JPS6221019A - Fluidic flowmeter - Google Patents

Fluidic flowmeter

Info

Publication number
JPS6221019A
JPS6221019A JP16082085A JP16082085A JPS6221019A JP S6221019 A JPS6221019 A JP S6221019A JP 16082085 A JP16082085 A JP 16082085A JP 16082085 A JP16082085 A JP 16082085A JP S6221019 A JPS6221019 A JP S6221019A
Authority
JP
Japan
Prior art keywords
flow rate
downstream
section
jet nozzle
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16082085A
Other languages
Japanese (ja)
Inventor
Makoto Okabayashi
岡林 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP16082085A priority Critical patent/JPS6221019A/en
Publication of JPS6221019A publication Critical patent/JPS6221019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly accurate measurement of the flow rate regardless of large changes in the flow rate, by connecting two measuring sections each equipped with a reduced part of a pipeline, a jet nozzle and the like in series and providing a diaphragm type governor valve in a bypass passage thus formed. CONSTITUTION:A small passage 13 and a bypass passage 15 are formed with a partition 9 on the downstream in a pipe 1. A pair of first passage formation members 4a and 4b which each form a pipeline reduced part 2 and a jet nozzle 3 is arranged and a pair of control nozzles 6a and 6b and partitions 8a and 8b are provided on the downstream side of a pipeline expanded section 5 to form feedback passages 7a and 7b. At first, because of a small differential pressure P1-P2 between the upstream side pressure P1 and the downstream side pressure P2, with a governor valve C fully closed, a fluid flows to a downstream measuring section (A) from an upstream side measuring section (B). When the differential pressure P1-P2 reaches the second set value, a diaphragm 17 moves to the position of releasing the attraction of a magnet 22 to open a valve body 16 so that the differential pressure P1-P2 lowers to be maintained at the first set value. This permits a small opening measuring section to maintain the measurement of a small flow rate at a better accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、管路縮小部、噴出ノズル及び管路拡大部をそ
の順に流動方向に連ねて形成し、前記噴出ノズルと管路
拡大部の境界部に、一対の制御ノズルを、前記噴出ノズ
ルの噴出方向に対してほぼ直角方向に向かって、かつ、
相対向して形成し、前記両制御ノズル夫々と前記管路拡
大部の下流側を接続する一対の帰還流路を形成した41
11定部を有し、もって、コアンダ効果、つまり、管路
縮小部に連なる噴出ノズルからの噴流が管路拡大部の一
方の傾斜面に沿う状態で安定する現象を利用すると共に
、制御ノズルから交互に流体を吹出することにより噴出
ノズルからの噴流が管路拡大部の両頭斜面を交互に沿っ
て流れる現象を利用して、その噴出ノズルからの噴流の
流動方向変化に起因する流体振動数変化に基づいて・流
量を測定するように構成した帰還型フルイデイソク流發
計に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is characterized in that a conduit constriction section, a jet nozzle, and a conduit enlarged section are formed in sequence in the flow direction, and the jet nozzle and the conduit enlarged section are connected in this order. a pair of control nozzles at the boundary in a direction substantially perpendicular to the jetting direction of the jetting nozzle, and
A pair of return channels 41 are formed facing each other and connect each of the control nozzles to the downstream side of the expanded pipe section.
This makes use of the Coanda effect, that is, the phenomenon in which the jet flow from the jet nozzle connected to the pipe constriction part is stabilized along one slope of the pipe enlargement part, and also makes use of the Coanda effect. Utilizing the phenomenon that the jets from the jet nozzles alternately flow along the double-sided slope of the pipe expansion section by blowing fluid out alternately, the fluid frequency change is caused by the change in the flow direction of the jet from the jet nozzles. This invention relates to a feedback type fluid flow meter configured to measure flow rate based on.

