JP3122981B2 - Reversible flow measurement device - Google Patents

Reversible flow measurement device

Info

Publication number
JP3122981B2
JP3122981B2 JP07322824A JP32282495A JP3122981B2 JP 3122981 B2 JP3122981 B2 JP 3122981B2 JP 07322824 A JP07322824 A JP 07322824A JP 32282495 A JP32282495 A JP 32282495A JP 3122981 B2 JP3122981 B2 JP 3122981B2
Authority
JP
Japan
Prior art keywords
pressure
outlet
differential pressure
pressure side
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07322824A
Other languages
Japanese (ja)
Other versions
JPH09159498A (en
Inventor
達也 市原
敬治 宮沢
正吉 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP07322824A priority Critical patent/JP3122981B2/en
Publication of JPH09159498A publication Critical patent/JPH09159498A/en
Application granted granted Critical
Publication of JP3122981B2 publication Critical patent/JP3122981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、左右対称な楕円曲
線で構成した絞りを用いることにより管路内を流れる流
体の流れを逆にした場合でも流量を高精度に測定するこ
とができる可逆流量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible flow rate capable of measuring a flow rate with high accuracy even when the flow of a fluid flowing in a pipeline is reversed by using a throttle constituted by a symmetrical elliptic curve. It relates to a measuring device.

【0002】[0002]

【従来の技術】従来、この種の可逆流量測定装置として
は、本出願人による特開昭51−2452号公報に開示
された可逆流量測定装置が知られている。この流量測定
装置は、オリフィスの入口側と出口側を左右対称な1/
4楕円曲線で形成したもので、 正逆両方向とも差圧計のレンジを同じにする 正逆両方向とも流体仕様が同じとき 正逆両方向の流量測定に適用することができることから
可逆流量測定装置と呼んでいる。
2. Description of the Related Art As a reversible flow rate measuring apparatus of this type, a reversible flow rate measuring apparatus disclosed in Japanese Patent Application Laid-Open No. 51-2452 by the present applicant has been known. This flow rate measuring device has a symmetrical 1 /
It is formed by 4 elliptic curves and makes the range of the differential pressure gauge the same in both the forward and reverse directions. When the fluid specification is the same in both the forward and reverse directions, it can be applied to the flow measurement in both forward and reverse directions. I have.

【0003】測定に際しては、一般の同心オリフィス板
と同様に、高圧側と低圧側の圧力を導圧管で差圧計に導
き、その差圧を電気信号に変換し、その出力信号から流
量を算出するように構成している。すなわち、管路の途
中に管路の断面積を狭くするようなオリフィスの入口、
出口側形状が左右対称な1/4楕円曲線からなる絞りを
設けると、そこを流体が流れるとき、オリフィス上流側
とオリフィスのスロート部(流速最大位置)に圧力差が
生じる。この圧力差と流量との間にはある一定の関係が
あるので、圧力差を測定すれば管路内を流れる流体の流
量を次式によって求めることができる。 W=CK・ΔP1/2 ・・・・・(1) ただし:Wは流量、Cは流出係数、Kは定数(管径、流
体の密度などを含む)、ΔPは差圧である。
At the time of measurement, similarly to a general concentric orifice plate, the pressure on the high pressure side and the pressure on the low pressure side are guided to a differential pressure gauge by a pressure guiding tube, the differential pressure is converted into an electric signal, and the flow rate is calculated from the output signal. It is configured as follows. That is, an orifice inlet that narrows the cross-sectional area of the pipe in the middle of the pipe,
If a restrictor having a symmetrical 1/4 elliptic curve on the outlet side is provided, when a fluid flows through the restrictor, a pressure difference occurs between the upstream side of the orifice and the throat portion (maximum flow velocity position) of the orifice. Since there is a certain relationship between the pressure difference and the flow rate, if the pressure difference is measured, the flow rate of the fluid flowing in the pipeline can be obtained by the following equation. W = CK · ΔP 1/2 (1) where: W is the flow rate, C is the outflow coefficient, K is a constant (including the pipe diameter, fluid density, etc.), and ΔP is the differential pressure.

【0004】このようにオリフィスの入口側と出口側を
左右対称な1/4楕円曲線で構成すると、流速の変化に
対応する形としては最適形状である。それ故、この形状
で絞りを製作して流体を流し圧力損失を測定すると差圧
の8%という少ない圧力損失で流量を測定できる。
[0004] If the inlet and outlet sides of the orifice are constituted by symmetrical 1/4 elliptic curves as described above, the shape is optimal as a shape corresponding to a change in flow velocity. Therefore, when a restrictor is manufactured with this shape and a fluid is caused to flow to measure the pressure loss, the flow rate can be measured with a small pressure loss of 8% of the differential pressure.

