JPS62102119A - Fluidic flow meter - Google Patents

Fluidic flow meter

Info

Publication number
JPS62102119A
JPS62102119A JP24325785A JP24325785A JPS62102119A JP S62102119 A JPS62102119 A JP S62102119A JP 24325785 A JP24325785 A JP 24325785A JP 24325785 A JP24325785 A JP 24325785A JP S62102119 A JPS62102119 A JP S62102119A
Authority
JP
Japan
Prior art keywords
flow rate
valve body
pressure
magnet
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24325785A
Other languages
Japanese (ja)
Inventor
Makoto Okabayashi
岡林 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP24325785A priority Critical patent/JPS62102119A/en
Publication of JPS62102119A publication Critical patent/JPS62102119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To attain accurate flow rate measurement over a wide range by forming a straight barrel part connected to a small diameter side end part of a pressure adjusting part for increasing a valve opening in accordance with the increase of a flow rate to maintain a difference pressure between upper and downstream side within a set range to a slide valve body and arranging a valve body full opening magnet for holding the opening of the slide valve body on the inside of a pressure room. CONSTITUTION:The valve body full opening magnet 23 for holding the opening of the slide valve body 16 is arranged on the inside of a pressure room 18a so as to adsorb a magnetic substance 24 fitted to a rod 20 on a position where the straight barrel part 16b is drawn out from a valve seat 22 and a spacer 25 consisting of a non-magnetic substance is arranged between the magnet 23 and the magnetic substance 24. Consequently, the magnet 23 can be prevented from deterioration of its functions due to dust and a governor valve C can be prevented from operational defect due to excess adsorption of the magnet 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、管路縮小部、噴出ノズル及び管路拡大部をそ
の順に流動方向に連ねて形成し、°前記噴出ノズルと管
路拡大部の境界部に、一対の制御ノズルを、前記噴出ノ
ズルの噴出方向に対してほぼ直角方向に向かって、かつ
、相対向して形成し、前記両制御ノズル夫々と前記管路
拡大部の下流側を接続する一対の帰還流路を形成した測
定部、つまり、管路縮小部に連なる噴出ノズルからの噴
流が管路拡大部の一方の傾斜面に沿う状態で安定する現
象を利用すると共に、制御ノズルから交互に液体を吹出
することにより噴出ノズルからの噴流が管路拡大部の両
傾斜面を交互に沿って流れる現象利用して、その噴出ノ
ズルからの噴流の流動方向変化に起因する流体振動数変
化に基づいて流量を測定するように構成した測定部の2
個を直列に接続し、それら測定部のうち第1のものの前
記噴出ノズルを第2のものの前記噴出ノズルよりも小開
口面積に形成し、前記第1の測定部を迂回するバイパス
流路を前記第2の測定部に接続し、そのバイパス流路に
ダイアフラム式ガバナ弁を、測定流量範囲において上流
側圧力と下流側圧力との差圧が設定範囲に維持される状
態で設けてある帰還型フルイデイック流量計に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is characterized in that a conduit constriction section, a jet nozzle, and a conduit enlarged section are formed in sequence in the flow direction, and the jet nozzle and the conduit enlarged section are A pair of control nozzles are formed at the boundary of the jetting nozzle in a direction substantially perpendicular to the jetting direction of the jetting nozzle and facing each other; The measurement part forms a pair of return flow paths connecting the pipes, in other words, the jet flow from the jet nozzle connected to the conduit constriction part is stabilized along one slope of the conduit enlarged part, and the control By using the phenomenon that the jet flow from the jet nozzle flows alternately along both inclined surfaces of the expanded pipe section by jetting liquid alternately from the nozzle, fluid vibration is caused by the change in the flow direction of the jet from the jet nozzle. 2 of the measuring section configured to measure the flow rate based on a change in the number of
are connected in series, the ejection nozzle of the first measuring section is formed to have a smaller opening area than the ejection nozzle of the second measuring section, and a bypass flow path that bypasses the first measuring section is formed. A return type fluid connected to the second measuring section and provided with a diaphragm type governor valve in its bypass flow path in such a way that the differential pressure between the upstream pressure and the downstream pressure is maintained within a set range within the measured flow rate range. Regarding Dick flowmeters.

