JPH01227925A - Fluidic flowmeter - Google Patents

Fluidic flowmeter

Info

Publication number
JPH01227925A
JPH01227925A JP63054631A JP5463188A JPH01227925A JP H01227925 A JPH01227925 A JP H01227925A JP 63054631 A JP63054631 A JP 63054631A JP 5463188 A JP5463188 A JP 5463188A JP H01227925 A JPH01227925 A JP H01227925A
Authority
JP
Japan
Prior art keywords
section
chamber
pressure
signal
jet nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63054631A
Other languages
Japanese (ja)
Other versions
JP2512518B2 (en
Inventor
Hideki Hayakawa
秀樹 早川
Makoto Okabayashi
岡林 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP63054631A priority Critical patent/JP2512518B2/en
Publication of JPH01227925A publication Critical patent/JPH01227925A/en
Application granted granted Critical
Publication of JP2512518B2 publication Critical patent/JP2512518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To accurately measure the flow rate of a carrying fluid by compensating the electromotive force of a sensor produced by the pressure variation of the fluid. CONSTITUTION:Pressure variation produced by a change in the flowing direction of a jet stream from a jet nozzle 3 is detected with a sensor 14. Inside the sensor 14, a pressure chamber is divided into a central chamber 16a and 1st and 2nd end-section chambers 16b and 16c by means of 1st and 2nd piezoelectric films 15a and 15b and a feedback flow passage 7a is connected with the central chamber 16a and the 1st end-section chamber 16b by a conduit passage 13a. Another feedback flow passage 7b is connected with the 2nd end-section chamber 16c by another conduit passage 13b. A flow rate detecting section 18 detects the flow rate of the jet stream from the nozzle 3 in accordance with the difference between the signals from the 1st and 2nd piezoelectric films 15a and 15b and an abnormality detecting section 19 detects an abnormal state, such as occurrence of an earthquake, etc., in accordance with the signals from the 1st piezoelectric film 15a.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、管路縮小部、噴出ノズル及び管路拡大部をそ
の順に流動方向に連ねて形成し、前記噴出ノズルと管路
拡大部の境界部に、一対の制御ノズルを、前記噴出ノズ
ルの噴出方向に対してほぼ直角方向に向かって、かつ、
相対向して形成し、前記両制御ノズル人々と前記管路拡
大部の下流側を接続する一対の帰還流路を形成し、前記
噴出ノズルからの噴流の流動方向変化に起因する圧力変
化を検出するセンサーを設けたフルイディック流量計に
関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is characterized in that a pipe constriction section, a jet nozzle, and a pipe expansion section are formed in series in the flow direction, and the jet nozzle and pipe expansion section a pair of control nozzles at the boundary in a direction substantially perpendicular to the jetting direction of the jetting nozzle, and
A pair of return channels are formed facing each other and connect the downstream side of the conduit expansion section with both control nozzles, and detect pressure changes caused by changes in the flow direction of the jet flow from the jet nozzle. This invention relates to a fluidic flowmeter equipped with a sensor for

〔従来の技術〕[Conventional technology]

従来、圧力変化検出用センサーにおいて、第20に示す
ように圧力室を1枚の圧電膜(31)で第1圧力室(3
2a)と第2圧力室(32b)に区画し、一方の帰還流
路(7a)と第1圧力室(32a)をかつ他方の帰還流
路(7b)と第2圧力室(32b)を各別の導圧路(1
3a) 、 (13b)で接続し、圧電膜(31)から
の信号により噴出ノズル(3)からの噴流の流量を測定
する流量測定部(33)を設けていた。
Conventionally, in a pressure change detection sensor, a pressure chamber is connected to a first pressure chamber (3) using one piezoelectric film (31) as shown in No. 20.
2a) and a second pressure chamber (32b), one of the return flow passages (7a) and the first pressure chamber (32a), and the other return flow passage (7b) and the second pressure chamber (32b), respectively. Another pressure path (1
3a) and (13b), and was provided with a flow rate measuring section (33) that measures the flow rate of the jet stream from the jet nozzle (3) based on a signal from the piezoelectric film (31).

