduit 7 . An annular groove 9 is provided in the holding surface 2A of the holding body 2 so as to surround the opening 4. This annular groove 9 is connected to a fluid suction source 12 through a fluid suction hole 10 and a conduit 11. A blocking member 13 is provided around the holding body 2 to prevent movement of the held plate-like body 1 in the plane direction. In FIG. 1, arrow 14 indicates the direction in which gravity acts.

次に、上述した本発明の装置の一実施例について、その
動作を説明する。
Next, the operation of one embodiment of the above-mentioned apparatus of the present invention will be described.

第1図において、流体吸引源12を作動させると、これ
によって管路11、流体吸引孔[0を通して環状溝9か
ら流体が吸引され、この環状溝9内の圧力が大気圧以下
に減圧される。一方、環状溝9内の圧力により高い圧力
に保たれている加圧流体供給源8は、加圧流体を管路7
.加圧流体供給孔6から絞り5を通してすきま3に供給
し、この部分に大気圧以上の圧力を与えている。このと
き、すきま3内の圧力、またこの圧力から計算される板
状体1に働く力は、理論的に以下のようになる。
In FIG. 1, when the fluid suction source 12 is activated, fluid is suctioned from the annular groove 9 through the conduit 11 and the fluid suction hole [0, and the pressure in the annular groove 9 is reduced to below atmospheric pressure. . On the other hand, the pressurized fluid supply source 8, which is maintained at a high pressure by the pressure within the annular groove 9, supplies pressurized fluid to the pipe line 7.
.. Pressurized fluid is supplied from the pressurized fluid supply hole 6 to the gap 3 through the throttle 5, and a pressure higher than atmospheric pressure is applied to this portion. At this time, the pressure within the gap 3 and the force acting on the plate-like body 1 calculated from this pressure are theoretically as follows.

いま、すきま3内の流れは、すきま3の間隔りを十分小
さくとるとき、等温7層流で、慣性力と比較して粘性力
が支配的な流れであると仮定できる。このとき、すきま
3内の流れに対し、第3図に示す座標系および記号を用
いて、次の方程式および境界条件が成立する。
Now, it can be assumed that the flow within the gap 3 is an isothermal seven-layer flow when the gap between the gaps 3 is set sufficiently small, and the flow is dominated by viscous force compared to inertial force. At this time, the following equation and boundary conditions hold for the flow within the gap 3 using the coordinate system and symbols shown in FIG.

r、h≦r≦roのすきまに対し、 P=Pc at  r= rl、 P=Pv at  
r= ro  −(2)t’a≦r≦f’bのすきまに
対し。
For the clearance r, h≦r≦ro, P=Pc at r= rl, P=Pv at
r= ro − (2) For the gap of t'a≦r≦f'b.

P=Pv at  r=ra、 P=Pa at  r
=rb  −(3)ここで、 r:保持体2の中心からすきま3のひろがり方向に測っ
た座棚 h ;すきま3の間隔 P :すきま3内の圧力 rL:開口部4の半径 ro:li状溝9に囲まれた保持面2Aの外半径、環状
溝9の内半径 ra:Ii状ff19の外半径 )r b−: f4 m (4’ 2 (7)m工、。
P=Pv at r=ra, P=Pa at r
= rb - (3) where, r: Seat shelf h measured from the center of the holder 2 in the direction in which the gap 3 widens; Distance of the gap 3 P: Pressure inside the gap 3 rL: Radius of the opening 4 ro: li The outer radius of the holding surface 2A surrounded by the annular groove 9, the inner radius ra of the annular groove 9: the outer radius of the Ii-shaped ff19) r b-: f4 m (4' 2 (7) m).

。□Pc:開ロ部4内の圧力 Pv:環状s9内の圧力 Pa:大気圧 このすきま3内の流れ(圧力)の式に対し、加圧流体供
給孔6に介設された絞り5を通る気体質量流量mRは、 ここで、 0口:オリフイス絞り流量係数 (空気に対してはCD二〇、85) R:ガス定数 T :気体の絶対温度 Ps:加圧流体供給孔6に供給される気体の圧力K :
気体の比熱比 また、r1≦r≦roのすきま3内を流れる気体質量流
量m1は、 ここで、 μ :気体の粘性係数 と表わされ、これらの気体質量流量mtt、 m)、に
は。
. □Pc: Pressure in the opening part 4 Pv: Pressure in the annular s9 Pa: Atmospheric pressure For the equation of the flow (pressure) in this gap 3, the pressure passes through the throttle 5 provided in the pressurized fluid supply hole 6 The gas mass flow rate mR is as follows: 0 port: orifice throttle flow coefficient (CD20, 85 for air) R: gas constant T: absolute temperature of gas Ps: supplied to pressurized fluid supply hole 6 Gas pressure K:
The specific heat ratio of the gas Also, the gas mass flow rate m1 flowing within the gap 3 where r1≦r≦ro is expressed as follows: where μ: viscosity coefficient of the gas, and these gas mass flow rates mtt, m).

次の連続条件が課せられる。The following continuity conditions are imposed.

m R” m h                 
   ・・・・・・(6)以上、式(1)〜(6)がす
きま3内の流れに対する基礎式であり、これらを解くこ
とにより、すきま3内の圧力が求まる。そして求まった
すきま3内の圧力より、板状体1に働く吸引力F(上向
き正)は次式のように表わされる。
m R” m h
(6) Equations (1) to (6) above are basic equations for the flow within the gap 3, and by solving these, the pressure within the gap 3 can be found. Based on the determined pressure within the gap 3, the suction force F (positive upward) acting on the plate-like body 1 is expressed as follows.