〔従来の技術〕[Conventional technology]

上記流量計は、大巾な流量変化にかかわらず、常に精度
良く流量測定できるものとして、特願昭60−6634
5号や特願昭60−160820号で先に提案したもの
であり、例えば第6図に示すように構成していた。
The above-mentioned flowmeter was proposed in Japanese Patent Application No. 60-6634 as a device that can always measure the flow rate with high accuracy regardless of wide flow rate changes.
No. 5 and Japanese Patent Application No. 60-160820, it was previously proposed, and was configured as shown in FIG. 6, for example.

つまり、ガバナ弁(C)の摺動弁体(16a)を、差圧
(PI−Pz)の設定範囲維持のために弁開度を流量増
大に伴って増大するように円錐状に形成して、常に弁座
(22)内に位置するように設け、流量変化に伴う差圧
(p+−pg)の変化が第7図のようになるように構成
していた。
In other words, the sliding valve body (16a) of the governor valve (C) is formed into a conical shape so that the valve opening degree increases as the flow rate increases in order to maintain the set range of the differential pressure (PI-Pz). , so as to be always located within the valve seat (22), and the configuration was such that the change in differential pressure (p+-pg) accompanying the change in flow rate was as shown in FIG.

さらに詳述すると、流量が零から徐々に増大した場合、
初めは差圧(P+−Pg)が小さいために弁体(16a
)はスプリング(21)で全開状態になり、流体は第2
の測定部(B)から第1の測定部(A)に流れ、差圧(
h−Pg)は点(イ)から第1設定差圧(APυに相当
する点(0)を越えて点(ハ)に上昇する。そして、差
圧(p+−pg)が第2設定圧(APz)に達すると、
差圧(p+−p2)が第1設定差圧(Ap+)に維持さ
れるように弁体(16a)が開かれ、差圧(Pt−h)
は点(ハ)から点(ニ)に低下する。そして差圧(p+
−pg)は、流量に見合ったガバナ弁(C)の開口度変
化によって初めは一定に維持され、最後にガバナ弁(C
)が全開になった後はやや上昇して、点(ニ)から最大
流量に相当する点(ネ)に変化する。
More specifically, when the flow rate gradually increases from zero,
At first, the differential pressure (P+-Pg) is small, so the valve body (16a
) is fully opened by the spring (21), and the fluid flows to the second
flows from the measuring section (B) to the first measuring section (A), and the differential pressure (
h-Pg) rises from point (A) to point (C) beyond point (0) corresponding to the first set differential pressure (APυ).Then, the differential pressure (p+-pg) rises to the second set pressure (C). When APz) is reached,
The valve body (16a) is opened so that the differential pressure (p+-p2) is maintained at the first set differential pressure (Ap+), and the differential pressure (Pt-h)
decreases from point (c) to point (d). and differential pressure (p+
-pg) is initially maintained constant by changing the opening degree of the governor valve (C) commensurate with the flow rate, and finally
) becomes fully open, it rises slightly and changes from point (D) to point (N) corresponding to the maximum flow rate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、圧損を15mmH2O以下に維持する場合、精
度良く流量測定できる範囲は10〜3.0001!/h
程度であり、流量変化が顕著な用途では、未だ流量測定
範囲が不十分であった。
However, when maintaining the pressure drop below 15 mmH2O, the range in which flow rate can be measured accurately is 10 to 3.0001! /h
However, in applications where flow rate changes are significant, the flow rate measurement range is still insufficient.

本発明の目的は、精度良く流量測定できる範囲を一層拡
大できる゛ようにする点にある。
An object of the present invention is to further expand the range in which flow rate can be measured with high accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴構成は、直列接続された測定部のうち噴出
ノズルの小さい第1の測定部を迂回するバイパス流路に
設けたダイアフラム式ガバナ弁において、上流側圧力と
下流側圧力の差圧を設定範囲内に維持するために弁開度
を流量増大に伴って増大する調圧部の小径側端部に連な
る直胴部を摺動弁体に形成し、その直胴部が弁座から抜
け出した位置で前記摺動弁体を開弁保持する弁体全開用
マグネットを設けたことにあり、その作用効果は次の通
りである。
The characteristic configuration of the present invention is that a diaphragm type governor valve provided in a bypass flow path that bypasses a first measurement section with a small jet nozzle among the series-connected measurement sections, controls the differential pressure between the upstream pressure and the downstream pressure. In order to maintain the valve opening within the set range, the straight body part connected to the small diameter end of the pressure regulating part, which increases as the flow rate increases, is formed into a sliding valve body, and the straight body part slides out from the valve seat. The valve body fully opens magnet is provided to hold the sliding valve body open at the position where the valve body is opened, and its effects are as follows.