〔発明が解決しようとする課題] しかし、地震などに起因するセンサーの振動や輸送流体
の圧力変動によるノイズが圧電膜(31)からの信号に
入り、正値な流量測定ができない事態を生じる危険性が
あり、−層の改良の余地があった。
[Problem to be solved by the invention] However, there is a risk that noise due to sensor vibrations caused by earthquakes or pressure fluctuations in the transport fluid will enter the signal from the piezoelectric membrane (31), making it impossible to measure a positive flow rate. There was room for improvement in the negative layer.

本発明の目的は、センサーの振動や輸送流体の圧力変動
による測定誤差がほとんど無い正確な流量測定を確実に
実行できるようにし、その−L、そのための構成を有効
利用して、地震発生や輸送流体の異常圧力低下などの異
常事態発生を検知できるようにする点にある。
The purpose of the present invention is to reliably perform accurate flow rate measurement with almost no measurement errors due to sensor vibrations or pressure fluctuations of the transport fluid, and to effectively utilize the configuration for this purpose to prevent earthquake occurrence and transportation. The purpose is to detect the occurrence of an abnormal situation such as an abnormal pressure drop in a fluid.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴構成は、噴出ノズルからの噴流の流動方向
変化に起因する圧力変化を検出するセンサーにおいて、
圧力室を第1及び第2圧電膜により中央室とその両側の
第1及び第2端部室に区画し、前記噴流の流動方向変化
を律しさせるための帰還流路の一方に接続した第1導圧
路を前記中央室と第1端部室に接続し、前記帰還流路の
他方に接続した第2導圧路を前記第2端部室に接続し、
前記第1端部室に臨む前記第1圧電膜からの第1信号と
、前記第2端部室に臨む前記第2圧電膜からの第2信号
との差信号に基いて前記噴出ノズルからの噴流の流量を
測定する流量検出部を設け、前記第1圧電膜からの第1
信号に基いて異常事態を検出する異常検出部を設けたこ
とにあり、その作用効果は次の通りである。
A characteristic configuration of the present invention is that in a sensor that detects a pressure change caused by a change in the flow direction of a jet flow from a jet nozzle,
The pressure chamber is divided into a central chamber and first and second end chambers on both sides thereof by first and second piezoelectric films, and a first chamber is connected to one of the return channels for controlling changes in the flow direction of the jet flow. A pressure guiding path is connected to the central chamber and the first end chamber, and a second pressure path connected to the other of the return flow paths is connected to the second end chamber,
of the jet from the jet nozzle based on a difference signal between a first signal from the first piezoelectric film facing the first end chamber and a second signal from the second piezoelectric film facing the second end chamber. A flow rate detection unit for measuring the flow rate is provided, and the first piezoelectric film from the first piezoelectric film is
The present invention is provided with an abnormality detection section that detects an abnormal situation based on a signal, and its effects are as follows.

[作 用] つまり、第1導圧路に接続した中央室と第1端部室に臨
む第1圧電膜からの第1信号の起電力V、は、正常時に
は、輸送流体の圧力変動に伴うセンサーの振動に起因す
る起電力Δv1となり、地震などの外部振動がセンサー
に加わった時には、外部振動に起因する起電力Δv2と
前記圧力変動に伴う起電力Δv1との和になり、第1導
圧路の圧力変動による起電力は発生しない。
[Function] In other words, under normal conditions, the electromotive force V of the first signal from the first piezoelectric membrane facing the central chamber and the first end chamber connected to the first pressure path is generated by the sensor due to the pressure fluctuation of the transport fluid. When an external vibration such as an earthquake is applied to the sensor, the electromotive force Δv1 due to the vibration becomes the sum of the electromotive force Δv2 due to the external vibration and the electromotive force Δv1 due to the pressure fluctuation, and the No electromotive force is generated due to pressure fluctuations.

