JPS62175619A - Fluidic flowmeter - Google Patents

Fluidic flowmeter

Info

Publication number
JPS62175619A
JPS62175619A JP1849786A JP1849786A JPS62175619A JP S62175619 A JPS62175619 A JP S62175619A JP 1849786 A JP1849786 A JP 1849786A JP 1849786 A JP1849786 A JP 1849786A JP S62175619 A JPS62175619 A JP S62175619A
Authority
JP
Japan
Prior art keywords
pressure
valve
flow rate
section
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1849786A
Other languages
Japanese (ja)
Inventor
Makoto Okabayashi
岡林 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP1849786A priority Critical patent/JPS62175619A/en
Publication of JPS62175619A publication Critical patent/JPS62175619A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators

Abstract

PURPOSE:To detect a small flow rate of leakage on the downstream side, by opening a low different type opening/closing valve at an inlet or outlet of a measuring section smaller in the injection nozzle among measuring sections only when the pressure on the downstream side is lower than a set value on the upstream side. CONSTITUTION:A Reduced part 2 of a pipe line, an injection nozzle 3 and an expanded part 5 of the pipe line are arranged in order to form a meter. A pair of control nozzles 6a and 6b are formed on the bundle of the nozzle 3 and the expand section 5 roughly at a right angle to the injecting direction of the nozzle 3 while facing each other. Then, two measuring sections (A) and (B) are connected in series with a pair of feed back passages 7a and 7b formed to connect each of the nozzles 6a and 6b to the downstream side of the expanded part 5. A nozzle 3 at a measuring section (A) is formed with the smaller opening area than a measuring section (B). In addition, a bypass 15 detouring the measuring section (A) is connected to the measuring section. (B) and a diaphragm type governer valve (C) is provided in the bypass 15. In such a manner that the differential pressure between the pressure (P) on the upstream side and the pressure (P) on the downstream side will be maintained in a set range confined to a fixed flow rate range. The opening/closing valve (D) of the measuring section (A) is opened when the differential pressure is below a set value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、管路縮小部、噴出ノズル及び管路拡大部をそ
の順に流動方向に連ねて形成し、前記噴出ノズルと管路
拡大部の境界部に、一対の制御ノズルを、前記噴出ノズ
ルの噴出方向に対してほぼ直角方向に向かって、かつ、
相対向して形成し、前記両制御ノズル夫々と前記管路拡
大部の下流側を接続する一対の帰還流路を形成した測定
部、つまり、管路縮小部に連なる噴出ノズルからの噴流
が管路拡大部の一方の傾斜面に沿う状態で安定する現象
を利用すると共に、制御ノズルから交互に流体を吹出す
ことにより噴出ノズルからの噴流が管路拡大部の両頭斜
面を交互に沿って流れる現象を利用して、その噴出ノズ
ルからの噴流の流動方向変化に起因する流体振動数変化
に基づいて流量を測定するように構成した測定部の2個
を直列に接続し、それら測定部のうち第1のものの前記
噴出ノズルを第2のものの前記噴出ノズルよりも小開口
面積に形成し、前記第1の測定部を迂回するバイパス流
路を前記第2の測定部に接続し、そのバイパス流路にダ
イアフラム弐ガバナ弁を、設定流量範囲内において上流
側圧力と下流側圧力との差圧が設定範囲に維持される状
態で設けてあるフルイブインク流量計に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is characterized in that a conduit constriction section, a jet nozzle, and a conduit enlarged section are formed in sequence in the flow direction, and the jet nozzle and the conduit enlarged section are connected in this order. a pair of control nozzles at the boundary in a direction substantially perpendicular to the jetting direction of the jetting nozzle, and
A measurement section is formed facing each other and has a pair of return flow paths connecting each of the control nozzles and the downstream side of the conduit expansion section, in other words, the jet from the jet nozzle connected to the conduit constriction section is connected to the conduit condensation section. Utilizing the phenomenon that the channel is stabilized along one slope of the expanded channel, and by alternately blowing out fluid from the control nozzle, the jet stream from the jet nozzle flows alternately along the double-ended slope of the expanded channel. Utilizing this phenomenon, two of the measuring sections configured to measure the flow rate based on the change in fluid frequency caused by the change in the flow direction of the jet from the jet nozzle are connected in series. The ejection nozzle of the first one is formed to have a smaller opening area than the ejection nozzle of the second one, and a bypass passage that bypasses the first measurement part is connected to the second measurement part, and the bypass flow path is connected to the second measurement part. The present invention relates to a full-ink flowmeter in which a two-diaphragm governor valve is provided in a flow rate line so that the differential pressure between upstream pressure and downstream pressure is maintained within a set flow rate range.

〔従来の技術〕[Conventional technology]

上記流量計は、大巾な流量変化にかかわらず、常に精度
良く流量測定できるものとして、特願昭60−6634
5号や特願昭60−160820号で先に提案したもの
であり、例えば第7図に示すように構成していた。
The above-mentioned flowmeter was proposed in Japanese Patent Application No. 60-6634 as a device that can always measure the flow rate with high accuracy regardless of wide flow rate changes.
No. 5 and Japanese Patent Application No. 60-160820, it was previously proposed, and was configured as shown in FIG. 7, for example.