F=−f  (P−Pa)2πrdr = −πrt” (Pc−Pa) /  (P−Pa) 2πrd r −tc (r、z  ro”)  (Pv−Pa)b −/  (P−Pa)2grdr     −(7)t
’a ここで圧力Pについての式(1)〜(3)の解はただし
ここでPcは未知であり、このPcは式(4)〜(6)
より定まる。
F=-f (P-Pa)2πrdr = -πrt" (Pc-Pa) / (P-Pa) 2πrd r -tc (r, z ro") (Pv-Pa)b -/ (P-Pa)2grdr -(7)t
'a Here, the solution of equations (1) to (3) for pressure P is, however, Pc is unknown, and this Pc is calculated using equations (4) to (6).
More determined.

以上の式(1)〜(7)より、すきま3の間隔りを変え
て板状体1に働く吸引力Fを計算した結果を第4図に、
またその動作説明図を第5図に示す。
Figure 4 shows the results of calculating the suction force F acting on the plate-like body 1 by changing the spacing of the gap 3 from the above equations (1) to (7).
Further, an explanatory diagram of the operation is shown in FIG.

これらの図により、上述した本発明の装置の一実施例の
動作を説明すると、以下の通りである。
The operation of one embodiment of the apparatus of the present invention described above will be explained as follows with reference to these figures.

いま、すきま3の間隔りが設計すきま間隔he。Now, the spacing of gap 3 is the design gap spacing he.

すなわち第5図において板状体1が破線で示す位置にあ
るときに吸引力と板状体1の重量とがつり合うように設
定されているものとする。このとき。
That is, it is assumed that the setting is such that the suction force and the weight of the plate-like body 1 are balanced when the plate-like body 1 is at the position shown by the broken line in FIG. At this time.

板状体1が第5図において実線で示す位置に移動して、
すきま3の間隔りが設定すきま間隔hcを越えてh5に
増加すると、第4図に示すように吸引力は板状体1の重
量より大きくなる。したがって、第5図の実線で示す位
置にある板状体1には。
The plate-like body 1 moves to the position shown by the solid line in FIG.
When the distance between the gaps 3 exceeds the set gap distance hc and increases to h5, the suction force becomes larger than the weight of the plate-shaped body 1, as shown in FIG. Therefore, the plate-shaped body 1 is located at the position shown by the solid line in FIG.

設計点であるすきま間隔heの位置に引きもどす方向に
復元力が働く。同様にして、すきま3の間隔りが設計点
すきま間隔heより小さい間隔h&になった場合にも、
板状体1にはその位置を設計すきま間隔hcの位置にも
どす方向に復元力が働く。
A restoring force acts in the direction of returning to the position of the clearance interval he, which is the design point. Similarly, when the gap 3 becomes h&, which is smaller than the design point gap he,
A restoring force acts on the plate-shaped body 1 in the direction of returning its position to the position of the designed clearance interval hc.

これにより、板状体1は、保持体2の保持面2Aとすき
ま3の間隔he をへだてて非接触に安定浮上支持され
ることになる。
As a result, the plate-shaped body 1 is stably supported floating in a non-contact manner across the gap he between the holding surface 2A of the holding body 2 and the gap 3.

またこのとき、負圧に保たれる環状溝9は、開口部4を
取り囲むように環状に設けられているので、開口部4か
らすきま3内へ流入した流体はすべて環状9内へ吸引回
収され、外部に噴出することはない、逆に、保持体2の
外周部から外気が環状溝9内に流入するが、環状溝9内
の負圧の大きさは200〜300m水柱程度であり、す
きま3の間隔りも従来のベルヌイ原理を利用した保持装
置と異なって小さく設定できるので、すきまへ流入させ
る流体の流量は少なくてよい。
Also, at this time, since the annular groove 9 that is maintained at negative pressure is provided in an annular shape so as to surround the opening 4, all the fluid that has flowed into the gap 3 from the opening 4 is sucked and collected into the annular groove 9. On the contrary, outside air flows into the annular groove 9 from the outer periphery of the holder 2, but the negative pressure inside the annular groove 9 is about 200 to 300 m water column, and there is no gap. Unlike the conventional holding device using the Bernoulli principle, the gap 3 can be set small, so the flow rate of the fluid flowing into the gap may be small.

上述の実施例においては、保持体2の保持面2Aと板状
体1とのすきまにおける板状体1の中心部に正の圧力を
、その周囲に負の圧力を生起し、板状体1を保持体2に
対し非接触状態で確実に保持することができるので、第
1図に示すように保持体2の保持面2Aを下方に向けて
板状体1を保持した状態から、保持体2をいかなる姿勢
に変化させても、板状体1を非接触で保持することがで
きる。
In the above-described embodiment, positive pressure is generated at the center of the plate-like body 1 in the gap between the holding surface 2A of the holding body 2 and the plate-like body 1, and negative pressure is generated around the central part of the plate-like body 1. can be reliably held in a non-contact state with respect to the holder 2. Therefore, as shown in FIG. The plate-like body 1 can be held in a non-contact manner no matter how the posture of the body 2 is changed.