他方、第1導圧路に接続した中央室と第2導圧路に接続
した第2圧電膜からの第2信号の起電力v2は、正常時
には、第1導圧路の圧力p、と第2導圧路の圧力P2の
差に比例した起電力Vpと前記圧力変動に伴う起電力Δ
V、との和になり、外部振動がセンサーに加わった時に
は、前記起電カシp、ΔV l+  Δv2の和になる
On the other hand, under normal conditions, the electromotive force v2 of the second signal from the central chamber connected to the first pressure path and the second piezoelectric film connected to the second pressure path is equal to the pressure p of the first pressure path and the second piezoelectric film connected to the second pressure path. An electromotive force Vp proportional to the difference in pressure P2 between the two pressure paths and an electromotive force Δ due to the pressure fluctuation.
V, and when external vibration is applied to the sensor, it becomes the sum of the electromotive force p, ΔV l+ Δv2.

したがって、正常時に流量検出部で検知される起電力は
、第1信号と第2信号の差信号、つまり、 Vp=CVp+ΔV+)−ΔV。
Therefore, the electromotive force detected by the flow rate detection section during normal operation is the difference signal between the first signal and the second signal, that is, Vp=CVp+ΔV+)−ΔV.

となり、圧力変動に伴う誤差のほとんどが無い正確な流
量測定を実現できる。
Therefore, accurate flow rate measurement with almost no errors due to pressure fluctuations can be achieved.

また、地震などによる外部振動がセンサーに加わった時
に流量検出部で検知される起電力は、Vp−(Vp+Δ
ν1+ΔVZ) −(ΔV、−+−ΔVZ)となり、圧
力変動及び外部振動に伴う誤差のはとんと無い正確な流
量測定を実現できる。
Furthermore, when external vibrations such as an earthquake are applied to the sensor, the electromotive force detected by the flow rate detection section is Vp-(Vp+Δ
ν1+ΔVZ) −(ΔV, −+−ΔVZ), and it is possible to realize accurate flow rate measurement with no errors due to pressure fluctuations and external vibrations.

さらに、異常検出部で検知される起電力は正常時にΔV
3、地震などの外部振動が加わった時にΔV、+Δv2
、輸送流体の圧力がΔv3だけ異常低下した時にΔV、
−Δv3となるから、異常検出部で検知する起電力に基
づいて、地震発生や輸送流体の異常圧力低下などの異常
事態が発生したか否かを容易確実に検知でき、例えば流
体輸送の緊2、遮断などの適切な対策を講じられる。
Furthermore, the electromotive force detected by the abnormality detection section is ΔV during normal operation.
3. When external vibrations such as earthquakes are applied, ΔV, +Δv2
, ΔV when the pressure of the transport fluid abnormally decreases by Δv3,
-Δv3, it is possible to easily and reliably detect whether or not an abnormal situation has occurred, such as an earthquake or an abnormal pressure drop in transport fluid, based on the electromotive force detected by the abnormality detection unit. , appropriate measures such as blocking can be taken.

(発明の効果) その結果、外乱による測定誤差がほとんど無い正確な流
量測定を確実に実行できると共に、異常事態発生を検知
できる、性能面において一段と優れたフルイディック流
量計を提供できるようになった。
(Effects of the invention) As a result, it has become possible to provide a fluidic flowmeter with even better performance, which can reliably perform accurate flow measurement with almost no measurement errors due to disturbances, and can detect the occurrence of abnormal situations. .

(実施例] 次に第1図により実施例を示す。(Example] Next, an example will be shown with reference to FIG.

管(1)内に管路縮小部(2)及び噴出ノズル(3)を
形成する一対の第1流路形成部材(4a) 、 (4b
)を、管中心軸芯(P)に対して対称的に配置し、管路
縮小部(2)の作用で噴出ノズル(3)に流体を円滑に
導くと共に、噴出ノズル(3)から管中心軸芯(P)と
ほぼ平行に流体を噴出するように構成し、管路拡大部(
5)、一対の制御ノズル(6a)。
A pair of first flow path forming members (4a) and (4b) that form a conduit constriction section (2) and a jet nozzle (3) in the pipe (1).
) are arranged symmetrically with respect to the pipe center axis (P), and the fluid is smoothly guided to the jet nozzle (3) by the action of the pipe constriction part (2), and the fluid is guided from the jet nozzle (3) to the pipe center. It is configured to eject fluid almost parallel to the axis (P), and the pipe expansion part (
5), a pair of control nozzles (6a).