つまり、流量が零から徐々に増大した場合、初めは差圧
(p、−p2)が小さいために弁体(16)はスプリン
グ(21)で全閉状態になり、流体は第2の測定部(B
)から第1の測定部(A)に流れ、第1の測定部(A)
において噴出ノズル(3)からの噴出流体の流動方向変
化が帰還流路(7a)の圧力又は流量変化検出用センサ
ー(10)で検出され、そのセンサー(10)からの情
報に基づいて流星が装置(11)で演算表示されるよう
に構成しである。
In other words, when the flow rate gradually increases from zero, the differential pressure (p, -p2) is initially small, so the valve body (16) is fully closed by the spring (21), and the fluid flows to the second measuring section. (B
) from the first measuring section (A) to the first measuring section (A).
A change in the flow direction of the fluid ejected from the ejection nozzle (3) is detected by a pressure or flow rate change detection sensor (10) in the return flow path (7a), and based on the information from the sensor (10), a meteor is detected by the device. It is configured to be calculated and displayed in (11).

そして、差圧(p、−p、)が設定圧以上になると、弁
体(16)が開かれ、第2の測定部(B)において噴出
ノズル(3)からの噴出流体の流動方向変化が帰還流路
(7a)の圧力又は流量検出用センサー(10)で検出
され、そのセンサー(10)からの情報に基づいて流量
が装置(11)で演算表示されるように構成しである。
When the differential pressure (p, -p,) becomes equal to or higher than the set pressure, the valve body (16) is opened and the flow direction of the fluid ejected from the ejection nozzle (3) changes in the second measuring section (B). The pressure or flow rate detection sensor (10) in the return flow path (7a) detects the flow rate, and the flow rate is calculated and displayed by the device (11) based on the information from the sensor (10).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、センサー(10)からの情報に基づいて精度良
く流量測定できる範囲は10〜30001 /h程度で
あり、流体輸送停止時に流量計の下流側で101 /h
程度以下の流量で漏洩が生じたとしても、流量測定用セ
ンサー(1o)からの情報によって漏洩を検知すること
は、不可能であった。
However, the range that can accurately measure the flow rate based on the information from the sensor (10) is about 10 to 30001/h, and when fluid transport is stopped, the flow rate on the downstream side of the flowmeter is 101/h.
Even if a leak occurs at a flow rate below this level, it is impossible to detect the leak based on the information from the flow rate measurement sensor (1o).

本発明の目的は、流量測定用センサーからの情報に基づ
いて下流側における小流量の漏洩を検出できるようにす
る点にある。
An object of the present invention is to enable detection of a small flow rate leak on the downstream side based on information from a flow rate measurement sensor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴構成は、直列接続された測定部のうち噴出
ノズルの小さい第1の測定部の入口又は出口に、低差圧
作動型の開閉弁を、その上流側圧力より下流側圧力が設
定値以上低くなった時にだけ開弁するように形成して設
けたことにあり、その作用効果は次の通りである。
The characteristic configuration of the present invention is that a low differential pressure operating type on-off valve is set at the inlet or outlet of the first measuring section having a small jet nozzle among the measuring sections connected in series, and the downstream pressure is set higher than the upstream pressure. The reason for this is that the valve is formed so as to open only when the temperature drops below a certain value, and its effects are as follows.

〔作 用〕[For production]

つまり、流体輸送停止時に下流側で小流量の漏洩が生じ
たとすると、閉じ状態の開閉弁の上流側の圧力は一定で
あるが下流側圧力は徐々に低下し、その下流側圧力の低
下が設定値に達すると開閉弁が短時間だけ開かれ、第1
の測定部に瞬間的ではあるが流量測定用センサーで十分
に検出できる程度の大きな圧力変動が生じ、センサーか
ら通常の流量測定時とは全く異質のパルス信号が送られ
てくる。
In other words, if a small flow rate leak occurs on the downstream side when fluid transport is stopped, the pressure on the upstream side of the closed on-off valve is constant, but the downstream pressure gradually decreases, and the decrease in downstream pressure is the set point. When the value is reached, the on-off valve is opened briefly and the first
Although instantaneous, pressure fluctuations occur in the measurement section that are large enough to be detected by the flow measurement sensor, and the sensor sends a pulse signal that is completely different from that used during normal flow measurement.

したがって、センサーからの信号に対する自動手段によ
る又は人為的な測定でもって、漏洩をその流量いかんに
かかわらず確実に検知できる。
Thus, by automatic means or by manual measurement of the signals from the sensors, leaks can be reliably detected regardless of their flow rate.

そして、流体輸送時には開閉弁の上流側圧力゛よりも下
流側圧力が十分に低くなり、開閉弁は開かれたままにな
り、第1及び第2測定部により広範な流量測定を精度良
く行える。
During fluid transport, the pressure on the downstream side of the on-off valve becomes sufficiently lower than the pressure on the upstream side of the on-off valve, and the on-off valve remains open, allowing the first and second measuring sections to accurately measure a wide range of flow rates.

〔発明の効果〕〔Effect of the invention〕

その結果、フルイブインク流量計を有効利用した、特別
な漏洩検出手段を別途設けるに比して、十分に簡単かつ
安価な設備でもって、漏洩によるトラブルを防止できる
ようになった。
As a result, it has become possible to prevent troubles due to leakage with equipment that is sufficiently simple and inexpensive compared to separately providing a special leakage detection means that makes effective use of a full-ink flow meter.