以上に述べたように5本発明の一実施例においては板状
体1を非接触で保持し得るので、例えば、処理面の汚れ
、傷付きをきらう半導体ウェハのハンドリングに使用す
れば有効である。また装置からその外方に向き流体が噴
出することがないので、周囲のごみがまき上がってウェ
ハを汚したり、装置周辺に置かれたウェハを移動させた
りすることがない。
As described above, in one embodiment of the present invention, the plate-shaped body 1 can be held without contact, so it is effective when used, for example, for handling semiconductor wafers where the processing surface should not be contaminated or scratched. . Furthermore, since no fluid is ejected outward from the apparatus, there is no possibility that surrounding dust will be stirred up to contaminate the wafers or displace wafers placed around the apparatus.

ここで、前述した従来の技術の項で述べた従来技術に対
する本発明の装置の機能を以下に説明する。
Here, the functions of the apparatus of the present invention will be described below in comparison with the conventional technology described in the prior art section.

まず、ベルヌイ原理を用いた保持装置は、保持体の保持
面と板状体の上面とのすきまに圧縮空気を噴出して、す
きま内に高速な流体流れを形成する。すきま内の流れが
非粘性流れとみなせるとき、その流れに対しては次のベ
ルヌイの式が成立する。
First, a holding device using the Bernoulli principle blows compressed air into the gap between the holding surface of the holding body and the upper surface of the plate-like body to form a high-speed fluid flow within the gap. When the flow in the gap can be regarded as an inviscid flow, the following Bernoulli equation holds true for that flow.

P +−p v ”= P o (const)   
     ・= (8)ここで P:圧力 ρ:重密 度:流速 Po:全圧 流速Vが大きければすきま内の圧力Pは負圧となり、こ
の負圧と外気圧との差圧によって、板状体を非接触に吸
引支持する。これに対し、本発明ではすきま内の流れは
粘性力が支配的な完全な粘性流れであるのに対し、前述
したベルヌイ原理を用いる保持装置ではすきま内の流れ
は壁面境界層の部分を除いて非粘性流れである必要があ
るということである。すきま内の流れが粘性流れである
本発明の装置では、すきまの間隔を数μm程度にまで小
さくすることが十分可能であり、このとき、板状体に対
する保持剛性d F/d hは、すきまの間隔の減少と
ともに増加し、また流体流量はすきまの間隔の減少とと
もに減少する。これに対して、ベルヌイ原理を用いる保
持装置では、すきま内に流体の非粘性高速流れを形成す
ることが必要なため、すきまの間隔を本発明のように小
さく設定することは不可能であり、また式(8)かられ
かるように1例えば水沈1011I11の負圧を発生さ
せるのに約13 m / secの流速が必要である。
P+−pv”=Po (const)
・= (8) Here, P: Pressure ρ: Density: Flow velocity Po: Total pressure If the flow velocity V is large, the pressure P in the gap becomes negative pressure, and due to the pressure difference between this negative pressure and the outside pressure, the plate-shaped object suction support without contact. On the other hand, in the present invention, the flow within the gap is a completely viscous flow dominated by viscous force, whereas in the holding device that uses the Bernoulli principle described above, the flow within the gap is a completely viscous flow with the exception of the wall boundary layer. This means that the flow needs to be inviscid. In the device of the present invention, in which the flow within the gap is a viscous flow, it is possible to reduce the gap between the gaps to about several μm, and in this case, the holding rigidity d F / d h for the plate-shaped body is increases with decreasing gap spacing, and fluid flow rate decreases with decreasing gap spacing. On the other hand, in a holding device using the Bernoulli principle, it is necessary to form an inviscid high-speed flow of fluid within the gap, so it is impossible to set the gap between the gaps as small as in the present invention. Further, as can be seen from equation (8), a flow rate of about 13 m/sec is required to generate a negative pressure of 1, for example, a submerged water 1011I11.

これらのことより、本発明の装置はベルヌイ原理を用い
た保持装置に対し、流体の噴出量は少量でよい。また、
すきまの間隔を小さくすることができるので保持力、保
持剛性d F/d hを大きくすることができる。
For these reasons, the device of the present invention only requires a smaller amount of fluid to be ejected than a holding device using the Bernoulli principle. Also,
Since the gap can be reduced, the holding force and the holding rigidity dF/dh can be increased.

また、本発明では、板状体1の上面と保持体2の保持面
2Aとによってすきま間隔の小さい平面的なすきまが形
成されているのに対し、従来の吸込管と吐出管との組合
せによるものではそれが存在しないということである。
Furthermore, in the present invention, a planar gap with a small gap is formed between the upper surface of the plate-shaped body 1 and the holding surface 2A of the holding body 2, whereas the conventional combination of a suction pipe and a discharge pipe The thing is that it doesn't exist.

すなわち、以状体を安定に保持するためには、板状体が
変位したとき、板状体に働く復元力、厳密に定義すれば
保持剛性d F/d hが大きいことが必要であるが、
大きい保持剛性を得るためには、上記の平面的なすきま
が必要であることを以下に説明する。
In other words, in order to stably hold the plate-shaped body, when the plate-shaped body is displaced, the restoring force acting on the plate-shaped body, strictly defined, the holding rigidity d F / d h must be large. ,
It will be explained below that the above-mentioned planar clearance is necessary in order to obtain a large holding rigidity.