(6b)、及び、管路拡大部(5)の下流側と制御ノズ
ル(6a) 、 (6b)を各別に連通ずる一対の帰還
流路(7a) 、 (7b)を区画形成する一対の隔壁
(8a)、(8b)を管中心軸芯(P)に対して対称的
に配置し、一対の制御ノズル(6a) 、 (6b)を
、噴出ノズル(3)の噴出方向に対してほぼ直角方向に
向かわせると共に相対向させである。一対の隔壁(9a
) 、 (9b)との協働で一対の排出路(10a) 
、 (10b)を形成する隔壁(11)を、管路拡大部
(5)の下流側を遮断する状態で設け、両相出路(10
a) 、 (10b)の入口を両局還流路(7a) 、
 (7b)の入口側に各別に連通させである。
(6b), and a pair of partition walls defining a pair of return channels (7a) and (7b) that communicate the control nozzles (6a) and (6b) separately with the downstream side of the expanded pipe section (5). (8a) and (8b) are arranged symmetrically with respect to the tube center axis (P), and the pair of control nozzles (6a) and (6b) are arranged at approximately right angles to the jetting direction of the jetting nozzle (3). It is directed toward the direction and also directed toward each other. A pair of partition walls (9a
), a pair of discharge channels (10a) in collaboration with (9b)
, (10b) is provided so as to block the downstream side of the expanded pipe section (5), and the partition wall (11) forming the two-phase outlet channel (10
a), the inlet of (10b) is connected to both station return passage (7a),
(7b) are connected separately to the inlet side.

つまり、噴出ノズル(3)からの流体噴出が開始される
と、コアンダ効果によって噴出流体は一方の隔壁(8a
)に沿って流れ、そのためにその隔壁(8a)側に位置
する制御ノズル(6a)に帰還流路(7a)から大きな
流体エネルギーが付与されて、噴出流体が反対側の隔壁
(8b)に沿って流れるようになり、今度は反対側の制
御ノズル(6b)からの流体エネルギーによって噴出流
体が初めに沿った隔壁(8a)に再び沿って流れるよう
になり、このようにして、噴出ノズル(3)からの流体
が隔壁(8a) 、 (8b)に対して交互に沿うよう
に構成し、もって、噴出流体量が増大する程短周期で、
かつ、定量的相関のある状態で噴出流体の流動方向が変
化するように構成しである。
In other words, when fluid ejection from the ejection nozzle (3) starts, the ejected fluid flows to one partition wall (8a) due to the Coanda effect.
), and therefore large fluid energy is applied from the return flow path (7a) to the control nozzle (6a) located on the partition wall (8a) side, and the ejected fluid flows along the partition wall (8b) on the opposite side. The fluid energy from the opposite control nozzle (6b) causes the jet fluid to flow again along the partition wall (8a) along which it started, and in this way the jet nozzle (3 ) so that the fluid flows along the partition walls (8a) and (8b) alternately, so that as the amount of fluid ejected increases, the period becomes shorter,
Further, the flow direction of the ejected fluid is configured to change in a state where there is a quantitative correlation.

管路拡大部(5)における流動方向切換安定化のための
ターゲノ) (12)を設け、測定流量範囲を例えば都
市ガスの家庭用ガスメータとして必要な150〜3,0
00 ffi /hというように大にしながら、流星測
定における誤差を例えば都市ガスの家庭用ガスメータの
検出公差内にできるように構成しである。
(12) for stabilizing the switching of the flow direction in the expanded pipe section (5), and the measured flow rate range is, for example, 150 to 3.0, which is necessary for a household gas meter for city gas.
00 ffi/h, the error in meteor measurement can be kept within the detection tolerance of a household gas meter for city gas, for example.

両すa還流路(7a) 、 (7b)に各別に連通させ
た第1及び第2導圧路(13a) 、 (13b)を、
噴出ノズル(3)からの噴流の流動方向変化に起因する
圧力変化を検出するセンサー(14)に接続しである。
The first and second pressure impulse paths (13a) and (13b) are connected to both the a reflux paths (7a) and (7b) separately,
It is connected to a sensor (14) that detects pressure changes caused by changes in the flow direction of the jet flow from the jet nozzle (3).