【0005】同じ理由から、発生する差圧は流体を一定
速度で流すと変動の少ない安定した差圧を得ることがで
きる。これは差圧の測定に際し誤差として避けられなか
った確率誤差をゼロにすることが可能な優れた絞り機構
である。
[0005] For the same reason, a stable differential pressure with little fluctuation can be obtained by causing a fluid to flow at a constant speed. This is an excellent throttling mechanism capable of reducing a probability error that cannot be avoided as an error in measuring the differential pressure to zero.

【0006】楕円曲線が流速変化に対応する形として最
適である理由は、自然落下の放水の形状がこれと近似す
ることによる。すなわち、流体の自然落下の形状は、図
5に示すようにその側面が楕円の一部にきわめて近似し
た水柱となるからである。その結果、理論上は自然落下
する流体に対して、その下方に1/4楕円形状の絞りを
設けた場合にも流体に対して何等の影響を与えないとい
うことを示している。
The reason that the elliptic curve is optimal as the shape corresponding to the change in the flow velocity is because the shape of the water discharged by natural fall approximates this. That is, the shape of the natural fall of the fluid is a water column whose side surface is very similar to a part of the ellipse as shown in FIG. As a result, it is theoretically shown that even if a quarter-elliptical throttle is provided below the naturally falling fluid, no influence is exerted on the fluid.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の可逆流量測定装置においては、流体の流れ方向
を切り替えたとき、2つの高圧側圧力取出口を作業者が
手動操作によって切り替え、流体の流れ方向に対して上
流側となる圧力取出口を差圧計に接続し、下流側となる
圧力取出口を閉塞するようにしているため、その操作が
煩わしいという問題があった。
However, in the above-mentioned conventional reversible flow rate measuring device, when the flow direction of the fluid is switched, the two high pressure side pressure outlets are manually switched by an operator, and the flow of the fluid is changed. Since the pressure outlet on the upstream side in the direction is connected to the differential pressure gauge and the pressure outlet on the downstream side is closed, there is a problem that the operation is troublesome.

【0008】本発明は上記した従来の問題点を解決する
ためになされたもので、その目的とするところは、流体
の流れ方向を切り替えたとき、比較的簡単な構成で2つ
の高圧側圧力取出口を自動的に切り替えることができる
ようにした可逆流量測定装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. It is an object of the present invention to provide two high pressure side pressure relief devices with a relatively simple structure when the flow direction of a fluid is switched. It is an object of the present invention to provide a reversible flow measuring device capable of automatically switching an outlet.

【0009】[0009]

【課題を解決するための手段】上述目的を達成するため
本発明は、配管途中に設けられオリフィスの入口側およ
び出口側形状が左右対称な1/4楕円曲線からなる絞り
と、この絞りの中央に設けられた低圧側圧力取出口と、
絞りの流れ方向における両側に等距離はなれてそれぞれ
設けられた2つの高圧側圧力取出口と、これら高圧側圧
力取出口における圧力と前記低圧側圧力取出口における
圧力との差圧を検出する差圧計と、前記2つの高圧側圧
力取出口を前記差圧計に選択的に接続する切替弁と、前
記差圧計の出力信号によって動作し前記切替弁を切り替
える切替手段とを備えたことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention relates to a diaphragm which is provided in the middle of a pipe and whose inlet and outlet sides have a symmetrical 1/4 elliptic curve, and a center of the diaphragm. A low pressure side pressure outlet provided in the
Two high pressure side pressure outlets provided at equal distances on both sides in the flow direction of the throttle, and a differential pressure gauge for detecting a differential pressure between the pressure at the high pressure side pressure outlet and the pressure at the low pressure side pressure outlet A switching valve for selectively connecting the two high pressure side pressure outlets to the differential pressure gauge; and switching means for operating in response to an output signal of the differential pressure gauge and switching the switching valve.

【0010】本発明において、差圧計は高圧側の圧力P
1 と、低圧側の圧力P2 の差圧(P1 −P2 )を検出
し、流量を算出する。流体の流れ方向によって前記高圧
側圧力P1 が低圧側圧力P2 より低い場合、差圧計の出
力信号がゼロ点より小さくなり、これによって切替手段
が動作して切替弁を切り替える。切替弁が切り替わる
と、流体の流れに対して上流側の高圧側圧力取出口が開
き、下流側の高圧側圧力取出口が閉じる。
In the present invention, the differential pressure gauge measures the pressure P on the high pressure side.
The differential pressure (P1-P2) between 1 and the pressure P2 on the low pressure side is detected, and the flow rate is calculated. When the high-pressure side pressure P1 is lower than the low-pressure side pressure P2 depending on the flow direction of the fluid, the output signal of the differential pressure gauge becomes smaller than the zero point, whereby the switching means operates to switch the switching valve. When the switching valve is switched, the high pressure side pressure outlet on the upstream side opens with respect to the flow of the fluid, and the high pressure side pressure outlet on the downstream side closes.