本発明においては1式(7)、(8)かられかるように
、dF/dhはapc/dhが大きい程大きい。すなわ
ち、すきま3の間隔りの変化に対して、絞り5の出口圧
力Pcの変化が大きい程、保持剛性d F/d hは大
きな値となる。同様に上述の従来技術では板状体に働く
吸引力F′は。
In the present invention, as can be seen from Equations 1 (7) and (8), dF/dh increases as apc/dh increases. That is, the larger the change in the outlet pressure Pc of the throttle 5 with respect to the change in the gap 3, the larger the holding rigidity d F/d h becomes. Similarly, in the above-mentioned prior art, the suction force F' acting on the plate-shaped body is:

F’ =−(Pc−Pa) Aout  (PV  P
a) Ain  −(0)ここで、 Pc :吐出管の絞りより下流の管内圧力Aout :
吐出管出口面積 Pv :吸入管入口圧力 Ain :吸入管入口面積 と表すされ、この場合も本発明の場合と同様に、すきま
hの変化に対する絞り機構の出力圧力Pcの変化dpe
/dhが大きい程、保持剛性dF′/dhは大きな値と
なる。さらに、すきまhが変化して絞り出口圧力Pcが
変化するのは、すきまhの変化によって絞りを通過する
気体質量流量″”mRが変化し、従来技術の場合につい
ても同様に式(4)に表わされる関係をみたすべく絞り
出口圧力Pcの値が変化することによる。したがって。
F'=-(Pc-Pa) Aout (PV P
a) Ain - (0) where, Pc: Pressure in the pipe downstream of the restriction of the discharge pipe Aout:
Discharge pipe outlet area Pv : Suction pipe inlet pressure Ain : Suction pipe inlet area In this case as well, as in the case of the present invention, the change dpe in the output pressure Pc of the throttling mechanism with respect to the change in the clearance h
The larger /dh is, the larger the holding rigidity dF'/dh is. Furthermore, the reason why the throttle outlet pressure Pc changes with a change in the clearance h is that the gas mass flow rate ``mR'' passing through the throttle changes due to a change in the clearance h, and in the case of the conventional technology, equation (4) is also expressed. This is because the value of the throttle outlet pressure Pc changes in order to satisfy the expressed relationship. therefore.

すきまhの変化に対する絞り機構通過気体質量流量m8
の変化d my+/ d hが大きい程、dPc/dh
、dF/dhが大きいことになる。
Mass flow rate of gas passing through the throttling mechanism m8 with respect to change in clearance h
The larger the change in d my+/d h, the more dPc/dh
, dF/dh will be large.

さて、dmR/dhを本発明の場合と従来技術の場合と
で比較すると1本発明の場合の方が大きい値となる。す
きまの変化によって気体質量流量が変化する機構は、本
発明では式(5)で表わさ  ゛れている。すなわち、
保持体2の保持面2Aと板状体1の上面との間゛のすき
まの間隔が変化すると、式(5)で表わされるように、
すきまを流れる流量はほぼすきまhの三米に比例して変
化する。一方従来の技術においてすきまhの変化による
流量変化を表わす機構は、次式で表わされる。
Now, when dmR/dh is compared between the case of the present invention and the case of the prior art, the value of dmR/dh is larger in the case of the present invention. In the present invention, the mechanism in which the gas mass flow rate changes due to a change in the gap is expressed by equation (5). That is,
When the gap between the holding surface 2A of the holding body 2 and the top surface of the plate-like body 1 changes, as expressed by equation (5),
The flow rate flowing through the gap changes approximately in proportion to the width of the gap h. On the other hand, in the conventional technology, the mechanism that expresses the change in flow rate due to the change in the gap h is expressed by the following equation.

2πrouth mh =Go         pcφ(P a/ P
 c)    −(10)1丁−一 ここで rout:吐出管半径 すなわち、吐出管出口端部と板状体の上面との間の円柱
状のすきまを絞りすきまとする絞り材端の式で表現され
る。この式(10)かられかるように、従来技術のもの
では、すきまを流れる流量はほぼすきまhに比例して変
化する。これにより、すきまhの変化に対する流量の変
化は本発明の場合の方が大きいことがわかる。
2πrouth mh = Go pcφ(P a/P
c) -(10) 1-1 Here, rout: Discharge pipe radius, that is, expressed by the equation of the drawing material end where the cylindrical gap between the outlet end of the discharge pipe and the top surface of the plate-shaped body is defined as the drawing clearance. be done. As can be seen from equation (10), in the prior art, the flow rate flowing through the gap changes approximately in proportion to the gap h. This shows that the change in flow rate with respect to the change in gap h is greater in the case of the present invention.

このように本発明と従来技術の場合とでは、すきまhの
変化に対する絞り林檎通過気体質量流量の変化、しいて
は保持剛性が変化する機構が本質的に異なっており、大
きい保持剛性を得るためには1本発明のように保持体の
保持面と板状体の上面との間に平面的なすきまを形成す
ることが有効である。さらに、平面的すきまは大きな流
量変化をもたらすだけでなく、式(7)第2項にあるよ
うに、現実には、本発明の装置ではすきま内の圧力分布
が保持力に大きく寄与しており、これによって大きな保
持剛性を得ることができる。また平面的すきまがあるこ
とによって、同じすきま間隔りであれば本発明の方がよ
り少ない流量の気体で作動することが可能である。
In this way, the present invention and the prior art are essentially different in the mechanism by which the gas mass flow rate passing through the aperture apple changes in response to a change in the gap h, and the mechanism by which the holding rigidity changes. For this purpose, it is effective to form a planar gap between the holding surface of the holding body and the upper surface of the plate-like body as in the present invention. Furthermore, not only does a planar gap cause a large change in flow rate, but in reality, as shown in the second term of equation (7), in the device of the present invention, the pressure distribution within the gap greatly contributes to the holding force. , this allows a large holding rigidity to be obtained. Furthermore, because of the planar gap, the present invention can operate with a smaller flow rate of gas for the same gap spacing.