センサー(14)において、圧力室を第1及び第2圧電
膜(15a) 、 (15b)により中央室(16a)
とその両側の第1及び第2端部室(16b) 、 (1
6c)とに区画し、第1導圧路(13a)を中央室(1
6a)と第1端部室(16b)に接続し、第2導圧路(
13b)を第2端部室(16c)に接続しである。
In the sensor (14), the pressure chamber is connected to the central chamber (16a) by the first and second piezoelectric films (15a) and (15b).
and the first and second end chambers (16b) on both sides thereof, (1
6c), and the first pressure path (13a) is divided into a central chamber (1
6a) and the first end chamber (16b), and the second pressure path (
13b) is connected to the second end chamber (16c).

中央室(16a)と第1端部室(16b)に臨む第1圧
電膜(15a)の表裏夫々からの信号の差信号を第1信
号として取出す第1減算回路(17a)、中央室(16
a)と第2端部室(16c)に臨む第2圧電膜(15b
)の表裏夫々からの信号の差信号を第2信閃として取出
す第2減算回路(17b)を設け、第1及び第2減算回
路(17a) 、 (17b)に流量検出部(18)を
接続し、第1滅1γ回路(17a)に異常検出部(19
)を接続しである。
A first subtraction circuit (17a) that extracts a difference signal between the signals from the front and back sides of the first piezoelectric film (15a) facing the central chamber (16a) and the first end chamber (16b) as a first signal;
a) and the second piezoelectric film (15b) facing the second end chamber (16c).
) is provided, and a second subtraction circuit (17b) is provided to take out the difference signal between the signals from the front and back sides of each as a second flash, and a flow rate detection section (18) is connected to the first and second subtraction circuits (17a) and (17b). Then, an abnormality detection section (19) is installed in the first 1γ circuit (17a).
) is connected.

流量検出部(18)に、第1信号と第2信号の差信号を
取出す第3減算回路(18a)、第3減算回路(18a
)からの正弦波状の波形信号の周波数から流量を算出し
て表示する流量検知手段(18b)を設けてある。
The flow rate detection unit (18) includes a third subtraction circuit (18a) that extracts a difference signal between the first signal and the second signal;
) is provided with a flow rate detection means (18b) that calculates and displays the flow rate from the frequency of the sinusoidal waveform signal from the sine waveform signal.

異常検出部(19)に、第1信号が第1設定器(20a
)による設定強度以−Lであることの検出に基づいて地
震発生を検知する第1判定手段(19a)、第1信号が
第2設定器(20b)による設定強度以下であることの
検出に基づいて輸送流体の異常圧力低下を検知する第2
判定手段(19b)、第1及び第2判定手段(19a)
 、 (19b)からの情報に基づいて地震発生時及び
中品送流体の異常圧力低下時に遮断弁(21)を自動的
に閉し操作すると共に警報器(22)を自動的に作動さ
せる出力手段(19c)を設けてある。
The first signal is sent to the abnormality detection unit (19) from the first setting device (20a).
), the first determining means (19a) detects the occurrence of an earthquake based on the detection that the intensity is less than the set intensity by the second setting device (20b); A second device detects an abnormal pressure drop in the transport fluid.
Judgment means (19b), first and second judgment means (19a)
, Output means for automatically closing and operating the shutoff valve (21) and automatically operating the alarm (22) in the event of an earthquake or abnormal pressure drop in the medium-sized product delivery fluid based on the information from (19b); (19c) is provided.

[別実施例] 次に別実施例を説明する。[Another example] Next, another embodiment will be described.

フルイディック流量計の具体構造は適宜変更自在であり
、例えば隔壁(8a) 、 (8b) 、 (11)の
形状を適当に変更したり、ターゲット(12)の形状や
配置を適当に変更したり、ターゲット(12)を省略す
る等が可能である。
The specific structure of the fluidic flowmeter can be changed as appropriate; for example, the shapes of the partition walls (8a), (8b), and (11) can be changed appropriately, or the shape and arrangement of the target (12) can be changed as appropriate. , the target (12) can be omitted, etc.

流量検出部(18)や異常検出部(19)の具体構成は
適当に変更でき、例えば異常検出部(19)を第1信号
の起電力が表示されるだけにして、異常事態発生を人為
的に判定するように構成する等が可能である。
The specific configurations of the flow rate detection section (18) and the abnormality detection section (19) can be changed as appropriate. For example, the abnormality detection section (19) can be configured to display only the electromotive force of the first signal, so that the occurrence of an abnormal situation cannot be artificially detected. For example, it is possible to configure the system to make a determination based on the following information.

流量計は、主として燃料ガスや水道等において工業用や
家庭用に利用するが、その用途に特定されない。
Flowmeters are mainly used for industrial and household purposes, such as fuel gas and water supply, but their uses are not specific.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付V面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenience of comparison with the drawings, the present invention is not limited to the structure shown in the attached V-side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概念し1、第2図は従来
例の概念図である。 (2)・・・・・・管路縮小部、(3)・・・・・・噴
出ノズル、(5)・・・・・・管路拡大部、 (6a)
 、 (6b) −−11i11?′Jllノズル、 
(7a) 、 (7b) −−帰遷流路、 (13a)
 、 (13b) −・・・導圧路、(14)・・・・
・・センサー、 (15a) 、 (15b)・・・・
・・圧電膜、 (16a)・・・・・・中央室、(16
b) 、 (16c)・・・・・・端部室、(18)・
・・・・・流量検出部、(19)・・・・・・異常検出
部、 (19a) 、 (19b) −−判定手段、(
19c)−・・・出力手段。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention, and FIG. 2 is a conceptual diagram of a conventional example. (2)...Pipe constriction part, (3)...Blowout nozzle, (5)...Pipe enlargement part, (6a)
, (6b) --11i11? 'Jll nozzle,
(7a), (7b) --return flow path, (13a)
, (13b) -... pressure path, (14)...
...Sensor, (15a), (15b)...
...Piezoelectric film, (16a)...Central chamber, (16
b), (16c)... End chamber, (18).
...flow rate detection section, (19) ...abnormality detection section, (19a), (19b) --determination means, (
19c)--Output means.

Claims (1)