〔従来の技術〕[Conventional technology]

従来、上記測定部を1個だけ設けて、その測定部の噴出
ノズルにおいて単に1個の噴出口を形成していたに過ぎ
なかった(例えば特開昭57−−66313号公報)。
Conventionally, only one measuring section has been provided, and the ejection nozzle of the measuring section has simply formed one ejection port (for example, Japanese Patent Laid-Open No. 57-66313).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、噴出口の面積を小にして感度を向上し、小流量
時の流量測定を精度良く行えるようにすると、大流量時
に圧1員が過大になって流量測定精度が悪化し、逆に、
噴出口の面積を大にすると、大流量時の流量は精度良く
測定できるが、小流量時の流量測定精度が悪化し、大幅
な流量変化がある場合での測定精度の面で改良の余地が
あった。
However, if we improve the sensitivity by reducing the area of the jet nozzle and make it possible to accurately measure the flow rate at low flow rates, the pressure becomes excessive at high flow rates, which deteriorates the accuracy of flow rate measurement, and conversely,
Increasing the area of the jet nozzle allows for accurate flow measurement at large flow rates, but the flow rate measurement accuracy at small flow rates deteriorates, and there is room for improvement in terms of measurement accuracy when there is a large change in flow rate. there were.

本発明の目的は、測定構成に合理的な改造を施して、大
幅な流量変化にかかわらず常に精度良く流量測定できる
ように、しかも、ダストの悪影響による測定誤差が生じ
にくいようにする点にある。
The purpose of the present invention is to rationally modify the measurement configuration so as to be able to always measure the flow rate with high accuracy regardless of large changes in flow rate, and to make it difficult for measurement errors to occur due to the adverse effects of dust. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴構成は、管路縮小部、噴出ノズル、管路拡
大部、及び、夫々一対の制御ノズルと帰遷流路を備えた
測定部の2個を直列に接続し、それら測定部のうち下流
側のものの前記噴出ノズルを上流側のものの前記噴出ノ
ズルよりも小開口面積に形成し、前記下流側測定部を迂
回するバイパス流路を前記上流側測定部に接続し、その
バイパス流路にダイアフラム式ガバナ弁を、設定流量以
上において上流側圧力と下流側圧力との差圧が設定範囲
に維持される状態で設けたことにあり、その作用効果は
次の通りである。
The characteristic configuration of the present invention is that two of the measuring parts, each having a pipe constricting part, a jet nozzle, a pipe expanding part, and a pair of control nozzles and a return flow path, are connected in series. The jet nozzle on the downstream side is formed to have a smaller opening area than the jet nozzle on the upstream side, a bypass flow path that bypasses the downstream measurement section is connected to the upstream measurement section, and the bypass flow path is connected to the upstream measurement section. The diaphragm type governor valve is provided in such a manner that the differential pressure between the upstream side pressure and the downstream side pressure is maintained within the set range when the flow rate exceeds the set flow rate, and its effects are as follows.

〔作 用〕[For production]

つまり、大流量時には、下流側測定部の上流側圧ツノと
下流側圧力との差が大になるから下流側圧力を増大して
、それら測圧力の差を設定範囲内に維持すべくガバナ弁
が開かれ、流体はバイパス流路から大量流出される。そ
して、小流量時には、下流側測定部の上流側圧力と下流
側圧力との差が小になるからガバナ弁が全閉状態でも上
流側と下流側の差圧が設定範囲になり、流体は、バイパ
ス流路を通らずに、上流側測定部から下流側測定部に小
量供給される。
In other words, when the flow rate is large, the difference between the upstream pressure horn of the downstream measuring section and the downstream pressure becomes large, so the governor valve is activated to increase the downstream pressure and maintain the difference between the measured pressures within the set range. When opened, fluid is allowed to flow out of the bypass channel. When the flow rate is small, the difference between the upstream pressure and the downstream pressure of the downstream measuring section becomes small, so even when the governor valve is fully closed, the differential pressure between the upstream and downstream sides is within the set range, and the fluid is A small amount is supplied from the upstream measurement section to the downstream measurement section without passing through the bypass channel.