〔作 用〕[For production]

つまり、流量が零から徐々に増大した場合、流量変化に
伴う差圧(p、−p1)の変化は第4図に示すようにな
り、さらに詳述すると次の通りである。
That is, when the flow rate gradually increases from zero, the change in differential pressure (p, -p1) accompanying the change in flow rate becomes as shown in FIG. 4, and will be described in more detail as follows.

摺動弁体の調圧部が弁座内に位置して、差圧(p+−p
g)を設定範囲(Ap+)に維持している点(へ)まで
の変化は、先に第7図によって説明した従来例と同じで
ある。
The pressure regulating part of the sliding valve body is located within the valve seat, and the differential pressure (p+-p
The changes up to the point (to) where g) is maintained within the set range (Ap+) are the same as in the conventional example explained earlier with reference to FIG.

点(へ)に達すると、調圧部による弁開度調整機能が無
(なり、差圧CP、−Pt)が少しでも大になると、直
胴部が弁座から抜け出る方向に摺胴弁体が移動し、その
移動がある程度行われ不と弁体全開用マグネットが作用
して、直胴部が弁座から抜け出た全開状態になり、差圧
(PI−Pg)は点(へ)から点(ト)に低下する。
When the point (to) is reached, the valve opening adjustment function by the pressure regulating part becomes null (and the differential pressure CP, -Pt) becomes even slightly large, and the sliding body valve body moves in the direction in which the straight body part comes out of the valve seat. moves, and if the movement is completed to a certain extent, the magnet for fully opening the valve body will act, and the straight body will come out of the valve seat and become fully open, and the differential pressure (PI-Pg) will change from point (to) to point. (G).

その後は、差圧(PI−Pg)は徐々に上昇して点(ト
)から最大流量に相当する点(チ)に変化し、点(チ)
の流量と点(ネ)の従来最大流量の差だけ従来例よりも
測定範囲を拡大できる。
After that, the differential pressure (PI-Pg) gradually increases and changes from point (G) to point (H) corresponding to the maximum flow rate, and then to point (C).
The measurement range can be expanded compared to the conventional example by the difference between the flow rate at point (N) and the conventional maximum flow rate at point (N).

また、直胴部を設けて、弁体全開用マグネットの吸着作
用による悪影響が調圧部による弁開度調節に及ばないよ
うにしであるから、ガバナ弁の良好な動作を安定して得
られる。
Furthermore, since the direct body portion is provided to prevent the adverse effect of the adsorption action of the magnet for fully opening the valve body from affecting the valve opening adjustment by the pressure regulating portion, good operation of the governor valve can be stably obtained.

〔発明の効果〕〔Effect of the invention〕

その結果、大幅な流量変化が頻繁に生じ、しかも、正確
な流量測定が要求される場合、例えば都市ガス導管や水
道における顧客用メーター等に有用な帰還型フルイデイ
ック流量計を提供できるようになった。
As a result, we are now able to provide feedback-type fluidic flowmeters that are useful when large changes in flow rate occur frequently and accurate flow rate measurement is required, such as for customer meters in city gas pipelines and water supply. Ta.

ちなみに、圧損を15■H20以下に維持する場合、前
述の従来型式では10〜3.0001 /h程度の流量
変化にしか対応できないが、本発明の測定構成を利用す
ると、・10〜4,0OOf/h程度の流量変化に対応
でき、都市ガス用家庭メータとして要求される性能が十
分に得られた。
By the way, in order to maintain the pressure drop below 15■H20, the above-mentioned conventional type can only cope with a flow rate change of about 10 to 3,0001/h, but when the measurement configuration of the present invention is used, It was able to cope with a flow rate change of about 1/h, and the performance required for a residential city gas meter was sufficiently achieved.

〔実施例〕〔Example〕

次に、第1図ないし第4図により実施例を示す。 Next, an example will be shown with reference to FIGS. 1 to 4.