【0011】[0011]

【発明の実施の形態】以下、本発明を図面に示す実施の
形態に基づいて詳述する。図1は本発明に係る可逆流量
測定装置の一実施の形態を示す概略構成図、図2は楕円
絞り流量計の断面図である。これらの図において、可逆
流量測定装置1は、配管2の途中に設けた楕円絞り流量
計3を備えている。楕円絞り流量計3は、内径Dの直管
からなる測定管4と、この測定管4の内部中央に設けた
絞り5とを備え、また測定管4には低圧側1つ、高圧側
2つ、合計3つの圧力取出口6,7,8を設けている。
絞り5は、外径が測定管4の内径と等しい筒状体に形成
され、流入口および流出口が左右対称な1/4楕円形の
オリフィス10を有している。このようなオリフィス1
0は、上記した特開昭51−2452号公報にも示され
ているように、流体の初速度をv0 、落下口部における
重力加速度をg、落下距離をS、最大落下距離をSma
x、落下距離Sにおける水柱の半径をrとしたとき、円
形開口部から一定流量kで自然落下する水柱の半径rに
よって決定される中央開口部(スロート部)10aを有
する。なお、半径rは次式によって求められる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 is a schematic configuration diagram showing one embodiment of a reversible flow measurement device according to the present invention, and FIG. 2 is a cross-sectional view of an elliptical flow meter. In these figures, the reversible flow measuring device 1 includes an elliptical throttle flow meter 3 provided in the middle of a pipe 2. The elliptical restrictor flow meter 3 includes a measuring pipe 4 composed of a straight pipe having an inner diameter D, and a restrictor 5 provided in the center of the measuring pipe 4. The measuring pipe 4 has one low-pressure side and two high-pressure sides. , A total of three pressure outlets 6, 7, 8 are provided.
The throttle 5 is formed in a cylindrical body having an outer diameter equal to the inner diameter of the measuring tube 4, and has a フ ィ elliptical orifice 10 whose inlet and outlet are bilaterally symmetric. Such orifice 1
0 is the initial velocity of the fluid, v0, the gravitational acceleration at the drop opening, the drop distance is S, and the maximum drop distance is Sma, as shown in the above-mentioned Japanese Patent Application Laid-Open No. 51-2452.
x, when the radius of the water column at the drop distance S is r, the central opening (throat portion) 10a is determined by the radius r of the water column that falls naturally from the circular opening at a constant flow rate k. Note that the radius r is obtained by the following equation.

【0012】[0012]

【数1】 (Equation 1)

【0013】低圧側の圧力取出口7は、絞り5の中央、
言い換えれば最大肉厚部に半径方向に形成された挿通孔
9に連通している。2つの高圧側圧力取出口6,8は、
絞り5の流れ方向における両側に等距離(L3 )離して
それぞれ設けられている。オリフィス10の絞り直径比
d/Dは0.1〜0.8、流入側の寸法L1 はD/2、
流出側の寸法L2 はD/2、絞り5から高圧側圧力取出
口6,8までの距離L3 は25mm〜Dとされる。
The pressure outlet 7 on the low pressure side is located at the center of the throttle 5,
In other words, it communicates with the insertion hole 9 formed in the radial direction in the maximum thickness portion. The two high pressure outlets 6, 8
The throttles 5 are provided on both sides in the flow direction at equal distances (L3). The throttle diameter ratio d / D of the orifice 10 is 0.1 to 0.8, the dimension L1 on the inflow side is D / 2,
The outflow side dimension L2 is D / 2, and the distance L3 from the throttle 5 to the high pressure side pressure outlets 6, 8 is 25 mm to D.

【0014】このように、オリフィス10の入口、出口
側開口部を左右対称な1/4楕円形状とし、2つの高圧
側圧力取出口6,8を絞り5の流体の流れ方向における
両側に等距離L3 だけ離した位置に設け、かつ低圧側圧
力取出口7を絞り5の中央に設けた挿通孔9に連通させ
ると、矢印A方向から流体を流した場合と、矢印B方向
から流した場合の測定条件を全く同じにすることができ
る。
As described above, the inlet and outlet openings of the orifice 10 are formed in a symmetrical quarter elliptical shape, and the two high-pressure outlets 6, 8 are equidistant on both sides in the fluid flow direction of the throttle 5. L3, and the low pressure side pressure outlet 7 is communicated with the insertion hole 9 provided in the center of the throttle 5, when the fluid flows from the arrow A direction and the arrow B direction. The measurement conditions can be exactly the same.