【特許請求の範囲】 1、管路縮小部(2)、噴出ノズル(3)及び管路拡大
部(5)をその順に流動方向に連ねて形成し、前記噴出
ノズル(3)と管路拡大部(5)の境界部に、一対の制
御ノズル(6a),(6b)を、前記噴出ノズル(3)
の噴出方向に対してほぼ直角方向に向かって、かつ、相
対向して形成し、前記両制御ノズル(6a)、(6b)
夫々と前記管路拡大部(5)の下流側を接続する一対の
帰還流路(7a)、(7b)を形成し、前記噴出ノズル
(3)からの噴流の流動方向変化に起因する圧力変化を
検出するセンサー(14)を設けたフルイディック流量
計であって、前記センサー(14)において、圧力室を
第1及び第2圧電膜(15a),(15b)により中央
室(16a)とその両側の第1及び第2端部室(16b
),(16c)とに区画し、前記帰還流路の一方(7a
)に接続した第1導圧路(13a)を前記中央室(16
a)と第1端部室(16b)に接続し、前記帰還流路の
他方(7b)に接続した第2導圧路(13b)を前記第
2端部室(16c)に接続し、前記第1端部室(16b
)に臨む前記第1圧電膜(15a)からの第1信号と、
前記第2端部室(16c)に臨む前記第2圧電膜(15
b)からの第2信号との差信号に基いて前記噴出ノズル
(3)からの噴流の流量を測定する流量検出部(18)
を設け、前記第1圧電膜(15a)からの第1信号に基
いて異常事態を検出する異常検出部 (19)を設けてあるフルイディック流量計。 2、前記異常検出部(19)が、設定強度以上の第1信
号検出に基いて地震発生を検知する第1判定手段(19
a)を有するものである請求項1記載のフルイディック
流量計。 3、前記異常検出部(19)が、設定強度以下の第1信
号検出に基いて輸送流体の異常圧力低下を検知する第2
判定手段(19b)を有するものである請求項1又は2
記載のフルイディック流量計。 4、前記異常検出部(19)に、異常事態検出に基いて
流体輸送を自動遮断する出力手段(19c)を設けてあ
る請求項2又は3記載のフルイディック流量計。
[Scope of Claims] 1. A conduit constriction section (2), a jet nozzle (3), and a conduit expansion section (5) are formed in series in the flow direction, and the conduit constriction section (2), the jet nozzle (3), and the conduit expansion section (5) are formed in series in the flow direction, and A pair of control nozzles (6a) and (6b) are connected to the boundary between the jet nozzle (3) and the jet nozzle (3).
The control nozzles (6a) and (6b) are formed in a direction substantially perpendicular to the ejection direction of the control nozzles (6a) and (6b)
A pair of return channels (7a) and (7b) are formed which connect the downstream sides of the expanded pipe section (5), respectively, and pressure changes caused by changes in the flow direction of the jet flow from the jet nozzle (3) are formed. This fluidic flowmeter is equipped with a sensor (14) for detecting pressure, and in the sensor (14), a pressure chamber is connected to a central chamber (16a) by first and second piezoelectric films (15a) and (15b). The first and second end chambers (16b
), (16c), and one of the return channels (7a
) is connected to the central chamber (16).
a) and the first end chamber (16b), and a second pressure path (13b) connected to the other (7b) of the return flow path is connected to the second end chamber (16c); End chamber (16b
) a first signal from the first piezoelectric film (15a) facing the
The second piezoelectric film (15) facing the second end chamber (16c)
a flow rate detection unit (18) that measures the flow rate of the jet flow from the jet nozzle (3) based on the difference signal from the second signal from b);
and an abnormality detection section (19) for detecting an abnormal situation based on a first signal from the first piezoelectric film (15a). 2. The abnormality detection unit (19) detects the occurrence of an earthquake based on the detection of a first signal having a set strength or higher.
The fluidic flowmeter according to claim 1, which has a). 3. The abnormality detection unit (19) detects an abnormal pressure drop of the transport fluid based on the detection of the first signal having a set strength or less.
Claim 1 or 2 comprising a determining means (19b)
Fluidic flowmeter as described. 4. The fluidic flowmeter according to claim 2 or 3, wherein the abnormality detection section (19) is provided with an output means (19c) for automatically shutting off fluid transport based on detection of an abnormal situation.
JP63054631A 1988-03-08 1988-03-08 Fluidic flow meter Expired - Lifetime JP2512518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63054631A JP2512518B2 (en) 1988-03-08 1988-03-08 Fluidic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63054631A JP2512518B2 (en) 1988-03-08 1988-03-08 Fluidic flow meter

Publications (2)

Publication Number Publication Date
JPH01227925A true JPH01227925A (en) 1989-09-12
JP2512518B2 JP2512518B2 (en) 1996-07-03

Family

ID=12976103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63054631A Expired - Lifetime JP2512518B2 (en) 1988-03-08 1988-03-08 Fluidic flow meter

Country Status (1)

Country Link
JP (1) JP2512518B2 (en)

Also Published As

Publication number Publication date
JP2512518B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US6904810B2 (en) Purge type vortex flowmeter
JPH01227925A (en) Fluidic flowmeter
JP3017567B2 (en) Fluidic flow meter
JPS61223517A (en) Fluidic flowmeter
JP3267448B2 (en) Fluidic flow meter and fluidic oscillation detector
JPH06137914A (en) Flow rate measuring apparatus
JP3378111B2 (en) Gas meter and micro leak detection method in gas meter
JPH08240469A (en) Flowmeter
JPH01124711A (en) Full-index flowmeter
JP3534504B2 (en) Gas meter
JP3290300B2 (en) Fluid flow meter
JPS6177717A (en) Feedback type fluidic flowmeter
JPS63140916A (en) Fluidic flowmeter
JPH0875511A (en) Gas meter
JPH08240468A (en) Flowmeter
JP3295532B2 (en) Fluid flow meter
JPH085432A (en) Gain correcting apparatus for thermal type flow velocity sensor for gas meter
JP3290299B2 (en) Fluid flow meter
JP3169110B2 (en) Fluidic flow meter
JPH0464413B2 (en)
JPS63139214A (en) Fluidic flowmeter
JPH07248238A (en) Fluidic flowmeter
JPH08136302A (en) Flowmeter
JPS63139213A (en) Fluidic flowmeter
JPH07318386A (en) Fluidic flowmeter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term