〔作 用〕[For production]

次に、第1図ないし第6図により実施例を示す。 Next, an embodiment will be shown with reference to FIGS. 1 to 6.

管(1)内の下流側に隔壁(9)によって、開口面積が
小さい小流路(13)と、開口面積が大きいバイパス流
路(15)とを区画形成し、小流路(13)に後述の第
1の測定部1(A)を設け、小流路(13)とバイパス
流路(15)の上流側に後述の第2の測定部(B)を設
け、バイパス流路(15)にそれを開閉するダイアフラ
ム式ガバナ弁(C)を設けてある。
A small channel (13) with a small opening area and a bypass channel (15) with a large opening area are defined by a partition wall (9) on the downstream side of the pipe (1). A first measuring section 1 (A), which will be described later, is provided, and a second measuring section (B), which will be described later, is provided upstream of the small channel (13) and the bypass channel (15). A diaphragm type governor valve (C) is provided to open and close it.

前記測定部(A) 、 (B)は、同様の構成であって
、以下のように構成しである。
The measurement units (A) and (B) have similar configurations and are configured as follows.

管路縮小部(2)及び噴出ノズル(3)を形成する一対
の第1流路形成部材(4a) 、 (4b)を、管中心
軸芯(P)に対して対称的に配置し、管路縮小部(2)
の作用で噴出ノズル(3)に流体を円滑に導(と共に、
噴出ノズル(3)から管中心軸芯(P)とほぼ平行に流
体を噴出するように構成し、そして、管路拡大部(5)
、一対の制御ノズル(6a) 、 (6b)、及び、管
路拡大部(5)の下流側と制御ノズル(6a)。
A pair of first flow path forming members (4a) and (4b) forming the pipe constriction portion (2) and the jet nozzle (3) are arranged symmetrically with respect to the pipe central axis (P), and the pipe Road reduction part (2)
The fluid is smoothly guided to the jet nozzle (3) by the action of
The jet nozzle (3) is configured to jet fluid approximately parallel to the pipe center axis (P), and the pipe enlarged portion (5)
, a pair of control nozzles (6a), (6b), and the downstream side of the conduit enlarged portion (5) and the control nozzle (6a).

(6b)を各別に連通ずる一対の帰還流路(7a) 、
 (7b)を形成する一対の隔壁(8a) 、 (8b
)を、管中心軸芯(P)に対して対称的に配置し、一対
の制御ノズル(6a) 、 (6b)を、噴出ノズル(
3)と管路拡大部(5)の間において、噴出ノズル(3
)の噴出方向に対してほぼ直角方向に向かわせると共に
相対向させ、管路拡大部(5)の下流側に絞り流路を形
成する一対の第2流路形成部材(12a) 、 (12
b)を管中心軸芯(P)に対して対称的に配置しである
(6b), a pair of return channels (7a) that communicate with each other separately;
A pair of partition walls (8a) and (8b) forming (7b)
) are arranged symmetrically with respect to the tube center axis (P), and a pair of control nozzles (6a) and (6b) are connected to the jet nozzle (
3) and the expanded pipe section (5), the jet nozzle (3)
A pair of second flow path forming members (12a), (12a) which are oriented substantially perpendicularly to the ejection direction of
b) are arranged symmetrically with respect to the tube center axis (P).

つまり、噴出ノズル(3)からの流体噴出が開始される
と、コアンダ効果によって噴出流体は一方の隔壁(8a
)に沿って流れ、そのためにその隔壁(8a)側に位置
する制御ノズル(6a)に帰還流路(7a)から大きな
流体エネルギーが付与されて、噴出流体が反対側の隔壁
(8b)に沿って流れるようになり、今度は反対側の制
御ノズル(6b)からの流体エネルギーによって噴出流
体が初めにそった隔壁(8a)に再び沿って流れるよう
になり、このようにして、噴出ノズル(3)からの流体
が隔壁(8a) 、 (8b)に対して交互に沿うよう
に構成し、もって、噴出流体量が増大する程短周期で、
かつ、定量的相関のある状態で噴出流動方向が変化する
ように構成しである。
In other words, when fluid ejection from the ejection nozzle (3) starts, the ejected fluid flows to one partition wall (8a) due to the Coanda effect.
), and therefore large fluid energy is applied from the return flow path (7a) to the control nozzle (6a) located on the partition wall (8a) side, and the ejected fluid flows along the partition wall (8b) on the opposite side. The fluid energy from the control nozzle (6b) on the opposite side causes the ejected fluid to flow again along the partition wall (8a) along which it was initially deflected, and in this way, the ejecting nozzle (3) ) so that the fluid flows along the partition walls (8a) and (8b) alternately, so that as the amount of fluid ejected increases, the period becomes shorter,
In addition, the ejection flow direction is configured to change in a state where there is a quantitative correlation.

管路拡大部(5)の下流側にターゲラ) (14)を設
けて、噴出流体の流動方向変化が一層安定化するように
構成しである。
A targera (14) is provided on the downstream side of the expanded pipe section (5) to further stabilize the change in flow direction of the ejected fluid.

前記第1の測定部、(A)の噴出ノズル(3)の開口面
積が、前記第2の測定部(B)の噴出ノズル(3)の開
口面積よりも、例えば1728というように小になって
おり、流量と噴出流体流動方向変化頻度の相関が、小流
量範囲では第1の測定部(A)において精度良好に、か
つ、大流量範囲では第2の測定部(B)において精度良
好になるように構成しである。
The opening area of the ejection nozzle (3) of the first measurement part (A) is smaller, for example, 1728, than the opening area of the ejection nozzle (3) of the second measurement part (B). The correlation between the flow rate and the frequency of change in flow direction of the ejected fluid is such that the first measurement part (A) has good accuracy in the small flow rate range, and the second measurement part (B) has good accuracy in the large flow rate range. It is configured as follows.

測定部(A) 、 (B)夫々の一方の帰還流路(7a
)に、圧力変化あるいは流量変化を検出するセンサー(
10)を付設し、その両センサー(10)からの情報に
基づいて、圧力あるいは流量変化の振動数から流量を算
出して表示する流量表示装置(11)を設け、もって、
帰還型フルイデイソク流量計を構成しである。
One return flow path (7a) of each of the measurement parts (A) and (B)
), there is a sensor (
10), and a flow rate display device (11) that calculates and displays the flow rate from the frequency of the pressure or flow rate change based on the information from both sensors (10).
It consists of a feedback type fluid flow meter.

前記ガバナ弁(C)は、設定流量範囲において上流側圧
力(P1)と下流側圧力(P2)差圧(PI−P2)を
設定範囲に維持すべ(、以下のように構成しである。
The governor valve (C) is configured as follows to maintain the differential pressure (PI-P2) between the upstream pressure (P1) and the downstream pressure (P2) within the set flow rate range.

バイパス流路(15)を開閉する弁体(16)に連動さ
せたダイアフラム(17)を、弁体(16)の上流側に
通路(19)で連通ずる圧力室(18a)と、弁体(1
6)の下流側に連通ずる圧力室(18b)に臣富む状態
で設け、弁体(16)に対して閉弁方向に付勢するスプ
リング(21)を設けてある。また、前記差圧(PI−
P2)の設定範囲内維持のために弁開度を流量増大に伴
って増大する円錐形状などの調圧部(16a)、及び、
その調圧部(16a)の小径側端部に連なる直胴部(1
6b)を弁体(16)に形成し、弁座(22)内に直胴
部(16b)が挿入されている状態では、弁体(16)
が移動しても弁開度がほぼ一定になるように構成しであ
る。また、第3図に示すように、直胴部(16b)が弁
座(22)から抜は出した位置で弁体(16)を開弁保
持する弁体全開用マグネノl−(23)を弁体(16)
に取付けた磁性体(24)に対して吸着作用するように
設け、非磁性体から成るスペーサー(25)をマグネッ
ト(23)と磁性体(24)の間に介在させ、ゴミによ
るマグネノh(23)の機能劣化やマグネ、71− (
23)による過大の吸着力に起因した々゛ハナ弁C)の
動作不良を防止できるように構成しである。
A diaphragm (17) linked to a valve body (16) that opens and closes the bypass flow path (15) is connected to a pressure chamber (18a) communicating with the upstream side of the valve body (16) through a passage (19), and a valve body ( 1
The pressure chamber (18b) communicating with the downstream side of the valve body (16) is provided with a spring (21) that biases the valve body (16) in the valve closing direction. In addition, the differential pressure (PI-
A pressure regulating part (16a) such as a conical shape that increases the valve opening degree as the flow rate increases in order to maintain the valve opening within the set range of P2), and
The straight body part (1
6b) is formed on the valve body (16), and when the straight body portion (16b) is inserted into the valve seat (22), the valve body (16)
The structure is such that the valve opening remains almost constant even if the valve moves. In addition, as shown in Fig. 3, a magneto l-(23) for fully opening the valve body is installed to hold the valve body (16) open at the position where the straight body part (16b) is pulled out from the valve seat (22). Valve body (16)
A spacer (25) made of a non-magnetic material is interposed between the magnet (23) and the magnetic material (24) to prevent dust from entering the magnetic material (23). ) functional deterioration and magnetism, 71- (
The structure is such that it is possible to prevent malfunction of the valve C) due to excessive suction force caused by 23).

つまり、流量が零から徐々に増大した場合、流量変化に
伴う差圧(p+−pz)の変化は第6図に示すようにな
り、さらに詳述すると次の通りである。
That is, when the flow rate gradually increases from zero, the change in differential pressure (p+-pz) accompanying the change in flow rate becomes as shown in FIG. 6, and will be described in more detail as follows.

初めは差圧(p+−pz)が小さいために弁体(16)
はスプリング(21)で全閉状態になり、流体は第2の
測定部(B)から第1の測定部(A)に流れ、差圧(P
+−pz)は点(イ)から第1設定差圧(ΔP1)に相
当する点(ロ)を越えて点(ハ)に上昇する。そして、
差圧(h−h)が第2設定差圧(ΔPz)に達すると、
差圧(P、−P2)が第1設定差圧(Δp+)に維持さ
れるように弁体(16)が開かれ、差圧(P+−Pz)
は点(ハ)から点(ニ)に低下する。そして、差圧(P
I−Pg)は、調圧部(16a)による流量に見合った
ガバナ弁(C)の開口度変化によって初めは一定に維持
される。
At first, the differential pressure (p+-pz) is small, so the valve body (16)
is fully closed by the spring (21), the fluid flows from the second measurement part (B) to the first measurement part (A), and the differential pressure (P
+-pz) increases from point (a) to point (c) beyond point (b) corresponding to the first set differential pressure (ΔP1). and,
When the differential pressure (hh) reaches the second set differential pressure (ΔPz),
The valve body (16) is opened so that the differential pressure (P, -P2) is maintained at the first set differential pressure (Δp+), and the differential pressure (P+-Pz)
decreases from point (c) to point (d). Then, the differential pressure (P
I-Pg) is initially maintained constant by changing the opening degree of the governor valve (C) according to the flow rate by the pressure regulating section (16a).

そして、点(へ)に達すると、調圧部(16a)による
弁開度調整機能が無くなり、差圧(P+−h)が少しで
も大になると、直胴部(16b)が弁座(22)から抜
は出る方向に弁体(16)が移動し、その移動がある程
度行われると弁体全開用マグネット(23)が作用して
、直胴部(16b)が弁座(22)から抜は出た全開状
態になり、差圧(Pl−Pz)は点(へ)から点(ト)
に低下する。その後は、差圧(PI−P2)は徐々に上
昇して点(ト)から最大流量に相当する点(チ)に変化
する。
Then, when the point (to) is reached, the valve opening adjustment function by the pressure regulating part (16a) is lost, and if the differential pressure (P+-h) becomes even slightly large, the straight body part (16b) moves to the valve seat (22). ) The valve body (16) moves in the direction of exit from the valve seat (22), and when the valve body (16) moves to a certain extent, the magnet (23) for fully opening the valve body acts, and the straight body part (16b) is pulled out from the valve seat (22). is fully open, and the differential pressure (Pl-Pz) changes from point (to) to point (t).
decreases to After that, the differential pressure (PI-P2) gradually increases and changes from point (g) to point (h) corresponding to the maximum flow rate.

前記流量表示装置(11)は、第2の測定部(B)のセ
ンサー(10)からの第1情報における振動数が設定以
下であるか否かを判定する手段(lla)、その判定手
段(lla)からの指示によって、第1情報の振動数が
設定以下の時に第1の測定部(A)のセンサー(10)
からの第2情報に基づいて、かつ、第1情報の振動数が
設定値を超える時にその第1情報に基づいて、夫々流量
を演算する手段(Bb)、並びに、算出流量を表示する
手段(llc)を備え、例えば10〜4.QOO/!/
hもの広範囲において差圧15uiHzO以下に抑えな
がら正確な測定を行えるようにしである。
The flow rate display device (11) includes a means (lla) for determining whether the frequency in the first information from the sensor (10) of the second measuring section (B) is equal to or lower than a setting, and a determining means ( lla), when the frequency of the first information is below the setting, the sensor (10) of the first measuring section (A)
means (Bb) for calculating the flow rate based on the second information from the source and based on the first information when the vibration frequency of the first information exceeds a set value; and means (Bb) for displaying the calculated flow rate. llc), for example 10 to 4. QOO/! /
This makes it possible to perform accurate measurements over a wide range of hours while keeping the differential pressure to 15 uiHzO or less.

また、上記測定手段(lla)での設定振動数を、第1
情報における最小振動数と弁体(16)の開弁時に相当
する振動数のほぼ中間値に設定し、第1情報による流量
測定を、流量と振動数の相関におけるリニャリティ劣化
による誤差が無いが又は極めて少なくなる状態で行える
ように、かつ、弁体(16)の開弁による測定誤差を生
じないように構成しである。すなわち、弁体(16)が
開弁する以前から第1情報によって流量を演算し、また
逆に、弁体(16)が閉弁する時には、開弁の振動数と
第1情報の最低振動数の中間振動以下になると、第2情
報で流量を演算するようにしである。
In addition, the set frequency of the measuring means (lla) is set to the first
The minimum frequency in the information and the frequency corresponding to the valve opening of the valve body (16) are set to approximately the intermediate value, and the flow rate measurement using the first information is free from errors due to linearity deterioration in the correlation between flow rate and frequency. It is configured so that it can be carried out in a state where the number of measurements is extremely small, and so that measurement errors due to the opening of the valve body (16) do not occur. That is, the flow rate is calculated based on the first information before the valve body (16) opens, and conversely, when the valve body (16) closes, the frequency of the valve opening and the lowest frequency of the first information are calculated. When the vibration becomes lower than the intermediate vibration, the flow rate is calculated using the second information.

第1の測定部(A)の出口に低差圧作動型の開閉弁(D
)を設け、開閉弁の上流側圧力より下流側圧力が設定値
(例えば10nHzO程度以下)以上低くなった時にだ
け開弁するように、開閉弁(D)において、小流路(1
3)を開閉する弁体(26)に連動させたダイアフラム
(27)を、弁体(26)の上流側に通路(28)で連
通ずる圧力室(29a)と、弁体(26)の下流側に連
通ずる圧力室(29b)に対して臨む状態で設け、弁体
(27)に対して閉弁方向に付勢するスプリング(30
)を設けてある。
A low differential pressure operating type on-off valve (D
), and the on-off valve (D) has a small flow path (1
3) A diaphragm (27) linked to the valve body (26) to open and close is connected to a pressure chamber (29a) communicating with the upstream side of the valve body (26) through a passage (28), and a pressure chamber (29a) connected to the downstream side of the valve body (26). A spring (30
) is provided.

つまり、流体輸送停止時に流量計の下流側で小流量の漏
洩が生じると、下流側圧力が徐々に低下して設定値に達
すると、弁体(26)が開いて、第1の測定部(A)で
瞬間的にかなり大きな圧力変動が生じ、その圧力変動に
よるパルス信号が第1の測定部(A)のセンサー(10
)から発信されるように構成しである。
In other words, if a small flow rate leak occurs on the downstream side of the flow meter when fluid transport is stopped, the downstream pressure gradually decreases and reaches the set value, and the valve body (26) opens and the first measuring section ( A), a fairly large pressure fluctuation occurs instantaneously, and a pulse signal due to the pressure fluctuation is sent to the sensor (10) of the first measuring section (A).
).

第1の測定部(A)のセンサー(10)からの情報に基
づいて、流体輸送停止時に開閉弁が開かれたことを検出
する漏洩検知手段(31)を設け、その漏洩検知手段(
31)の指示により漏洩発生を報知する警報手段(32
)を設けてある。
Based on the information from the sensor (10) of the first measurement part (A), a leakage detection means (31) is provided for detecting that the on-off valve is opened when fluid transport is stopped.
Alarm means (32) for notifying the occurrence of leakage according to instructions from (31)
) is provided.

前記ガバナ弁(C)の弁座(22)及び小流路(13)
の出口(13a)よりも下流側に配置した弁座(33)
と、ガバナ弁(C)のダイアフラム(17)に取付けた
弁体(34)とによって緊急遮断弁(E)を形成しであ
る。そして、ガバナ弁(C)において、ダイアフラム(
17)と弁体(16)を伸縮自在な連結具(35a) 
、 (35b)と圧宿スプリング(36)で連動連結し
て、第4図に示すようにガバナ弁(C)の弁体(16)
が全開位置にある状態で、ダイアフラム(17)と緊急
遮断弁(E)の弁体(34)とを移動させて、緊急遮断
弁(IE)を閉じられるように構成しである。また、緊
急遮断弁(E)を閉じ操作するための緊急遮断用アクチ
ュエータ(F)、及び、緊急遮断弁(E)を開き操作す
るためのリセット用操作部(G)を以下のように構成し
である。
Valve seat (22) and small flow path (13) of the governor valve (C)
A valve seat (33) located downstream of the outlet (13a) of
and a valve body (34) attached to the diaphragm (17) of the governor valve (C), forming an emergency shutoff valve (E). Then, in the governor valve (C), the diaphragm (
17) and the valve body (16) with a telescopic connector (35a).
(35b) and the compression spring (36) are interlocked to connect the valve body (16) of the governor valve (C) as shown in Fig. 4.
is in the fully open position, the diaphragm (17) and the valve body (34) of the emergency shut-off valve (E) are moved to close the emergency shut-off valve (IE). In addition, the emergency shutoff actuator (F) for closing the emergency shutoff valve (E) and the reset operation part (G) for opening the emergency shutoff valve (E) are configured as follows. It is.

アクチュエータ(F)を形成するに、ダイアフラム(1
7)を押圧する部材(37)に永久磁石(37a)と磁
性体(37b)を設け、その押圧用部材(37)に作用
して緊急遮断弁(E)に閉じ操作力を付与するスプリン
グ(38)を設け、押圧用部材(37)の永久磁石(3
7a)に作用させる電磁石(39)、及び、押圧用部材
(37)の磁性体(37b)に作用させる永久磁石(4
0)をカバー(41)に固定し、電磁石(39)を通電
状態と非通電状態に切換えると共に電磁石(39)のN
極とS極の位置を切換えるための切換手段(42)を設
けてある。つまり、第1図及び第3図に示すように、正
常時には、スプリング(38)に打勝って永久磁石(4
0)で磁性体(37b)を引き付けさせると共に、電磁
石(39)を非通電状態にして、押圧用部材(37)を
ダイアフラム(17)に対する非作用位置に保持し、緊
急遮断弁部)を開弁状態に維持できるように構成しであ
る。
To form the actuator (F), a diaphragm (1
A permanent magnet (37a) and a magnetic body (37b) are provided on the member (37) for pressing 7), and a spring ( 38), and the permanent magnet (3) of the pressing member (37) is provided.
7a) and a permanent magnet (4) that acts on the magnetic body (37b) of the pressing member (37).
0) to the cover (41), switch the electromagnet (39) between the energized state and the de-energized state, and set the N of the electromagnet (39).
A switching means (42) is provided for switching between the pole and south pole positions. In other words, as shown in Figures 1 and 3, under normal conditions, the permanent magnet (4) overcomes the spring (38).
0) to attract the magnetic body (37b), de-energize the electromagnet (39), hold the pressing member (37) in a non-acting position with respect to the diaphragm (17), and open the emergency shutoff valve part). It is constructed so that it can be maintained in a valve state.

また、前記漏洩検知手段(31)から漏洩検知に伴う遮
断指示が切換手段(42)に伝達されると、第4図に示
すように、押圧用部材(37)の永久磁石(37a)を
ダイアフラム(17)側に反撥するように電磁石(39
)が通電されて、磁性体(37b)が固定した永久磁石
(40)による引き付は可能域外に移動され、スプリン
グ(38)が押圧用部材(37)を介してダイアフラム
(17)に作用して、緊急遮断弁(E)が閉じられるよ
うに構成しである。そして、入力手段(43)の人為操
作で遮断解除指示が切換手段(42)に伝達されると、
第5図に示すように、押圧用部材(37)の永久磁石(
37a)を引き付けるように電磁石(39)が通電され
、磁性体(37b)が固定した永久磁石(40)により
引き付けられ、押圧用部材(37)がダイアフラム(1
7)に対する非作用位置に保持されるように構成し、か
つ、その後で電磁石(39)が非通電状態に切換えられ
るように構成しである。
Further, when the leakage detection means (31) transmits a shutoff instruction accompanying the leakage detection to the switching means (42), as shown in FIG. 4, the permanent magnet (37a) of the pressing member (37) is Electromagnet (39) so as to repel it to the (17) side.
) is energized, the attraction by the permanent magnet (40) to which the magnetic body (37b) is fixed is moved out of the possible range, and the spring (38) acts on the diaphragm (17) via the pressing member (37). The structure is such that the emergency shutoff valve (E) is closed. Then, when the cut-off release instruction is transmitted to the switching means (42) by manual operation of the input means (43),
As shown in FIG. 5, the permanent magnet (
The electromagnet (39) is energized so as to attract the diaphragm (37a), the magnetic body (37b) is attracted by the fixed permanent magnet (40), and the pressing member (37) is attracted to the diaphragm (1).
7), and the electromagnet (39) is then switched to a non-energized state.

リセット用操作部(G)を形成するに、緊急遮断弁(E
)の上流側と下流側を連通ずるバイパス路(44)を設
け、スプリング(45)に抗するボタン(46)の押し
操作で弁体(47)を開くように形成した均圧弁をバイ
パス路(44)に設け、第5図に示すように押圧用部材
(37)が非作用位置に復帰された後、ダイアフラム(
17)のうち緊急遮断弁(E)よりも下流側に臨む部分
に作用する流体圧を、その他の部分に作用する流体圧を
ほぼ等しくして、第1図に示すように、スプリング(2
1)によって緊急遮断弁(E)を開くと共にガバナ弁(
C)を閉しるように構成しである。
An emergency shutoff valve (E) forms the reset operation part (G).
A bypass passage (44) is provided that communicates the upstream and downstream sides of the bypass passage ( 44), and after the pressing member (37) is returned to the non-operating position as shown in FIG.
The fluid pressure acting on the part of the spring (2
1) opens the emergency shutoff valve (E) and also opens the governor valve (
C).

〔別実施例〕[Another example]

次に別の実施例を説明する。 Next, another embodiment will be described.

ガバナ弁(C)及び低圧作動型開閉弁(D)の具体構成
は適当に変更でき、また、その開閉弁(D)を第1の測
定部(A)の入口に配置してもよい。
The specific configurations of the governor valve (C) and the low-pressure operating type on-off valve (D) can be changed as appropriate, and the on-off valve (D) may be arranged at the inlet of the first measuring section (A).

2個の測定部(A)、(B)を直列に接続するに、噴出
ノズル(3)の小さい第1の測定部(A)を、噴出ノズ
ル(3)の大きい第2の測定部(B)より上流側に配置
してもよい。
When connecting two measuring parts (A) and (B) in series, the small first measuring part (A) of the jet nozzle (3) is connected to the large second measuring part (B) of the jet nozzle (3). ) may be placed on the upstream side.

センサー(10)の検出方式や構成、設置個数等は自由
に変更でき、例えば両局還流路(7a) 、 (7b)
にセンサー(10)を設けてもよい。また、流星を検出
表示する装置(11)も各種変更自在である。
The detection method, configuration, number of sensors, etc. of the sensor (10) can be changed freely.For example, the two-station return path (7a), (7b)
A sensor (10) may be provided at. Furthermore, the device (11) for detecting and displaying meteors can also be modified in various ways.

緊急遮断弁(E)、アクチュエータ(F)及びリセット
用操作部(G)等の遮断構成は省略してもよい。
Shutoff components such as the emergency shutoff valve (E), actuator (F), and reset operation section (G) may be omitted.

流量計は、主として燃料ガスや水道等において家庭用に
利用するが、その用途に特定されるものでない。
Flowmeters are mainly used for domestic purposes, such as fuel gas and water supply, but their use is not specific.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本発明の実施例を示し、第1図は
全体断面図、第2図は第1図のu−n線断面図、第3図
ないし第5図は01作状態を示す要部断面図、第6図は
、流■変化に伴う差圧の変化を示すグラフである。第7
図は従来例の断面図である。 ・ (2)・・・・・・管路縮小部、(3)・・・・・・噴
出ノズル、(5)・・・・・・管路拡大部、(6a) 
、 (6b)・・・・・・制御ノズル、(7a) 、 
(7b)・・・・・・帰還流路、(15)・・・・・・
バイパス流路、(A)・・・・・・第1の測定部、(1
1)・・・・・・第2の測定部、(C)・・・・・・ガ
バナ弁、(D)・・・・・・低差圧作動型の開閉弁。
Figures 1 to 6 show embodiments of the present invention, Figure 1 is an overall sectional view, Figure 2 is a sectional view taken along line u-n in Figure 1, and Figures 3 to 5 are 01 production states. FIG. 6 is a graph showing changes in differential pressure as the flow rate changes. 7th
The figure is a sectional view of a conventional example.・(2)...Pipe constriction part, (3)...Blowout nozzle, (5)...Pipe enlargement part, (6a)
, (6b)...control nozzle, (7a),
(7b)...Return flow path, (15)...
Bypass flow path, (A)...First measurement section, (1
1)...Second measuring section, (C)...Governor valve, (D)...Low differential pressure operating type on-off valve.