【0015】また、このような構造とした場合には絞り
5の形状によって決定される流出係数Cを理想値1にき
わめて近づけることができる。これは一般の同心オリフ
ィス板の場合にはC=0.61程度であるのと比較する
といかに理想的な状態であるかが明かであろう。したが
って、一般式 ΔP=V・r/C2 ・k ・・・・(3) で表される低圧、高圧側圧力取出口の差圧ΔPは、同心
オリフィス板に比較して同一条件における発生差圧ΔP
が小さくなるため、高速流体の測定範囲が広がる。な
お、上記(3)式において、Vは流速、rは流体の比重
量、Cは流出係数、kは定数である。
In the case of such a structure, the outflow coefficient C determined by the shape of the diaphragm 5 can be made very close to the ideal value 1. It is clear that this is an ideal state as compared with C = 0.61 in the case of a general concentric orifice plate. Therefore, the differential pressure ΔP at the low-pressure and high-pressure side pressure outlets represented by the general formula ΔP = V · r / C 2 · k (3) is equal to the differential pressure ΔP under the same conditions as compared with the concentric orifice plate. Pressure ΔP
, The measurement range of the high-speed fluid is widened. In the above equation (3), V is the flow velocity, r is the specific weight of the fluid, C is the outflow coefficient, and k is a constant.

【0016】また、差圧が小さくなるということは、圧
力損失PL が低められることを意味するから、一般式 PL =ΔP(1−β2 ) ・・・・(4) より、絞り比が同じ場合における圧力損失も同心オリフ
ィス板に比べて小さい。したがって、測定後に流体のエ
ネルギを利用する装置に用いて有利である。ただし、β
は管内径に対する絞り径の比である。
Further, a decrease in the differential pressure means that the pressure loss PL is reduced. Therefore, according to the general formula PL = ΔP (1-β 2 ) (4), the throttle ratio is the same. The pressure loss in the case is also smaller than that of the concentric orifice plate. Therefore, it is advantageous to use the apparatus for utilizing the energy of fluid after measurement. Where β
Is the ratio of the reduced diameter to the inner diameter of the pipe.

【0017】さらに、一般に絞りの上流側の管路の直管
部が短かく、流れが不規則になる場合は、直管部を長く
して流線を整流させる必要があるが、流出係数Cが大き
い本楕円絞り流量計3を用いた場合にはそれだけ絞り比
を小さくすることにより直管の長さを節約することが可
能である。
Further, in general, when the straight pipe portion of the pipe upstream of the throttle is short and the flow becomes irregular, it is necessary to lengthen the straight pipe portion to rectify the stream lines. When the present elliptical flowmeter 3 having a large diameter is used, it is possible to save the length of the straight pipe by reducing the throttle ratio accordingly.

【0018】以上のように流出係数Cを大きくなり、圧
力損失を小さくする理由は、絞り5の入口および出口側
が楕円の一部を形成しているため、図3に示すように流
速分布が略一直線となり、流れの剥離現象が生じないた
めである。また、本発明による絞り5の出口側の広がり
角が流速最大位置であるスロート部10aにおいてゼロ
となり、順次流速減少に比例するように大きくなるた
め、絞り5の長さLが従来の絞りに比べて比較的長くな
らず、多くの場合略L=Dとすることができる。
As described above, the reason why the outflow coefficient C is increased and the pressure loss is reduced is that the inlet and outlet sides of the throttle 5 form a part of an ellipse, so that the flow velocity distribution is substantially reduced as shown in FIG. This is because the flow becomes straight and the flow separation phenomenon does not occur. Further, the divergence angle on the outlet side of the throttle 5 according to the present invention becomes zero at the throat portion 10a where the flow velocity is the maximum, and gradually increases in proportion to the decrease in the flow velocity. Therefore, in many cases, it is possible to make approximately L = D.