管(1)内の下流側に隔壁(9)によって、開口面積が
小さい小流路(13)と、開口面積が大きいバイパス流
路(15)とを区画形成し、小流路(13)に後述の第
1の測定部(A)を設け、小流路(13)とバイパス流
路(15)の上流側に後述の第2の測定部(B)を設け
、バイパス流路(15)にそれを開閉するダイアフラム
式ガバナ弁(C)を設けてある。
A small channel (13) with a small opening area and a bypass channel (15) with a large opening area are defined by a partition wall (9) on the downstream side of the pipe (1). A first measuring section (A), which will be described later, is provided, a second measuring section (B), which will be described later, is provided upstream of the small channel (13) and the bypass channel (15), and a second measuring section (B), which will be described later, is provided on the upstream side of the small channel (13) and the bypass channel (15). A diaphragm governor valve (C) is provided to open and close it.

前記測定部(A) 、 (B)は、同様の構成であって
、以下のように構成しである。
The measurement units (A) and (B) have similar configurations and are configured as follows.

管路縮小部(2)及び噴出ノズル(3)を形成する一対
の第1流路形成部材(4a) 、 (4b)を、管中心
軸芯(P)に対して対称的に配置し、管路縮小部(2)
の作用で噴出ノズル(3)に流体を円滑に導くと共に、
噴出ノズル(3)から管中心軸芯(P)とほぼ平行に流
体を噴出するように構成し、そして、管路拡大部(5)
、一対の制御ノズル(6a) 、 (6b)、及び、管
路拡大部(5)の下流側と制御ノズル(6a)。
A pair of first flow path forming members (4a) and (4b) forming the pipe constriction portion (2) and the jet nozzle (3) are arranged symmetrically with respect to the pipe central axis (P), and the pipe Road reduction part (2)
The fluid is smoothly guided to the jet nozzle (3) by the action of
The jet nozzle (3) is configured to jet fluid approximately parallel to the pipe center axis (P), and the pipe enlarged portion (5)
, a pair of control nozzles (6a), (6b), and the downstream side of the conduit enlarged portion (5) and the control nozzle (6a).

(6b)を各別に連通ずる一対の帰還流路(7a) 、
 (7b)を形成する一対の隔壁(8a) 、 (8b
)を、管中心軸芯(P)に対して対称的に配置し、一対
の制御ノズル(6a) 、 (6b)を、噴出ノズル(
3)と管路拡大部(5)の間において、噴出ノズル(3
)の噴出方向に対してほぼ直角方向に向かわせると共に
相対向させ、管路拡大部(5)の下流側に絞り流路を形
成する一対の第2流路形成部材(12a) 、 (12
b)を管中心軸芯(P)に対して対称的に配置しである
(6b), a pair of return channels (7a) that communicate with each other separately;
A pair of partition walls (8a) and (8b) forming (7b)
) are arranged symmetrically with respect to the tube center axis (P), and a pair of control nozzles (6a) and (6b) are connected to the jet nozzle (
3) and the expanded pipe section (5), the jet nozzle (3)
A pair of second flow path forming members (12a), (12a) which are oriented substantially perpendicularly to the ejection direction of
b) are arranged symmetrically with respect to the tube center axis (P).

つまり、噴出ノズル(3)からの流体噴出が開始される
と、コアンダ効果によって噴出流体は一方の隔壁(8a
)に沿って流れ、そのためにその隔壁(8a)側に位置
する制御ノズル(6a)に帰還流路(7a)から大きな
流体エネルギーが付与されて、噴出流体が反対側の隔壁
(8b)に沿って流れるようになり、今度は反対側の制
御ノズル(6b)がらの流体エネルギーによって噴出流
体が初めに沿った隔壁(8a)に再び沿って流れるよう
になり、このようにして、噴出ノズル(3)からの流体
が隔壁(8a) 、 (8b)に対して交互に沿うよう
に構成し、もって、噴出流体量が増大する程短周期で、
かつ、定量的相関のある状態で噴出流体の流動方向が変
化するように構成しである。
In other words, when fluid ejection from the ejection nozzle (3) starts, the ejected fluid flows to one partition wall (8a) due to the Coanda effect.
), and therefore large fluid energy is applied from the return flow path (7a) to the control nozzle (6a) located on the partition wall (8a) side, and the ejected fluid flows along the partition wall (8b) on the opposite side. The fluid energy from the control nozzle (6b) on the opposite side causes the ejected fluid to flow again along the partition wall (8a) along which it started, and in this way the ejecting nozzle (3) ) so that the fluid flows along the partition walls (8a) and (8b) alternately, so that as the amount of fluid ejected increases, the period becomes shorter,
Further, the flow direction of the ejected fluid is configured to change in a state where there is a quantitative correlation.

管路拡大部(5)の下流側にターゲラ) (14)を設
けて、噴出流体の流動方向変化が一層安定化するように
構成しである。
A targera (14) is provided on the downstream side of the expanded pipe section (5) to further stabilize the change in flow direction of the ejected fluid.

前記第1の測定部(A)の噴出ノズル(3)の開口面積
が、前記第2の測定部(B)の噴出ノズル(3)の開口
面積よりも、例えば1728というように小になってお
り、流量と噴出流体流動方向変化頻度の相関が、小流量
範囲では第1の測定部(A)において精度良好に、かつ
、大流量範囲では第2の測定部(B)において精度良好
になるように構成しである。
The opening area of the jet nozzle (3) of the first measuring section (A) is smaller, for example, 1728, than the opening area of the jet nozzle (3) of the second measuring section (B). Therefore, the correlation between the flow rate and the frequency of change in the flow direction of ejected fluid has good accuracy in the first measurement part (A) in the small flow rate range, and good accuracy in the second measurement part (B) in the large flow rate range. It is configured as follows.

測定部(A) 、 (B)夫々の一方の帰還流路(7a
)に、圧力変化あるいは流量変化を検出するセンサー(
10)を付設し、その両センサー(10)からの情報に
基づいて、圧力あるいは流量変化の振動数から流量を算
出して表示する流量表示装置(11)を設け、もって、
帰還型フルイデイック流量計を構成しである。
One return flow path (7a) of each of the measurement parts (A) and (B)
), there is a sensor (
10), and a flow rate display device (11) that calculates and displays the flow rate from the frequency of the pressure or flow rate change based on the information from both sensors (10).
It consists of a feedback type fluidic flow meter.

前記ガバナ弁(C)は、設定流量範囲において上流側圧
力(Pl)と下流側圧力(P2)の差圧(p、−p1)
を設定範囲に維持すべく、以下のように構成しである。
The governor valve (C) has a differential pressure (p, -p1) between an upstream pressure (Pl) and a downstream pressure (P2) in a set flow rate range.
In order to maintain it within the set range, it is configured as follows.

バイパス流路(15)を開閉する摺動弁体く16)に連
動させたダイアフラム(17)を、弁体(16)の上流
側に通路(19)で連通ずる圧力室(18a)と、弁体
(16)の下流側に連通ずる圧力室(18b)に臨む状
態で設け、摺動弁体(16)に付設のロンド(20)に
対して閉弁方向に付勢するスプリング(21)を設けて
ある。また、前記差圧(PI−Pz)の設定範囲内維持
のために弁開度を流量増大に伴って増大する円錐形状な
どの調圧部(16a)、及び、その調圧部(16a)の
小径側端部に連なる直胴部(16b)を摺動弁体(16
)に形成し、弁座(22)内に直胴部(16b)が挿入
されている状態では、摺動弁体(16)が移動しても弁
開度がほぼ一定になるように構成しである。また、第3
図に示すように、直胴部(16b)が弁座(22)から
抜け出した位置で摺動弁体(16)を開弁保持する弁体
全開用マグネット(23)を、ロンド(20)に取付け
た磁性体(24)に対して吸着作用するように圧力室(
18a)内に設け、非磁性体から成るスペーサー(25
)をマグネット(23)と磁性体(24)の間に介在さ
せ、ゴミによるマグネット(23)の機能劣化やマグネ
ット(23)による過大の吸着力に起因したガバナ弁(
C)の動作不良を防止できるように構成しである。要す
るに、第4図に基づいて先に詳述したように動作するの
である。
A diaphragm (17) interlocked with a sliding valve body (16) that opens and closes the bypass flow path (15) is connected to a pressure chamber (18a) that communicates with the upstream side of the valve body (16) through a passage (19), and a valve. A spring (21) is provided facing the pressure chamber (18b) that communicates with the downstream side of the body (16), and biases the rond (20) attached to the sliding valve body (16) in the valve closing direction. It is provided. In addition, in order to maintain the differential pressure (PI-Pz) within a set range, a pressure regulating part (16a) such as a conical shape whose valve opening degree increases as the flow rate increases, and a pressure regulating part (16a) of the pressure regulating part (16a). The straight body part (16b) connected to the small diameter end is connected to the sliding valve body (16
), and when the straight body part (16b) is inserted into the valve seat (22), the valve opening degree is configured to be approximately constant even if the sliding valve body (16) moves. It is. Also, the third
As shown in the figure, the magnet (23) for fully opening the valve body, which holds the sliding valve body (16) open at the position where the straight body (16b) has come out of the valve seat (22), is attached to the rond (20). The pressure chamber (
A spacer (25) made of a non-magnetic material is provided in
) is interposed between the magnet (23) and the magnetic body (24), and the governor valve (
The structure is such that the malfunction of C) can be prevented. In short, it operates as detailed above with reference to FIG.

前記流量表示装置(11)は、第2の測定部(B)のセ
ンサー(10)からの第1情報における振動数が設定以
下であるか否かを判定する手段(lla)、その判定手
段(lla)からの指示によって、第1情報の振動数が
設定以下の時に第1の測定部(A)のセンサー(10)
からの第2情報に基づいて、かつ、第1情報の振動数が
設定値を超える時にその第1情報に基づいて、夫々流量
を演算する手段(Ilb)、並びに、算出流量を表示す
る手段(llc)を備え、例えば10〜4.0001 
/hもの広範囲において差圧を15 w Hz O以下
に抑えながら正確な測定を行えるようにしである。
The flow rate display device (11) includes a means (lla) for determining whether the frequency in the first information from the sensor (10) of the second measuring section (B) is equal to or lower than a setting, and a determining means ( lla), when the frequency of the first information is below the setting, the sensor (10) of the first measuring section (A)
means (Ilb) for calculating the flow rate based on the second information from the source and based on the first information when the vibration frequency of the first information exceeds a set value; and means (Ilb) for displaying the calculated flow rate. llc), for example 10 to 4.0001
This makes it possible to perform accurate measurements while keeping the differential pressure to 15 w Hz O or less over a wide range of 15 w Hz O or less.

また、上記測定手段(lla)での設定振動数を、第1
情報における最小振動数と弁体(16)の開弁時に相当
する振動数のほぼ中間値に設定し、第1情報による流量
測定を、流量と振動数の相関におけるリニャリティ劣化
による誤差が無いか又は極めて少なくなる状態で行える
ように、かつ、弁体(16)の開弁による測定誤差を生
じないように構成しである。
In addition, the set frequency of the measuring means (lla) is set to the first
The minimum frequency in the information and the frequency corresponding to the opening of the valve body (16) are set to approximately the intermediate value, and the flow rate measurement using the first information is checked to ensure that there is no error due to linearity deterioration in the correlation between flow rate and frequency. It is configured so that it can be carried out in a state where the number of measurements is extremely small, and so that measurement errors due to the opening of the valve body (16) do not occur.

すなわち、弁体(16)が開弁する以前から第1情報に
よって流量を演算し、また逆に、弁体(16)が開弁す
る時には、開弁の振動数と第1情報の最低振動数の中間
振動以下になると、第2情報で流量を演算するようにし
である。
That is, the flow rate is calculated based on the first information before the valve body (16) opens, and conversely, when the valve body (16) opens, the frequency of the valve opening and the lowest frequency of the first information are calculated. When the vibration becomes lower than the intermediate vibration, the flow rate is calculated using the second information.

〔別実施例〕[Another example]

次に別の実施例を説明する。 Next, another embodiment will be described.

ガバナ弁(C)の具体構成は適当に変更でき、例えば、
第5図に示すように、磁性体(24)を摺動弁体(16
)の端面に取付け、マグネット(23)やスペーサ(2
5)をバイパス流路(15)に配置したり、スペーサ(
25)を省略する等が可能である。
The specific configuration of the governor valve (C) can be changed appropriately, for example,
As shown in FIG. 5, the magnetic body (24) is connected to the sliding valve body (16).
) and attach it to the end face of the magnet (23) or spacer (2).
5) in the bypass flow path (15), or place the spacer (
25) may be omitted.