Claims (1)

【特許請求の範囲】[Claims] 管路縮小部(2)、噴出ノズル(3)及び管路拡大部(
5)をその順に流動方向に連ねて形成し、前記噴出ノズ
ル(3)と管路拡大部(5)の境界部に、一対の制御ノ
ズル(6a)、(6b)を、前記噴出ノズル(3)の噴
出方向に対してほぼ直角方向に向かって、かつ、相対向
して形成し、前記両制御ノズル(6a)、(6b)夫々
と前記管路拡大部(5)の下流側を接続する一対の帰還
流路(7a)、(7b)を形成した測定部(A)、(B
)の2個を直列に接続し、それら測定部のうち第1のも
の(A)の前記噴出ノズル(3)を第2のもの(B)の
前記噴出ノズル(3)よりも小開口面積に形成し、前記
第1の測定部(A)を迂回するバイパス流路(15)を
前記第2の測定部(B)に接続し、そのバイパス流路(
15)にダイアフラム式ガバナ弁(C)を、設定流量範
囲において上流側圧力(P_1)と下流側圧力(P_2
)との差圧(P_1−P_2)が設定範囲に維持される
状態で設けてある帰還型フルイディック流量計であって
、前記第1の測定部(A)の入口又は出口に低差圧作動
型の開閉弁(D)を、その上流側圧力より下流側圧力が
設定値以上低くなった時にだけ開弁するように形成して
設けてあるフルイデイック流量計。
Pipe constriction section (2), jet nozzle (3) and conduit enlargement section (
5) are formed in series in the flow direction, and a pair of control nozzles (6a) and (6b) are provided at the boundary between the jet nozzle (3) and the expanded pipe section (5). ) are formed in a direction substantially perpendicular to the ejection direction of the control nozzles (6a) and (6b), and are formed opposite to each other, and connect the downstream side of the conduit enlarged portion (5) with each of the control nozzles (6a) and (6b). Measuring sections (A) and (B) forming a pair of return channels (7a) and (7b)
) are connected in series, and the ejection nozzle (3) of the first measurement section (A) has a smaller opening area than the ejection nozzle (3) of the second measurement section (B). A bypass flow path (15) which is formed and bypasses the first measurement section (A) is connected to the second measurement section (B), and the bypass flow path (15) is connected to the second measurement section (B).
15), a diaphragm type governor valve (C) is installed to control the upstream pressure (P_1) and downstream pressure (P_2) within the set flow rate range.
) is a feedback fluidic flowmeter installed in such a way that the differential pressure (P_1-P_2) between A fluidic flowmeter in which a molded opening/closing valve (D) is configured to open only when the downstream pressure is lower than the upstream pressure by a set value or more.
JP1849786A 1986-01-30 1986-01-30 Fluidic flowmeter Pending JPS62175619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1849786A JPS62175619A (en) 1986-01-30 1986-01-30 Fluidic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1849786A JPS62175619A (en) 1986-01-30 1986-01-30 Fluidic flowmeter

Publications (1)

Publication Number Publication Date
JPS62175619A true JPS62175619A (en) 1987-08-01

Family

ID=11973256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1849786A Pending JPS62175619A (en) 1986-01-30 1986-01-30 Fluidic flowmeter

Country Status (1)

Country Link
JP (1) JPS62175619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219616A (en) * 1988-02-29 1989-09-01 Yamatake Honeywell Co Ltd Flow rate control apparatus of gas control valve
WO2008110766A1 (en) * 2007-03-13 2008-09-18 Cranfield University Bi-directional oscillating jet flowmeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219616A (en) * 1988-02-29 1989-09-01 Yamatake Honeywell Co Ltd Flow rate control apparatus of gas control valve
WO2008110766A1 (en) * 2007-03-13 2008-09-18 Cranfield University Bi-directional oscillating jet flowmeter
US8136413B2 (en) 2007-03-13 2012-03-20 Elster Metering Limited Bi-directional oscillating jet flowmeter

Similar Documents

Publication Publication Date Title
US8255175B2 (en) Flow meter
US4610162A (en) Fluidic flowmeter
US6484573B2 (en) Monitoring equipment for monitoring the performance of an engine fuel injector valve
JPS62175619A (en) Fluidic flowmeter
JPS61223517A (en) Fluidic flowmeter
JPH01124711A (en) Full-index flowmeter
JP3017567B2 (en) Fluidic flow meter
JPS63140916A (en) Fluidic flowmeter
JP2818083B2 (en) Flow measurement device
JPH06174510A (en) Differential pressure type flowmeter
JP2794366B2 (en) Flowmeter
JPS62102119A (en) Fluidic flow meter
JPS6221019A (en) Fluidic flowmeter
US5526695A (en) Pulsed flow meter
JPH0618244Y2 (en) Fluid vibration type flow meter
JPH07209056A (en) Gas flow meter
JPH04160276A (en) Flow passage valve
KR200319312Y1 (en) Flow detect system
JP3290300B2 (en) Fluid flow meter
JP2001124609A (en) Gas meter
JPH08240469A (en) Flowmeter
JP2001289686A (en) Gas flowmeter
JPH01227925A (en) Fluidic flowmeter
JPH0875511A (en) Gas meter
JPS62108115A (en) Fluid type flowmeter