【0019】再び図1において、前記高圧、低圧側圧力
取出口6,7,8は、導圧管11を介して差圧計12に
それぞれ接続されている。また、高圧側圧力取出口6,
8と差圧計12との間には電磁弁13A,13Bがそれ
ぞれ設けられており、これら電磁弁13A,13Bを切
替スイッチ15によって開閉制御することによって2つ
の高圧側圧力取出口6,8を流体の流れ方向に応じて差
圧計12に選択的に接続するようにしている。すなわ
ち、流体の流れ方向がA方向である場合は、電磁弁13
Aを開いて高圧側圧力取出口6を差圧計12に接続する
一方、電磁弁13Bを閉じて高圧側圧力取出口8と差圧
計12との接続を断ち、流体の流れ方向をB方向に変え
ると、電磁弁13Bを開いて高圧側圧力取出口8を差圧
計12に接続する一方、電磁弁13Aを閉じて高圧側圧
力取出口6と差圧計12との接続を断つ。このように電
磁弁13A,13Bを開閉制御する前記切替スイッチ
(切替手段)15は、電磁弁駆動用電源16と、差圧計
12からの出力信号を記録紙に記録するアラーム出力付
き2ペン式の記録計14に接続されている。記録計14
は、差圧計12からの出力信号がゼロ点より小さくなる
とアラーム信号を送出し、切替スイッチ15を切り替え
るように構成されている。
Referring again to FIG. 1, the high-pressure and low-pressure side pressure outlets 6, 7, and 8 are connected to a differential pressure gauge 12 via a pressure guiding tube 11, respectively. Also, the high pressure side pressure outlet 6,
Solenoid valves 13A and 13B are provided between the pressure gauge 8 and the differential pressure gauge 12, respectively. By controlling the opening and closing of these solenoid valves 13A and 13B by the changeover switch 15, the two high pressure side pressure outlets 6 and 8 are fluidized. Is selectively connected to the differential pressure gauge 12 in accordance with the flow direction. That is, when the flow direction of the fluid is the A direction, the electromagnetic valve 13
A is opened to connect the high pressure side pressure outlet 6 to the differential pressure gauge 12, while the solenoid valve 13B is closed to disconnect the high pressure side pressure outlet 8 and the differential pressure gauge 12 and change the fluid flow direction to the B direction. Then, the solenoid valve 13B is opened to connect the high pressure side pressure outlet 8 to the differential pressure gauge 12, while the solenoid valve 13A is closed to disconnect the high pressure side pressure outlet 6 from the differential pressure gauge 12. The changeover switch (switching means) 15 for controlling the opening and closing of the solenoid valves 13A and 13B is a two-pen type with an alarm output for recording an output signal from the solenoid valve driving power supply 16 and the differential pressure gauge 12 on a recording sheet. It is connected to a recorder 14. Recorder 14
Is configured to transmit an alarm signal when the output signal from the differential pressure gauge 12 becomes smaller than the zero point, and to switch the changeover switch 15.

【0020】前記差圧計12は、圧力変化に伴うダイヤ
フラムの歪み量を電気信号に変換する図示しない周知の
半導体圧力センサを備えている。したがって、高圧側圧
力取出口6または8における圧力P1 と、低圧側圧力取
出口7における圧力P2 を導圧管11を介して半導体圧
力センサに導き、その差圧ΔP(=P1 −P2 )を検出
すると、配管2を流れる流体の流量Wを上記した(1)
式によって算出することができる。
The differential pressure gauge 12 includes a well-known semiconductor pressure sensor (not shown) for converting the amount of diaphragm distortion caused by a change in pressure into an electric signal. Therefore, when the pressure P1 at the high pressure side pressure outlet 6 or 8 and the pressure P2 at the low pressure side pressure outlet 7 are guided to the semiconductor pressure sensor via the pressure guiding tube 11, and the differential pressure ΔP (= P1 -P2) is detected. The flow rate W of the fluid flowing through the pipe 2 is set as described above (1).
It can be calculated by an equation.

【0021】しかしながら、上記(1)式は流出係数C
が一定のときに満足するものであり、流出係数Cがレイ
ノズル数によって変化するときは流量Wを求めても流出
係数Cの変化分が誤差となって現れる。そこで、実際に
は次のようにして流量を測定する。
However, the above equation (1) gives the outflow coefficient C
Is satisfied when the discharge coefficient C changes depending on the number of Reynolds nozzles. Even when the flow rate W is obtained, the change in the discharge coefficient C appears as an error. Therefore, the flow rate is actually measured as follows.

【0022】レイノズル数は流量の関数として次式で表
される。 RD =K2 ・W ・・・・(5) ただし、RD :レイノズル数、K2 :定数(管径、密度
等を含む)である。
The number of Reynolds nozzles is expressed by the following equation as a function of the flow rate. RD = K2.W (5) where RD is the number of Reynolds nozzles, and K2 is a constant (including tube diameter, density, etc.).

【0023】図4は流出係数Cとレイノズル数RD の関
係を示す図である。上記した(1)式の差圧ΔPと流量
Wの関係は、まず流量100%の時をもとに(5)式か
らレイノズル数RD を計算し、次に図4から流出係数C
を求め、これを(1)式に代入して流量100%の時の
差圧を計算する。差圧計12をこの差圧に調整しておく
と、0〜100%の流量が測定できる。
FIG. 4 is a diagram showing the relationship between the outflow coefficient C and the number of Reynolds nozzles RD. The relationship between the differential pressure ΔP and the flow rate W in the above equation (1) is obtained by first calculating the Reynolds number RD from the equation (5) based on the flow rate of 100%, and then calculating the outflow coefficient C from FIG.
Is calculated and substituted into equation (1) to calculate the differential pressure at a flow rate of 100%. If the differential pressure gauge 12 is adjusted to this differential pressure, a flow rate of 0 to 100% can be measured.