第6図は本発明の装置の他の実施例を示すもので、この
図において第1図と同符号のものは同一部分または相当
する部分である。この実施例は第1図に示す保持体2を
板状体1に対向して複数個設けたものである。これらの
複数個の保持体2は装置枠15に装設される。また各保
持体2の加圧流体供給孔6および流体吸引孔10はそれ
ぞれ管路7,11によって共通の加圧流体供給源8およ
び流体吸引源12に連通している。
FIG. 6 shows another embodiment of the apparatus of the present invention, in which the same reference numerals as in FIG. 1 represent the same or corresponding parts. In this embodiment, a plurality of holding bodies 2 shown in FIG. 1 are provided facing a plate-like body 1. These plurality of holders 2 are installed in the device frame 15. Further, the pressurized fluid supply hole 6 and the fluid suction hole 10 of each holder 2 are communicated with a common pressurized fluid supply source 8 and a common fluid suction source 12 through conduits 7 and 11, respectively.

この実施例によれば、板状体1は複数個の保持体2によ
って非接触で保持されるので、板状体1が保持体2の保
持面2Aに対して傾くように変位した場合にも、板状体
1に大きな復元力を与えることができる。
According to this embodiment, the plate-like body 1 is held by the plurality of holders 2 in a non-contact manner, so even if the plate-like body 1 is displaced so as to be inclined with respect to the holding surface 2A of the holders 2. , it is possible to give a large restoring force to the plate-shaped body 1.

第71!Iおよび第8図は本発明の装置のさらに他の実
施例を示すもので、これらの図において、第1図と同符
号のものは同一部分または相当する部分である。この実
施例は第1図に示す本発明の装置の一実施例における管
17および加圧流体供給源8を取り除き、保持体2の保
持面2Aに設けたポケット状の開口部4を、絞り5を通
して大気に開口している流体吸入孔16に連通して構成
したものである。
71st! 1 and 8 show still other embodiments of the apparatus of the present invention, and in these figures, the same reference numerals as in FIG. 1 indicate the same or corresponding parts. In this embodiment, the tube 17 and the pressurized fluid supply source 8 in the embodiment of the device of the present invention shown in FIG. The fluid intake hole 16 is configured to communicate with the fluid suction hole 16 which is open to the atmosphere through the hole.

次に上述した本発明の′!AIのさらに他の実施例の動
作を説明する。
Next, '!' of the present invention described above! The operation of yet another embodiment of AI will be described.

流体吸引源12を作動させて、流体を吸引すると、第9
図に示すように保持面2Aの中央部の開口部4を取り囲
む環状溝9から流体が吸引され、この環状溝9内の圧力
が大気圧以下に減圧され、負の圧力となる。一方、開口
部4には環状溝9による流体の吸引により、外気の流体
が流体吸入孔16、絞り5を通って流入するので、この
部分の圧力は正の圧力となる。この圧力発生によって。
When the fluid suction source 12 is activated and fluid is sucked, the ninth
As shown in the figure, fluid is sucked from the annular groove 9 surrounding the opening 4 at the center of the holding surface 2A, and the pressure within the annular groove 9 is reduced to below atmospheric pressure, resulting in negative pressure. On the other hand, the fluid of the outside air flows into the opening 4 through the fluid suction hole 16 and the throttle 5 due to the suction of the fluid by the annular groove 9, so that the pressure in this portion becomes positive pressure. Due to this pressure generation.

板状体1の上面には重力作用方向14にirI!らって
上向きに吸引力が働く、この吸引力によって板状体1の
重量が支持されるが、この板状体1に働く吸引力は第1
0図に示すようにすきま3の間隔りが設定すきまの間隔
hcを越えてhbに増加すれば、増加し、またhaに減
少すれば、減少する。
irI! on the upper surface of the plate-like body 1 in the direction of gravity action 14! The weight of the plate-like body 1 is supported by this suction force, but the suction force acting on this plate-like body 1 is
As shown in Figure 0, if the gap 3 exceeds the set gap interval hc and increases to hb, it increases, and if it decreases to ha, it decreases.

すなわち、いま、すきま3の間隔りが第9図に示すよう
にhaに増加すると、すきま3内の流れが受ける抵抗が
減少し、絞り5を通過する気体流量が増加する。これに
より、絞り5における圧力降下量が増加し、絞り5の上
流側の流体吸入孔16内の圧力は大気圧で一定であるの
で、絞り5の下流側のポケット状の開口部4内の圧力が
減少する。
That is, when the interval between the gaps 3 increases to ha as shown in FIG. 9, the resistance to the flow within the gaps 3 decreases, and the flow rate of gas passing through the throttle 5 increases. As a result, the amount of pressure drop in the throttle 5 increases, and since the pressure in the fluid suction hole 16 on the upstream side of the throttle 5 is constant at atmospheric pressure, the pressure in the pocket-shaped opening 4 on the downstream side of the throttle 5 increases. decreases.

それによって、すきま3内の圧力が減少し、すきま3内
の圧力を大気圧との差が大きくなり、板状体1に働く吸
引力が増加して、板状体1は設定すきま間隔hcに整定
する。
As a result, the pressure in the gap 3 decreases, the difference between the pressure in the gap 3 and the atmospheric pressure increases, and the suction force acting on the plate-shaped body 1 increases, causing the plate-shaped body 1 to reach the set gap interval hc. Settling.

この実施例によれば、前述した実施例と同様に、板状体
1を非接触で確実に保持することができると共に、加圧
流体供給源が不要になり設備が簡単になる。さらに、流
体を吸引する形式であるので、特に半導体ウェハのハン
ドリングに用いれば、ごみのまき上げ、隣設するウェハ
の移動も防ぐことができる。
According to this embodiment, the plate-shaped body 1 can be reliably held in a non-contact manner, and a pressurized fluid supply source is not required, similarly to the embodiments described above, and the equipment is simplified. Furthermore, since it is of the type that sucks fluid, it can prevent dust from being thrown up and movement of adjacent wafers, especially when used for handling semiconductor wafers.

第11図は本発明の装置の他の実施例を示すもので、こ
の図において第7図と同符号のものは同一部分である。
FIG. 11 shows another embodiment of the apparatus of the present invention, and in this figure, the same reference numerals as in FIG. 7 are the same parts.

この実施例は第7図に示す保持体2を板状体1に対向し
て複数個設けたものである。
In this embodiment, a plurality of holding bodies 2 shown in FIG. 7 are provided facing the plate-like body 1.

これらの複数個の保持体2は装置枠15に装設される。These plurality of holders 2 are installed in the device frame 15.

また各保持体2の流体吸引孔10は管路11によって共
通の流体吸引源12に連通している。
Further, the fluid suction holes 10 of each holding body 2 are connected to a common fluid suction source 12 through a conduit 11.

この実施例によれば、“板状体1を複数個の保持体2に
よって非接触で保持することができるので、保持面2A
に対する板状体1の傾き作動に対して大きな復元力を与
えることができ、その保持性を向上させることができる
According to this embodiment, "the plate-shaped body 1 can be held by the plurality of holders 2 without contact, so that the holding surface 2A
A large restoring force can be applied to the tilting operation of the plate-shaped body 1 relative to the plate-shaped body 1, and its retention performance can be improved.

なお、上述の実施例においては、保持体2の保持面2A
のほぼ中央部にポケット状の開口部4を設けたが、第1
2図および第13回に示すように環状溝4Aとこの環状
溝4A内においてこれと通ずる十字状溝4Bとからなる
開口部を設けてもよい。この開口部によれば、絞り5の
下流側の容積が小さいので、気体の圧縮性に起因して板
状体に生じる自動振動の発生を押えることができる。
In addition, in the above-mentioned embodiment, the holding surface 2A of the holding body 2
A pocket-shaped opening 4 was provided approximately in the center of the
As shown in FIG. 2 and 13th, an opening consisting of an annular groove 4A and a cross-shaped groove 4B communicating with the annular groove 4A may be provided within the annular groove 4A. According to this opening, since the volume on the downstream side of the throttle 5 is small, it is possible to suppress the generation of automatic vibrations that occur in the plate-like body due to the compressibility of gas.

また上述の実施例においては絞シ5としてオリフィス形
の絞りを用いたが、多孔貞絞り1毛細管絞り、自戒弐絞
L6るいは表面絞り等を用いることができる。
Further, in the above embodiment, an orifice-type aperture is used as the aperture 5, but a multi-hole aperture 1, a capillary aperture, a self-diameter 2 aperture L6, a surface aperture, or the like may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、板状体を非接触
で確実に保持することができるので、保持によシ汚れを
嫌う板状体のノ・ンドリ/グ性能を向上させることがで
きる。
As explained above, according to the present invention, it is possible to reliably hold a plate-like object without contact, and therefore, it is possible to improve the drying/grinding performance of a plate-like object that does not like dirt during holding. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の一実施例の縦断正面図。 第2図はその底面図、第3図は本発明の装置を構成する
保持体の機能を示す説明図、第4図は第1図に示す本発
明の装置の一実施例におけるすきまと吸引力との関係を
示す特性図、第5図は第1図に示す本発明の装置の動作
を示す説明図、第6図は本発明の装置の他の実施例を示
す縦断正直図、第7図は本発明の装置のさらに他の実施
例を示す縦断面図、第8図は第7図の底面図、第9図は
第7図に示す本発明の装置の動作説明図、第10図は第
9図に示す本発明の装置の実施例におけるすきまと吸引
力との関係を示す特性図、第11図は本発明の装置の他
の実施例を示す縦断正面図、第12図は本発明の装置に
用いられる保持体の他の実施例を示す縦断正面図、第1
3図はその底面図である。 1・・・板状体、2・・・保持体、2A・・・保持面、
3・・・す高 3 図 ■ 5 図 省6 図 第 7 図 ¥J g 図
FIG. 1 is a longitudinal sectional front view of one embodiment of the device of the present invention. Fig. 2 is a bottom view thereof, Fig. 3 is an explanatory diagram showing the functions of the holding body constituting the device of the present invention, and Fig. 4 is the clearance and suction force in one embodiment of the device of the present invention shown in Fig. 1. FIG. 5 is an explanatory diagram showing the operation of the device of the present invention shown in FIG. 1, FIG. 6 is a longitudinal sectional view showing another embodiment of the device of the present invention, and FIG. 8 is a bottom view of FIG. 7, FIG. 9 is an explanatory diagram of the operation of the device of the present invention shown in FIG. 7, and FIG. Fig. 9 is a characteristic diagram showing the relationship between clearance and suction force in an embodiment of the device of the present invention, Fig. 11 is a longitudinal sectional front view showing another embodiment of the device of the present invention, and Fig. 12 is a characteristic diagram showing the relationship between the gap and suction force in an embodiment of the device of the present invention. FIG. 1 is a vertical front view showing another embodiment of the holding body used in the device of
Figure 3 is its bottom view. DESCRIPTION OF SYMBOLS 1... Plate-shaped body, 2... Holding body, 2A... Holding surface,
3...height 3 Fig. ■ 5 Fig. 6 Fig. 7 Fig.¥J g Fig.

Claims (1)

【特許請求の範囲】 1、流体力によつて板状体を非接触で保持する装置にお
いて、板状体との間に平面的なすきまを形成するための
保持面を備える保持体と、この保持体の保持面に設けら
れ、この保持面に対向する板状体に対して大気圧以上の
圧力を発生する流体噴出部と、前記流体噴出部の周囲に
位置するように、保持体の保持面に設けられ、板状体に
対して大気圧以下の圧力を発生する絞りを備えた流体吸
引部とを備えたことを特徴とする板状体の保持装置。 2、特許請求の範囲第1項記載の板状体の保持装置にお
いて、流体吸引部は流体吸引装置に接続し、流体噴出部
は大気に開放していることを特徴とする板状体の保持装
置。 3、特許請求の範囲第1項記載の板状体の保持装置にお
いて、流体吸引部は流体吸引装置に接続し、流体噴出部
は流体加圧供給装置に接続したことを特徴とする板状体
の保持装置。 4、特許請求の範囲第2項または第3項記載の板状体の
保持装置において、流体噴出部は保持面に開口する絞り
を備える流体噴出孔で構成し、流体吸引部は流体噴出孔
を取り囲むように設けた流体吸引溝で構成したことを特
徴とする板状体の保持装置。 5、特許請求の範囲第4項記載の板状体の保持装置にお
いて、流体噴出孔は保持面にポケット状の開口部を備え
たことを特徴とする板状体の保持装置。 6、特許請求の範囲第4項記載の板状体の保持装置にお
いて、流体噴出孔は保持面に、環状溝と、この環状溝内
にこれに通じる十字状の溝とからなる開口部を備えたこ
とを特徴とする板状体の保持装置。 7、特許請求の範囲第5項または第6項記載の板状体の
保持装置において、流体吸引溝は連続した1つの溝であ
ることを特徴とする板状体の保持装置。 8、特許請求の範囲第5項または第6項記載の板状体の
保持装置において、流体吸引溝は複数の不連続な溝であ
ることを特徴とする板状体の保持装置。 9、特許請求の範囲第1項ないし第8項のいずれかに記
載の板状体の保持装置において、流体噴出部および流体
吸引部を備える保持体を、板状体に対して複数個配置し
たことを特徴とする板状体の保持装置。
[Claims] 1. A device for holding a plate-like object in a non-contact manner using fluid force, comprising: a holding body having a holding surface for forming a planar gap between the holding body and the plate-like object; A fluid ejecting part is provided on the holding surface of the holding body and generates pressure equal to or higher than atmospheric pressure against the plate-shaped body facing the holding surface, and a holding part of the holding body is provided around the fluid ejecting part. 1. A holding device for a plate-shaped object, comprising: a fluid suction section provided on a surface and provided with a constriction that generates a pressure equal to or lower than atmospheric pressure to the plate-shaped object. 2. The device for holding a plate-shaped body according to claim 1, wherein the fluid suction section is connected to the fluid suction device, and the fluid jetting section is open to the atmosphere. Device. 3. The plate-shaped body holding device according to claim 1, wherein the fluid suction section is connected to a fluid suction device, and the fluid jetting section is connected to a fluid pressurization supply device. holding device. 4. In the device for holding a plate-like object as set forth in claim 2 or 3, the fluid ejection section is constituted by a fluid ejection hole having a diaphragm opening in the holding surface, and the fluid suction section is constituted by a fluid ejection hole provided with a diaphragm opening in the holding surface. 1. A holding device for a plate-shaped body, characterized in that it is composed of a surrounding fluid suction groove. 5. The device for holding a plate-like body according to claim 4, wherein the fluid ejection hole has a pocket-shaped opening in the holding surface. 6. In the holding device for a plate-shaped body as set forth in claim 4, the fluid jet hole has an opening in the holding surface consisting of an annular groove and a cross-shaped groove communicating with the annular groove. A holding device for a plate-shaped object, characterized in that: 7. The plate-shaped body holding device according to claim 5 or 6, wherein the fluid suction groove is one continuous groove. 8. The plate-shaped body holding device according to claim 5 or 6, wherein the fluid suction groove is a plurality of discontinuous grooves. 9. In the device for holding a plate-shaped body according to any one of claims 1 to 8, a plurality of holders each having a fluid ejection part and a fluid suction part are arranged with respect to the plate-shaped body. A holding device for a plate-shaped body, characterized in that:
JP5245686A 1986-03-12 1986-03-12 Holding material for plate-like member Granted JPS62211236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5245686A JPS62211236A (en) 1986-03-12 1986-03-12 Holding material for plate-like member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5245686A JPS62211236A (en) 1986-03-12 1986-03-12 Holding material for plate-like member