2個の測定部(A) 、 (B)を直列に接続するに、
噴出ノズル(3)の小さい第1の測定部(A)を、噴出
ノズル(3)の大きい第2の測定部(B)より上流側に
配置してもよい。
When connecting two measuring parts (A) and (B) in series,
The first measurement section (A) with a small ejection nozzle (3) may be arranged upstream of the second measurement section (B) with a large ejection nozzle (3).

センサー(10)の検出方式や構成、設置個数等は自由
に変更でき、例えば両帰還流路(7a) 、 (7b)
にセンサー(10)を設けてもよい。また、流量を検出
表示する装置(11)も各種変更自在である。
The detection method, configuration, number of sensors, etc. of the sensor (10) can be changed freely, for example, both return channels (7a) and (7b)
A sensor (10) may be provided at. Further, the device (11) for detecting and displaying the flow rate can also be changed in various ways.

流量計は、主として燃料ガスや水道等において家庭用に
利用するが、その用途に特定されるものでない。
Flowmeters are mainly used for domestic purposes, such as fuel gas and water supply, but their use is not specific.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の実施例を示し、第1図は
全体断面図、第2図は第1図のn−n線断面図、第3図
は要部断面図、第4図は′、流量変化に伴う差圧の変化
を示すグラフである。 第5図は、本発明の別実施例を示す要部断面図である。 第6図は従来例の断面図、第7図は、従来例における流
量変化に伴う差圧の変化を示すグラフである。 (2)・・・・・・管路縮小部、(3)・・・・・・噴
出ノズル、(5)・・・・・・管路拡大部、(6a) 
、 (6b)・・・・・・制御ノズル、(7a) 、 
(7b)・・・・・・帰還流路、(15)/\イノマス
流路、(16)・・・・・・摺動弁体、(16a)・・
・・・・調圧部、(16b)・・・・・・直胴部、(2
2)・・・・・・弁座、(23)・・・・・・マグネッ
ト、(A)・・・・・・第1の測定部、(B)・・・・
・・第2の測定部、(C)・・・・・・ガバナ弁。
1 to 4 show embodiments of the present invention, in which FIG. 1 is an overall sectional view, FIG. 2 is a sectional view taken along the line nn of FIG. The figure is a graph showing changes in differential pressure with changes in flow rate. FIG. 5 is a sectional view of a main part showing another embodiment of the present invention. FIG. 6 is a sectional view of the conventional example, and FIG. 7 is a graph showing changes in differential pressure with changes in flow rate in the conventional example. (2)...Pipe constriction section, (3)...Ejection nozzle, (5)...Pipe enlargement section, (6a)
, (6b)...control nozzle, (7a),
(7b)...Return flow path, (15)/\Inomas flow path, (16)...Sliding valve body, (16a)...
...Pressure regulating part, (16b) ... Straight body part, (2
2) Valve seat, (23) Magnet, (A) First measuring section, (B)
...Second measuring section, (C)...Governor valve.

Claims (1)