【0024】次に、上記した構造からなる可逆流量測定
装置1の動作について説明する。先ず、流体が正方向
(矢印A方向)に流れている場合について説明する。こ
の時、上流側の高圧側圧力取出口6が差圧計12に接続
され、下流側の高圧側圧力取出口8が閉じているものと
する。この状態において、流体が配管2を通り楕円絞り
流量計3を通過すると、高圧側圧力取出口6における圧
力P1 と低圧側圧力取出口7における圧力P2 (P1 >
P2 )が導圧管11を介して差圧計12に導かれ、その
差圧ΔP(P1 −P2 )を差圧計12が検出して流量を
算出し、これを電流信号として記録計14に出力する。
記録計14ではこの電流信号によって正方向流れ用ペン
が駆動して記録紙に流量を記録する。
Next, the operation of the reversible flow rate measuring device 1 having the above-described structure will be described. First, the case where the fluid is flowing in the forward direction (the direction of arrow A) will be described. At this time, it is assumed that the upstream high pressure side pressure outlet 6 is connected to the differential pressure gauge 12 and the downstream high pressure side pressure outlet 8 is closed. In this state, when the fluid passes through the elliptical restrictor flow meter 3 through the pipe 2, the pressure P1 at the high pressure side pressure outlet 6 and the pressure P2 at the low pressure side pressure outlet 7 (P1>
P2) is led to the differential pressure gauge 12 via the pressure guiding tube 11, and the differential pressure .DELTA.P (P1 -P2) is detected by the differential pressure gauge 12 to calculate the flow rate, which is output to the recorder 14 as a current signal.
In the recorder 14, the forward flow pen is driven by the current signal to record the flow rate on the recording paper.

【0025】流体を矢印A方向に流した時、たまたま電
磁弁13Aが閉で、電磁弁13Bが開になっていたとす
ると、上記とは反対に下流側の高圧側圧力取出口8が差
圧計12に接続され、上流側の高圧側圧力取出口6が閉
じるため、圧力P1 が圧力P2 より小さくなる。そのた
め、差圧計12の出力はゼロ点より小となるから記録計
14はアラーム信号を送出して切替スイッチ15を切り
替え、電磁弁13Aを開、電磁弁13Bを閉とし、上流
側の高圧側圧力取出口6を開き、下流側の高圧側圧力取
出口8を閉じる。これによって、上記したと同様に高圧
側圧力取出口6における圧力P1 が差圧計12に導か
れ、正常な流量測定を行うことができる。したがって、
流体を流したとき、下流側の高圧側圧力取出口8が開い
ており、上流側の高圧側圧力取出口6が閉じていても何
ら問題ない。
Assuming that the solenoid valve 13A is closed and the solenoid valve 13B is opened when the fluid flows in the direction of arrow A, contrary to the above, the downstream high pressure side pressure outlet 8 is connected to the differential pressure gauge 12 And the upstream high pressure side pressure outlet 6 is closed, so that the pressure P1 becomes smaller than the pressure P2. Therefore, since the output of the differential pressure gauge 12 becomes smaller than the zero point, the recorder 14 sends an alarm signal, switches the changeover switch 15, opens the solenoid valve 13A, closes the solenoid valve 13B, and sets the upstream high pressure side pressure. The outlet 6 is opened, and the downstream high-pressure outlet 8 is closed. As a result, the pressure P1 at the high pressure side pressure outlet 6 is guided to the differential pressure gauge 12 in the same manner as described above, and normal flow measurement can be performed. Therefore,
When the fluid flows, there is no problem even if the downstream high pressure side pressure outlet 8 is open and the upstream high pressure side pressure outlet 6 is closed.

【0026】次に、流体の流れを上記とは逆方向(矢印
B方向)に切り替えると、上流側の高圧側圧力取出口6
の圧力P1 が圧力P2 より小さくなり差圧計12の出力
がゼロ点より小となるから、記録計14はアラーム信号
を送出して切替スイッチ15を切り替える。切替スイッ
チ15が切り替わると、電磁弁13Aが閉じる一方、電
磁弁13Bが開く。したがって、差圧計12には上流側
の高圧側圧力取出口8の圧力P1 と低圧側圧力取出口7
の圧力P2 (P1 >P2 )が導かれ、その差圧を差圧計
12が検出して流量を算出し、その電流信号を記録計1
4に送出する。これにより記録計14の逆方向流れ用ペ
ンが動作して記録紙に流量を記録する。
Next, when the flow of the fluid is switched in the opposite direction (the direction of arrow B), the upstream high pressure side pressure outlet 6 is switched.
Is smaller than the pressure P2 and the output of the differential pressure gauge 12 becomes smaller than the zero point, the recorder 14 sends an alarm signal and switches the changeover switch 15. When the changeover switch 15 is switched, the solenoid valve 13A is closed while the solenoid valve 13B is opened. Therefore, the differential pressure gauge 12 has the pressure P1 of the upstream high pressure side pressure outlet 8 and the pressure P1 of the low pressure side pressure outlet 7.
(P1> P2), the differential pressure is detected by the differential pressure gauge 12, the flow rate is calculated, and the current signal is recorded by the recorder 1
4 As a result, the reverse flow pen of the recorder 14 operates to record the flow rate on the recording paper.