Publications (2)

Publication Number Publication Date
JPS62211236A true JPS62211236A (en) 1987-09-17
JPH0446864B2 JPH0446864B2 (en) 1992-07-31

Family

ID=12915219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5245686A Granted JPS62211236A (en) 1986-03-12 1986-03-12 Holding material for plate-like member

Country Status (1)

Country Link
JP (1) JPS62211236A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241841A (en) * 1988-08-01 1990-02-13 Hitachi Ltd Holding device for body having non-planar shape
EP0383336A2 (en) * 1989-02-17 1990-08-22 Hitachi, Ltd. Article assembling device
US4969676A (en) * 1989-06-23 1990-11-13 At&T Bell Laboratories Air pressure pick-up tool
US5169196A (en) * 1991-06-17 1992-12-08 Safabakhsh Ali R Non-contact pick-up head
US6099056A (en) * 1996-05-31 2000-08-08 Ipec Precision, Inc. Non-contact holder for wafer-like articles
KR100916673B1 (en) 2006-10-02 2009-09-08 에스엠씨 가부시키 가이샤 Non-contact transport apparatus
WO2011027547A1 (en) * 2009-09-07 2011-03-10 村田機械株式会社 Substrate transfer apparatus
EP2456694A2 (en) * 2009-07-22 2012-05-30 Zimmermann & Schilp Handhabungstechnik GmbH Vacuum gripper
GB2584069A (en) * 2019-03-27 2020-11-25 Millitec Food Systems Ltd Flow gripper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525037A (en) * 1978-08-09 1980-02-22 Seiko Epson Corp Liquid form material injecting of display body
JPS5918435U (en) * 1982-07-27 1984-02-04 日本電気ホームエレクトロニクス株式会社 Non-contact wafer backpack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918435B2 (en) * 1980-09-11 1984-04-27 新日本製鐵株式会社 Pulverized coal pressurization filling equipment in coke oven

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525037A (en) * 1978-08-09 1980-02-22 Seiko Epson Corp Liquid form material injecting of display body
JPS5918435U (en) * 1982-07-27 1984-02-04 日本電気ホームエレクトロニクス株式会社 Non-contact wafer backpack

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241841A (en) * 1988-08-01 1990-02-13 Hitachi Ltd Holding device for body having non-planar shape
EP0383336A2 (en) * 1989-02-17 1990-08-22 Hitachi, Ltd. Article assembling device
EP0383336A3 (en) * 1989-02-17 1990-10-10 Hitachi, Ltd. Article assembling method and device
US5077888A (en) * 1989-02-17 1992-01-07 Hitachi, Ltd. Article assembling method and device
US4969676A (en) * 1989-06-23 1990-11-13 At&T Bell Laboratories Air pressure pick-up tool
US5169196A (en) * 1991-06-17 1992-12-08 Safabakhsh Ali R Non-contact pick-up head
US6099056A (en) * 1996-05-31 2000-08-08 Ipec Precision, Inc. Non-contact holder for wafer-like articles
KR100916673B1 (en) 2006-10-02 2009-09-08 에스엠씨 가부시키 가이샤 Non-contact transport apparatus
US7690869B2 (en) 2006-10-02 2010-04-06 Smc Kabushiki Kaisha Non-contact transport apparatus
EP2456694A2 (en) * 2009-07-22 2012-05-30 Zimmermann & Schilp Handhabungstechnik GmbH Vacuum gripper
JP2012533491A (en) * 2009-07-22 2012-12-27 ジメルマン アンド シルプ アンダバングステクニック ゲーエムベーハー Vacuum gripper
WO2011027547A1 (en) * 2009-09-07 2011-03-10 村田機械株式会社 Substrate transfer apparatus
GB2584069A (en) * 2019-03-27 2020-11-25 Millitec Food Systems Ltd Flow gripper
GB2584069B (en) * 2019-03-27 2023-11-08 Millitec Food Systems Ltd Flow gripper

Also Published As

Publication number Publication date
JPH0446864B2 (en) 1992-07-31

Similar Documents

Publication Publication Date Title
US4081201A (en) Wafer air film transportation system
JPS62211236A (en) Holding material for plate-like member
TWI665146B (en) Non-contact transferring device and non-contact suction plate
CN103386689B (en) Conveying fixture and conveying holding meanss
CN107269698B (en) Air bearing
JP6744630B2 (en) Baffle
US11642794B2 (en) Suction device
TW201505948A (en) Supporting air plate and gas flow resistor
JP4982875B2 (en) Non-contact pad for sheet-like article
JP2004152941A (en) Noncontact supporting apparatus
JP4583882B2 (en) Non-contact support device
JP4877690B2 (en) Static pressure slider
JPH0512113B2 (en)
JP2009179423A (en) Floating structure, slide member, and stage device
JPH02138044A (en) Holding device for platelike body
CN106144593A (en) Transport carrier for transporting plate members
JP4494179B2 (en) Non-contact support device
JPH0343175B2 (en)
JP4376641B2 (en) Air floating conveyor
US20200149587A1 (en) Air bearing
JPH05335404A (en) Non-contact retaining equipment
EP0043457A2 (en) Air film transportation device
JP3660779B2 (en) Static pressure gas bearing device
JPH0640560A (en) Contactless holding device
JPH0215461B2 (en)