【特許請求の範囲】[Claims] 管路縮小部(2)、噴出ノズル(3)及び管路拡大部(
5)をその順に流動方向に連ねて形成し、前記噴出ノズ
ル(3)と管路拡大部(5)の境界部に、一対の制御ノ
ズル(6a)、(6b)を、前記噴出ノズル(3)の噴
出方向に対してほぼ直角方向に向かって、かつ、相対向
して形成し、前記両制御ノズル(6a)、(6b)夫々
と前記管路拡大部(5)の下流側を接続する一対の帰還
流路(7a)、(7b)を形成した測定部(A)、(B
)の2個を直列に接続し、それら測定部のうち第1のも
の(A)の前記噴出ノズル(3)を第2のもの(B)の
前記噴出ノズル(3)よりも小開口面積に形成し、前記
第1の測定部(A)を迂回するバイパス流路(15)を
前記第2の測定部(B)に接続し、そのバイパス流路(
15)にダイアフラム式ガバナ弁(C)を、測定流量範
囲において上流側圧力(P_1)と下流側圧力(P_2
)との差圧(P_1−P_2)が設定範囲に維持される
状態で設けてある帰還型フルイデイック流量計であって
、前記ガバナ弁(C)の摺動弁体(16)に、前記差圧
(P_1−P_2)の設定範囲内維持のために弁開度を
流量増大に伴って増大する調圧部(16a)、及び、そ
の調圧部(16a)の小径側端部に連なる直胴部(16
b)を形成し、その直胴部(16b)が弁座(22)か
ら抜け出した位置で前記摺動弁体(16)を開弁保持す
る弁体全開用マグネット(23)を設けてある帰還型フ
ルイデイック流量計。
Pipe constriction section (2), jet nozzle (3) and conduit enlargement section (
5) are formed in series in the flow direction, and a pair of control nozzles (6a) and (6b) are provided at the boundary between the jet nozzle (3) and the expanded pipe section (5). ) are formed in a direction substantially perpendicular to the ejection direction of the control nozzles (6a) and (6b), and are formed opposite to each other, and connect the downstream side of the conduit enlarged portion (5) with each of the control nozzles (6a) and (6b). Measuring sections (A) and (B) forming a pair of return channels (7a) and (7b)
) are connected in series, and the ejection nozzle (3) of the first measurement section (A) has a smaller opening area than the ejection nozzle (3) of the second measurement section (B). A bypass flow path (15) which is formed and bypasses the first measurement section (A) is connected to the second measurement section (B), and the bypass flow path (15) is connected to the second measurement section (B).
15), a diaphragm type governor valve (C) is installed to control the upstream pressure (P_1) and downstream pressure (P_2) in the measured flow rate range.
) is a feedback fluidic flowmeter installed in such a way that a differential pressure (P_1-P_2) between A pressure regulating part (16a) that increases the valve opening degree as the flow rate increases in order to maintain the pressure (P_1-P_2) within a set range, and a straight body connected to the small diameter side end of the pressure regulating part (16a). Part (16
b), and is provided with a magnet (23) for fully opening the valve body, which holds the sliding valve body (16) open at the position where the straight body portion (16b) has come out of the valve seat (22). type fluidic flowmeter.
JP24325785A 1985-10-30 1985-10-30 Fluidic flow meter Pending JPS62102119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24325785A JPS62102119A (en) 1985-10-30 1985-10-30 Fluidic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24325785A JPS62102119A (en) 1985-10-30 1985-10-30 Fluidic flow meter

Publications (1)

Publication Number Publication Date
JPS62102119A true JPS62102119A (en) 1987-05-12

Family

ID=17101178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24325785A Pending JPS62102119A (en) 1985-10-30 1985-10-30 Fluidic flow meter

Country Status (1)

Country Link
JP (1) JPS62102119A (en)

Similar Documents

Publication Publication Date Title
US7463991B2 (en) Mass flow verifier with flow restrictor
KR101930304B1 (en) Flow meter
CN100419385C (en) Differential pressure type flowmeter and differential pressure type flowmeter controller
CN201476821U (en) Double-channel pore plate gas flow rate measuring device with bypass bridge path
US4610162A (en) Fluidic flowmeter
JPS6015001B2 (en) Pipe flow measurement device
JP2004157719A (en) Mass-flow controller
CN201476822U (en) Dual-channel pore plate gas flow measuring device with multiple built-in parameters
WO2019031056A1 (en) Flowmeter
JPS62102119A (en) Fluidic flow meter
JPS61223517A (en) Fluidic flowmeter
JP3335688B2 (en) Flowmeter
JP2003149022A (en) Purge type vortex flowmeter
JP2818083B2 (en) Flow measurement device
JPS6221019A (en) Fluidic flowmeter
JPS63140916A (en) Fluidic flowmeter
JPH01124711A (en) Full-index flowmeter
JP3017567B2 (en) Fluidic flow meter
JPS62175619A (en) Fluidic flowmeter
CN216867637U (en) Self-operated differential pressure valve capable of measuring water flow
PL244833B1 (en) System for determination of fluid streams
CN2110210U (en) Gas-solid two-phase flowmeter
JPS5837516A (en) Flow meter
JPH06258106A (en) Differential pressure flowrate meter
JPS6177717A (en) Feedback type fluidic flowmeter