【0027】このような構造からなる可逆流測定装置に
あっては、流体の流れ方向を切り替えたとき、2つの高
圧側圧力取出口を自動的に切り替えることができるの
で、測定者がその都度切替弁を切り替える必要がなく、
取扱いが容易である。この点、従来のこの種の可逆流測
定装置は手動式であるため、流れ方向が正逆反転するよ
うなアプリケーションにおいては瞬時に測定者が圧力取
出口の切替を行うことができず、折角の性能を発揮する
ことができないが、本発明においてはこのようなことが
ない。
In the reversible flow measuring device having such a structure, when the flow direction of the fluid is switched, the two high pressure side pressure outlets can be automatically switched. No need to switch valves,
Easy to handle. In this respect, since the conventional reversible flow measuring device of this type is a manual type, in an application in which the flow direction is reversed, the measurer cannot instantaneously switch the pressure outlet, and the angle of the angle is not so large. Although performance cannot be exhibited, this is not the case in the present invention.

【0028】なお、上記した実施の形態においては、切
替弁として2つの電磁弁13A,13Bを用いたが、1
つの3方弁を用いてもよく、また記録計14の信号によ
って切替スイッチ15を直接切り替えるようにしてもよ
い。
In the above embodiment, two solenoid valves 13A and 13B are used as switching valves.
Three three-way valves may be used, and the selector switch 15 may be directly switched by a signal from the recorder 14.

【0029】[0029]

【発明の効果】以上説明したように本発明に係る流量測
定装置においては、配管途中に設けられオリフィスの入
口側および出口側形状が左右対称な1/4楕円曲線から
なる絞りと、この絞りの中央に設けられた低圧側圧力取
出口と、絞りの流れ方向における両側に等距離はなれて
それぞれ設けられた2つの高圧側圧力取出口と、これら
高圧側圧力取出口における圧力と前記低圧側圧力取出口
における圧力との差圧を検出する差圧計と、前記2つの
高圧側圧力取出口を前記差圧計に選択的に接続する切替
弁と、前記差圧計の出力信号によって動作し前記切替弁
を切り替える切替手段とを備えているので、流体の流れ
方向を切り替えたとき、2つの高圧側圧力取出口を自動
的に切り替えることができる。
As described above, in the flow rate measuring apparatus according to the present invention, a restrictor provided in the middle of a pipe and having an orifice inlet and outlet sides formed of a symmetrical 1/4 elliptic curve, A low pressure side pressure outlet provided at the center, two high pressure side pressure outlets provided at equal distances on both sides in the flow direction of the throttle, a pressure at these high pressure side pressure outlets and the low pressure side pressure A differential pressure gauge for detecting a differential pressure from the pressure at the outlet, a switching valve for selectively connecting the two high pressure side pressure outlets to the differential pressure gauge, and a switching valve operated by an output signal of the differential pressure gauge to switch the switching valve. Since the switching means is provided, the two high pressure side pressure outlets can be automatically switched when the flow direction of the fluid is switched.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る可逆流量測定装置の一実施の形
態を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing one embodiment of a reversible flow rate measuring device according to the present invention.

【図2】 楕円絞り流量計の断面図である。FIG. 2 is a sectional view of an elliptical throttle flowmeter.

【図3】 絞り内における流速分布を示す図である。FIG. 3 is a diagram showing a flow velocity distribution in a throttle.

【図4】 流出係数とレイノズル数との関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between the outflow coefficient and the number of Reynolds nozzles.

【図5】 噴流の流線が楕円形と近似することを示す図
である。
FIG. 5 is a diagram showing that a streamline of a jet approximates an ellipse.