したがって、大流量時には上流側測定部からの情報に基
づいて、かつ、小流量時には下流側測定部からの情報に
基づいて流量を測定すれば、噴出ノズルの開口面積が大
きい上流側測定部の作用で、小さい圧…で精度良好に大
流量範囲を測定できると共に、噴出ノズルの開口面積が
小さい下流側測定部の作用で、高感度にかつ精度良好に
小流量範囲を測定できる。
Therefore, if the flow rate is measured based on the information from the upstream measuring section when the flow rate is large and based on the information from the downstream measuring section when the flow rate is small, the effect of the upstream measuring section where the opening area of the ejection nozzle is large is Therefore, a large flow rate range can be measured with good accuracy at a small pressure, and a small flow rate range can be measured with high sensitivity and good accuracy due to the effect of the downstream measuring section where the opening area of the jet nozzle is small.

また、バイパス流路の開閉がダイアフラムによって自動
的に行われるから、たとえ大幅な流量変化があっても常
に確実に測定精度を高く維持できる。
Furthermore, since the bypass flow path is automatically opened and closed by the diaphragm, measurement accuracy can always be maintained at a high level even if there is a large change in flow rate.

そして、ガバナ弁の作用で上流側と下流側の差圧を設定
範囲内に維持できるようにしであるから、バイパス流路
の開閉は確実に安定して行われ、チャタリング等のトラ
ブルは起こさず、測定形態を切換えるべき流量に相当す
るfL量範囲においても良好に流量を測定できる。さら
に説明すると、例えば−個所における圧力変化によって
ガバナ弁を自動開閉することも考えられるが、ガバナ弁
を開閉する圧力がガバナ弁の開閉自体で大きく変動して
、ガバナ弁の開閉が繰返され、測定精度が大きく低下す
る欠点があり、本発明によればそのような不都合な現象
を無くせるのである。
Since the differential pressure between the upstream side and the downstream side can be maintained within a set range by the action of the governor valve, the opening and closing of the bypass flow path is performed reliably and stably, and troubles such as chattering do not occur. The flow rate can be measured satisfactorily even in the fL amount range corresponding to the flow rate at which the measurement form should be switched. To explain further, for example, it is possible to automatically open and close the governor valve depending on the pressure change at - location, but the pressure for opening and closing the governor valve fluctuates greatly due to the opening and closing of the governor valve itself, and the opening and closing of the governor valve is repeated. There is a drawback that accuracy is greatly reduced, and the present invention can eliminate such an inconvenient phenomenon.

さらに、開口面積の大きい測定部を上流側に、かつ、開
口面積の小さい測定部を下流側に配置しであるから、流
体中のダストが、ダストによる悪影響を受けにくい大開
口の測定部の入口側に溜まり、ダストによる悪影響を受
けやすい小開口の測定部に流入しにくくなり、小開口の
′α1定部による精度良好な小流量測定を維持できる。
Furthermore, since the measurement section with a large opening area is placed on the upstream side and the measurement section with a small opening area is placed on the downstream side, dust in the fluid is less likely to be adversely affected by dust at the entrance of the measurement section with a large opening. This makes it difficult for the dust to accumulate on the sides and flow into the measuring section with the small opening, which is susceptible to the adverse effects of dust, and it is possible to maintain a small flow rate measurement with good accuracy using the 'α1 constant section of the small opening.

〔発明の効果〕〔Effect of the invention〕

その結果、大幅な流量変化が頻繁に生じ、ダスト流入の
危険性があり、しかも、正確な流量測定が要求される場
合、例えば都市ガス導管や水道における顧客用メーター
等に任用な帰還型フルイデイック流量計を提供できるよ
うになった。
As a result, when large flow rate changes occur frequently, there is a risk of dust inflow, and accurate flow rate measurement is required, feedback type fluidics are used, for example, in city gas pipes and water supply meters for customers. We are now able to provide flow meters.

ちなみに、圧損を15mm)IzO以下に維持する場合
、前述の従来型式では50〜3.000 e /h程度
の流量変化にしか対応できないが、本発明の測定構成を
利用すると、10〜3,000 N /h程度の流量変
化に対応でき、都市ガス用家庭メータとして要求される
性能が十分に得られた。
Incidentally, when maintaining the pressure drop below 15 mm) IzO, the conventional method described above can only handle a flow rate change of about 50 to 3,000 e/h, but when the measurement configuration of the present invention is used, the flow rate change is 10 to 3,000 e/h. It was able to respond to flow rate changes of about N2/h, and sufficiently achieved the performance required for a residential city gas meter.

〔実施例〕〔Example〕

次に、第1図及び第2図により実施例を示す。 Next, an example will be shown with reference to FIGS. 1 and 2.

管(1)内の下流側に隔壁(9)によって、開口面積が
小さい小流路(13)と、開口面積が大きいノ\イバス
流路(15)とを区画形成し、小流路(13)に後述の
下流側測定部(八)を設け、小流路(13)とバイパス
流路(15)の上流側に後述の上流側測定部(B)を設
け、バイパス流路(15)にそれを開閉するダイアフラ
ム式ガバナ弁(C)を設けてある。
On the downstream side of the pipe (1), a small channel (13) with a small opening area and a noibus channel (15) with a large opening area are defined by a partition wall (9). ) is provided with a downstream measuring section (8), which will be described later, and an upstream measuring section (B), which will be described later, is provided on the upstream side of the small channel (13) and the bypass channel (15), and in the bypass channel (15). A diaphragm governor valve (C) is provided to open and close it.

前記上流側及び下流側測定部(A) 、 (B)は、同
様の構成であって、以下のように形成しである。
The upstream and downstream measuring sections (A) and (B) have the same configuration and are formed as follows.

管路縮小部(2)及び噴出ノズル(3)を形成する一対
の第1流路形成部材(4a) 、 (4b)を、管中心
軸芯(1’)に対して対称的に配置し、管路縮小部(2
)の作用で噴出ノズル(3)に流体を円滑に導くと共に
、噴出ノズル(3)から管中心軸芯(T’)とほぼ平行
に流体を噴出するように構成し、そして、管路拡大部(
5)、一対の制御ノズル(6a) 、 (6b)、及び
、管路拡大部(5)の下流側と制御ノズル(6a) 、
 (6b)を各別に連通ずる一対の帰還流路(7a) 
、 (7b)を形成する一対の隔壁(8a) 、 (8
b)を、管中心軸芯(P)に対して対称的に配置し、一
対の制御卸ノズル(6a) 、 (6b)を、噴出ノズ
ル(3)と管路拡大部(5)の間において、噴出ノズル
(3)の噴出方向に対してほぼ直角方向に向かわせると
共に相対向させ、管路拡大部(5)の下流側に絞り流路
を形成する一対の第2流路形成部材(12a) 。
A pair of first flow path forming members (4a) and (4b) forming the pipe condensation portion (2) and the jet nozzle (3) are arranged symmetrically with respect to the pipe center axis (1'), Conduit reduction part (2
), the fluid is smoothly guided to the jet nozzle (3), and the fluid is jetted from the jet nozzle (3) almost parallel to the pipe center axis (T'), and the pipe enlarged part (
5), a pair of control nozzles (6a), (6b), and the downstream side of the conduit expansion part (5) and the control nozzle (6a),
A pair of return channels (7a) that communicate with each other (6b) separately.
, (7b) forming a pair of partition walls (8a), (8
b) is arranged symmetrically with respect to the pipe center axis (P), and a pair of control nozzles (6a) and (6b) are placed between the jet nozzle (3) and the pipe enlarged part (5). , a pair of second flow path forming members (12a) which are oriented substantially perpendicularly to the jetting direction of the jet nozzle (3) and are opposed to each other to form a throttled flow path on the downstream side of the expanded pipe section (5). ).

(12b)を、管中心軸芯(P)に対して対称的に配置
しである。
(12b) are arranged symmetrically with respect to the tube center axis (P).

つまり、噴出ノズル(3)からの流体噴出が開始される
と、前述のコアンダ効果によって噴出流体は一方の隔壁
(8a)に沿って流れ、そのためにその隔壁(8a)側
に位置する制御ノズル(6a)に帰還流路(7a)から
大きな流体エネルギーが付与されて、噴出流体が反対側
の隔壁(8b)に沿って流れるようになり、今度は反対
側の制御ノズル(6b)からの流体エネルギーによって
噴出流体が初めに沿った隔壁(8a)に再び沿って流れ
るようになり、このようにして、噴出ノズル(3)から
の流体が隔壁(8a) 、 (8b)に対し°ζ交互に
沿うように構成し、もって、噴出流体量が増大する程短
周期で、かつ、定量的相関のある状態で噴出流体の流動
方向が変化するように構成しである。
That is, when fluid ejection from the ejection nozzle (3) is started, the ejected fluid flows along one partition wall (8a) due to the above-mentioned Coanda effect, and therefore the control nozzle ( 6a) is given a large amount of fluid energy from the return channel (7a), causing the ejected fluid to flow along the opposite bulkhead (8b), which in turn receives fluid energy from the opposite control nozzle (6b). This causes the ejected fluid to flow again along the partition wall (8a) along which it started, and in this way the fluid from the ejection nozzle (3) follows the partition walls (8a) and (8b) alternately. Thus, as the amount of ejected fluid increases, the flow direction of the ejected fluid changes at a shorter period and in a quantitatively correlated state.

管路拡大部(5)の下流側にターゲット(14)を設け
て、噴出流体の流動方向変化が一層安定化するように構
成しである。
A target (14) is provided on the downstream side of the expanded pipe section (5) to further stabilize the change in flow direction of the ejected fluid.

前記下流側測定部(A)の噴出ノズル(3)の開口面積
が、前記上流側測定部(B)の噴出ノズル(3)の開口
面積よりも、例えば1728というように小になってお
り、流量と噴出流体流動方向変化頻度の相関が、小流量
範囲では下流側測定部(八)において精度良好に、かつ
、大流量範囲では上流側測定部(B)において精度良好
になるように構成しである。
The opening area of the jet nozzle (3) of the downstream measuring section (A) is smaller, for example, 1728, than the opening area of the jet nozzle (3) of the upstream measuring section (B), The correlation between the flow rate and the frequency of change in flow direction of ejected fluid is configured such that the accuracy is good in the downstream measurement section (8) in the small flow rate range, and the accuracy is good in the upstream measurement section (B) in the large flow rate range. It is.

上流側及び下流側測定部(A) 、 (B)夫々の一方
のりm;流路(7a)に、圧力変化あるいは流星変化を
検出するセンサー(10)を付設し、その両センサー(
10)からの情報に基づいて、圧力あるいは流量変化の
振動数から流量を算出して表示する流量表示装置(11
)を設け、もって、帰還型フルイデイ、り>A’t m
計を構成しである。
One of the upstream and downstream measuring sections (A) and (B); a sensor (10) for detecting pressure changes or meteor changes is attached to the flow path (7a), and both sensors (
A flow rate display device (11) that calculates and displays the flow rate from the frequency of pressure or flow rate change based on information from 10).
), and with that, the return type fluid, ri>A't m
This is what makes up the meter.

前記ガバナ弁(C)は、設定流量以上において上流側圧
力(P、)と下流側圧力(P2)の差圧(PI−P2)
を設定範囲に維持すべく、以下のように構成しである。
The governor valve (C) has a pressure difference (PI-P2) between the upstream pressure (P, ) and the downstream pressure (P2) at a flow rate higher than the set flow rate.
In order to maintain it within the set range, it is configured as follows.

バイパス流路(15)を開閉する弁体(16)に連動さ
せたダイアフラム(17)を、弁体(16)の上流側に
通路(19)で連通ずる圧力室(18a)と、弁体(1
6)の下流側に連通ずる圧力室(18b)に臨む状態で
設け、ダイアフラム(17)に対して、閉弁方向に付勢
するスプリング(20) >及び、磁性体(21)との
吸着で閉弁位置を保持すべく作用するマグネット(22
)を付設し、弁体(16)に付設のロンド(23)とダ
イアフラム(17)との間に、スプリング(25)で全
閉位置になる弁体(16)に対するダイアフラム(17
)の開弁方向への一定範囲での移動を許容する融通部(
D)を設けてある。係止片(24)はロンド(23)の
揺動を規制するものである。
A diaphragm (17) linked to a valve body (16) that opens and closes the bypass flow path (15) is connected to a pressure chamber (18a) communicating with the upstream side of the valve body (16) through a passage (19), and a valve body ( 1
A spring (20) is provided facing the pressure chamber (18b) that communicates with the downstream side of the diaphragm (17), and biases the diaphragm (17) in the valve closing direction. A magnet (22) acts to hold the valve in the closed position.
) is attached to the valve body (16), and between the diaphragm (17) and the diaphragm (23) attached to the valve body (16), the diaphragm (17) is attached to the valve body (16) and the diaphragm (17) is brought into the fully closed position by the spring (25).
) that allows movement within a certain range in the valve opening direction (
D) is provided. The locking piece (24) restricts the swinging of the iron (23).

つまり、流量変化に伴う差圧(PI−112)の変化は
、例えば第3図に示すようになり、詳述すると次の通り
である。
In other words, the change in differential pressure (PI-112) due to the change in flow rate is as shown in FIG. 3, for example, and the details are as follows.

流量が零から徐々に増大したとすると、最初、差圧(P
l−PK)が小さいためにガバナ弁(C)が全閉状態で
、流体は上流側測定部(B)から下流側測定部(A)に
流れ、差圧(p+−pz)は点(イ)から第1設定差圧
(ΔPI)に相当する点(II)に上昇し、マグネット
(22)の閉弁保持作用で差圧(p+−pz)は点(0
)から点(ハ)に上昇する。
Assuming that the flow rate gradually increases from zero, initially the differential pressure (P
Since the governor valve (C) is small, the fluid flows from the upstream measuring section (B) to the downstream measuring section (A), and the differential pressure (p+-pz) is at the point (I). ) to point (II) corresponding to the first set differential pressure (ΔPI), and the differential pressure (p+-pz) rises to point (0) due to the valve closing action of the magnet (22).
) to point (c).

そして、差圧(r’+−Pz)が第2設定差圧(ΔP2
)に達すると、マグネノ) (22)の吸着が解除され
る位置にダイアフラム(17)が移動し、差圧(PI−
PK)が第1設定差圧(Δp+)に維持されるように弁
体(16)が開かれ、差圧(PI−PK)は点(ハ)か
ら点(ニ)に低下する。そして、差圧(PI−PK)は
、流量に見合ったガバナ弁(C)の開口度変化によって
初めは一定に維持され、最後にガバナ弁(C)が全開に
なった後はやや上昇して、点(ニ)から最大流量に相当
する点(ネ)に変化する。
Then, the differential pressure (r'+-Pz) becomes the second set differential pressure (ΔP2
), the diaphragm (17) moves to the position where the adsorption of magneto (22) is released, and the differential pressure (PI-
The valve body (16) is opened so that the differential pressure (PI-PK) is maintained at the first set differential pressure (Δp+), and the differential pressure (PI-PK) decreases from point (c) to point (d). The differential pressure (PI-PK) is initially maintained constant by changing the opening degree of the governor valve (C) commensurate with the flow rate, and finally rises slightly after the governor valve (C) is fully opened. , changes from point (D) to point (N) corresponding to the maximum flow rate.

前記流量表示装置(11)は、上流側測定部(B)のセ
ンサー(10)からの第1情報における振動数が設定以
下であるか否かを判定する手段(lla)、その判定手
段(11a)からの指示によって、第1情報の振動数が
設定以下の時に下流側測定部(A)のセンサー(10)
からの第2情報に基づいて、かつ、第1情報の振動数が
設定値を超える時にその第1情報に基づいて、夫々流量
を演算する手段(llb) 、並びに、算出流量を表示
する手段(llc)を備え、例えば10〜3,000 
N /hもの広範囲において差圧を15 m+e If
□0以下に抑えながら正確な測定を行えるようにしであ
る。
The flow rate display device (11) includes a means (lla) for determining whether the frequency in the first information from the sensor (10) of the upstream side measuring section (B) is equal to or lower than a setting, and a means for determining (11a). ), when the frequency of the first information is below the setting, the sensor (10) of the downstream measuring section (A)
means (llb) for calculating the flow rate based on the second information from the source and based on the first information when the vibration frequency of the first information exceeds a set value; and means (llb) for displaying the calculated flow rate. llc), for example 10 to 3,000
If the differential pressure is 15 m+e over a wide range of N /h
□This allows accurate measurements to be made while keeping the value below 0.

また、上記判定手段(lla)での設定振動数を、第1
情報における最小振動数と弁体(16)の閉弁時に相当
する振動数のほぼ中間値に設定し、第1情報による流量
測定を、流量と振動数の相関におけるリニャリティ劣化
による誤差が無いか又は極めて少なくなる状態で行える
ように、かつ、弁体(16)の開弁による測定誤差を生
じないように構成しである。
Further, the set frequency in the determination means (lla) is set to the first
The minimum frequency in the information and the frequency corresponding to the closing of the valve body (16) are set to approximately the intermediate value, and the flow rate measurement using the first information is checked to ensure that there is no error due to linearity deterioration in the correlation between flow rate and frequency. It is configured so that it can be carried out in a state where the number of measurements is extremely small, and so that measurement errors due to the opening of the valve body (16) do not occur.

すなわち、弁体(16)が開弁する以前から第1情報に
よって流■を演算し、また逆に、弁体(16)が閉弁す
る時には、閉弁の振動数と第1情報の最低振動数の中間
振動数以下になると、第2情報で流量を演算するように
しである。
That is, before the valve body (16) opens, the flow ■ is calculated based on the first information, and conversely, when the valve body (16) closes, the frequency of the valve closing and the lowest vibration of the first information are calculated. When the frequency is below the intermediate frequency of the number, the flow rate is calculated using the second information.

〔別実施例〕[Another example]

次に別の実施例を説明する。 Next, another embodiment will be described.

ガバナ弁(C)の具体構成は適当に変更でき、要するに
、設定流量以上において差圧(P、−PK)が設定範囲
に維持されるように開かれるように構成してあればよい
The specific configuration of the governor valve (C) can be changed as appropriate; in short, it may be configured to open so that the differential pressure (P, -PK) is maintained within the set range when the flow rate is higher than the set flow rate.

センサー(10)の検出方式や構成、設置個数等は自由
に変更でき、例えば両帰還流路(7a) 、 (7b)
にセンサー(10)を設けてもよい。また、流量を検出
表示する装置(11)も各種変形自在である。
The detection method, configuration, number of sensors, etc. of the sensor (10) can be changed freely, for example, both return channels (7a) and (7b)
A sensor (10) may be provided at. Further, the device (11) for detecting and displaying the flow rate can also be modified in various ways.

流星計は、主として燃料ガスや水道等において家庭用に
利用するが、その用途に特定されるものでない。
Meteor meters are mainly used for household purposes such as fuel gas and water supply, but their use is not specific.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図は第1図
のn−n線断面図である。第3図は、流量変化に伴う差
圧の変化を例示するグラフである。 (2)・・・・・・管路縮小部、(3)・・・・・・噴
出ノズル、(5)・・・・・・管路拡大部、(6a) 
、 (6b)・旧・・制御ノズル、(7a) 、 (7
b)・・・・・・帰還流路、(15)・・・・・・バイ
パス流路、(八)・・・・・・下流側測定部、(B)・
・目・・上流側測定部、(C)・・・・・・ガバナ弁。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along line nn in FIG. FIG. 3 is a graph illustrating changes in differential pressure with changes in flow rate. (2)...Pipe constriction section, (3)...Ejection nozzle, (5)...Pipe enlargement section, (6a)
, (6b)・Old...control nozzle, (7a), (7
b)...Return flow path, (15)...Bypass flow path, (8)...Downstream measurement section, (B)...
・Eye: Upstream measurement section, (C)...Governor valve.

Claims (1)

【特許請求の範囲】[Claims] 管路縮小部(2)、噴出ノズル(3)及び管路拡大部(
5)をその順に流動方向に連ねて形成し、前記噴出ノズ
ル(3)と管路拡大部(5)の境界部に、一対の制御ノ
ズル(6a)、(6b)を、前記噴出ノズル(3)の噴
出方向に対してほぼ直角方向に向かって、かつ、相対向
して形成し、前記両制御ノズル(6a)、(6b)夫々
と前記管路拡大部(5)の下流側を接続する一対の帰還
流路(7a)、(7b)を形成した測定部(A)、(B
)を有するフルイデイック流量計であって、前記測定部
(A)、(B)の2個を直列に接続し、それら測定部の
うち下流側のもの(A)の前記噴出ノズル(3)を上流
側のもの(B)の前記噴出ノズル(3)よりも小開口面
積に形成し、前記下流側測定部(A)を迂回するバイパ
ス流路(15)を前記上流側測定部(B)に接続し、そ
のバイパス流路(15)にダイアフラム式ガバナ弁(C
)を、設定流量以上において上流側圧力(P_1)と下
流側圧力(P_2)との差圧(P_1−P_2)が設定
範囲に維持される状態で設けてある帰還型フルイデイッ
ク流量計。
Pipe constriction section (2), jet nozzle (3) and conduit enlargement section (
5) are formed in series in the flow direction, and a pair of control nozzles (6a) and (6b) are provided at the boundary between the jet nozzle (3) and the expanded pipe section (5). ) are formed in a direction substantially perpendicular to the ejection direction of the control nozzles (6a) and (6b), and are formed opposite to each other, and connect the downstream side of the conduit enlarged portion (5) with each of the control nozzles (6a) and (6b). Measuring sections (A) and (B) forming a pair of return channels (7a) and (7b)
), the two measuring parts (A) and (B) are connected in series, and the jet nozzle (3) of the downstream measuring part (A) is connected in series. A bypass flow path (15) that is formed to have a smaller opening area than the jet nozzle (3) of the upstream side (B) and bypasses the downstream measurement section (A) is provided in the upstream measurement section (B). A diaphragm governor valve (C) is connected to the bypass flow path (15).
) is provided so that the differential pressure (P_1-P_2) between the upstream pressure (P_1) and the downstream pressure (P_2) is maintained within the set range when the flow rate is higher than the set flow rate.
JP16082085A 1985-07-19 1985-07-19 Fluidic flowmeter Pending JPS6221019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16082085A JPS6221019A (en) 1985-07-19 1985-07-19 Fluidic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16082085A JPS6221019A (en) 1985-07-19 1985-07-19 Fluidic flowmeter

Publications (1)

Publication Number Publication Date
JPS6221019A true JPS6221019A (en) 1987-01-29

Family

ID=15723121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16082085A Pending JPS6221019A (en) 1985-07-19 1985-07-19 Fluidic flowmeter

Country Status (1)

Country Link
JP (1) JPS6221019A (en)

Similar Documents

Publication Publication Date Title
US7474968B2 (en) Critical flow based mass flow verifier
US7463991B2 (en) Mass flow verifier with flow restrictor
US4610162A (en) Fluidic flowmeter
JP4159544B2 (en) Restrictor flow meter
JPS61223517A (en) Fluidic flowmeter
JPS6221019A (en) Fluidic flowmeter
JP2003149022A (en) Purge type vortex flowmeter
WO2023060769A1 (en) Blockage and leakage detection structure, and blockage and leakage detection method
JP2818083B2 (en) Flow measurement device
JP3335688B2 (en) Flowmeter
JP3017567B2 (en) Fluidic flow meter
JPH0682282A (en) Measuring equipment for flow rate
JPS62102119A (en) Fluidic flow meter
JPH01124711A (en) Full-index flowmeter
JPS6177717A (en) Feedback type fluidic flowmeter
JPS63140916A (en) Fluidic flowmeter
KR102158294B1 (en) Gas flowmeter capable of measuring at sonic speed and subsonic speed
JPH08240469A (en) Flowmeter
JPS62175619A (en) Fluidic flowmeter
JPH0547379Y2 (en)
JPH0921663A (en) Flow rate measuring system
JP3122981B2 (en) Reversible flow measurement device
JPH0618244Y2 (en) Fluid vibration type flow meter
JPH01227925A (en) Fluidic flowmeter
US20180292283A1 (en) Sensor element for recording at least one property of a fluid medium