【符号の説明】[Explanation of symbols]

1…可逆流量測定装置、2…配管、3…楕円絞り流量
計、4…測定管、5…絞り、6…高圧側圧力取出口、7
…低圧側圧力取出口、8…高圧側圧力取出口、11…導
圧管、10…オリフィス、12…差圧計、13A,13
B…電磁弁、14…2ペン式記録計、15…切替スイッ
チ、16…電源。
DESCRIPTION OF SYMBOLS 1 ... Reversible flow rate measuring device, 2 ... Piping, 3 ... Elliptical flow meter, 4 ... Measuring pipe, 5 ... Restrictor, 6 ... High pressure side pressure outlet, 7
... low pressure side pressure outlet, 8 ... high pressure side pressure outlet, 11 ... pressure guide tube, 10 ... orifice, 12 ... differential pressure gauge, 13A, 13
B: Solenoid valve, 14: 2-pen recorder, 15: switch, 16: power supply.

フロントページの続き (56)参考文献 特開 昭58−60218(JP,A) 特開 昭51−2452(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01F 1/42 G01F 1/44 Continuation of the front page (56) References JP-A-58-60218 (JP, A) JP-A-51-2452 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01F 1 / 42 G01F 1/44

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配管途中に設けられオリフィスの入口側
および出口側形状が左右対称な1/4楕円曲線からなる
絞りと、この絞りの中央に設けられた低圧側圧力取出口
と、絞りの流れ方向における両側に等距離はなれてそれ
ぞれ設けられた2つの高圧側圧力取出口と、これら高圧
側圧力取出口における圧力と前記低圧側圧力取出口にお
ける圧力との差圧を検出する差圧計と、前記2つの高圧
側圧力取出口を前記差圧計に選択的に接続する切替弁
と、前記差圧計の出力信号によって動作し前記切替弁を
切り替える切替手段とを備えたことを特徴とする可逆流
量測定装置。
1. A restrictor provided in the middle of a pipe and comprising a symmetrical 1/4 elliptic curve with orifice inlet and outlet shapes, a low pressure side pressure outlet provided at the center of the restrictor, and a flow of the restrictor. Two high pressure side pressure outlets respectively provided at equal distances on both sides in the direction, and a differential pressure gauge for detecting a differential pressure between the pressure at the high pressure side pressure outlet and the pressure at the low pressure side pressure outlet, A reversible flow rate measuring device, comprising: a switching valve for selectively connecting two high pressure side pressure outlets to the differential pressure gauge; and switching means for operating the output valve of the differential pressure gauge to switch the switching valve. .
JP07322824A 1995-12-12 1995-12-12 Reversible flow measurement device Expired - Fee Related JP3122981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07322824A JP3122981B2 (en) 1995-12-12 1995-12-12 Reversible flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07322824A JP3122981B2 (en) 1995-12-12 1995-12-12 Reversible flow measurement device

Publications (2)

Publication Number Publication Date
JPH09159498A JPH09159498A (en) 1997-06-20
JP3122981B2 true JP3122981B2 (en) 2001-01-09

Family

ID=18148023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07322824A Expired - Fee Related JP3122981B2 (en) 1995-12-12 1995-12-12 Reversible flow measurement device

Country Status (1)

Country Link
JP (1) JP3122981B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319280A (en) * 1992-05-14 1993-12-03 Mitsubishi Motors Corp Motor-driven hydraulic four-wheel steering system
JP2014139526A (en) * 2013-01-21 2014-07-31 Tgk Co Ltd Flow rate detection unit and hot water supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319280A (en) * 1992-05-14 1993-12-03 Mitsubishi Motors Corp Motor-driven hydraulic four-wheel steering system
JP2014139526A (en) * 2013-01-21 2014-07-31 Tgk Co Ltd Flow rate detection unit and hot water supply system

Also Published As

Publication number Publication date
JPH09159498A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
US5554805A (en) Flowmeter with a variable constriction
JP3122981B2 (en) Reversible flow measurement device
AU600409B2 (en) Trapped-vortex pair flowmeter
JP3818547B2 (en) Mass flow controller
US5309770A (en) Fluid vibrating type flowmeter
US6904810B2 (en) Purge type vortex flowmeter
JP3335688B2 (en) Flowmeter
US4240293A (en) Vortex generating device
WO2019031056A1 (en) Flowmeter
JP3607041B2 (en) Flow control valve device
US1057721A (en) Water-meter.
JP3017567B2 (en) Fluidic flow meter
JPH0547380Y2 (en)
JPS5827020A (en) Wide range type flow rate measuring device
JP2794366B2 (en) Flowmeter
JP3596948B2 (en) Flow measurement system
US3546938A (en) Fluid flow meter
JP3025036B2 (en) Fluid vibration type flow meter
JP2001289686A (en) Gas flowmeter
JP2821650B2 (en) Fluid vibration type flow meter
JPS58201026A (en) Vortex flow meter
CN115824332A (en) Hot type mass flow sensor runner structure
JPH07209042A (en) Vibration type flow meter
KR20210099116A (en) Systems and methods for measuring mass flow, density, temperature or flow rate
JP3227995B2 (en) Edge tone flow meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141027

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees