JPS62206421A - Torque sensor - Google Patents
Torque sensorInfo
- Publication number
- JPS62206421A JPS62206421A JP61048364A JP4836486A JPS62206421A JP S62206421 A JPS62206421 A JP S62206421A JP 61048364 A JP61048364 A JP 61048364A JP 4836486 A JP4836486 A JP 4836486A JP S62206421 A JPS62206421 A JP S62206421A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic film
- rotating shaft
- torque
- torque sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 230000005415 magnetization Effects 0.000 claims abstract description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 19
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 6
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 5
- 230000008859 change Effects 0.000 abstract description 5
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 43
- 238000007747 plating Methods 0.000 description 28
- 239000010935 stainless steel Substances 0.000 description 22
- 229910001220 stainless steel Inorganic materials 0.000 description 22
- 239000000696 magnetic material Substances 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 230000035945 sensitivity Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 230000035699 permeability Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 230000005284 excitation Effects 0.000 description 10
- 230000035882 stress Effects 0.000 description 10
- 239000000956 alloy Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910001004 magnetic alloy Inorganic materials 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000005381 magnetic domain Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229910000531 Co alloy Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910018499 Ni—F Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- -1 permalloy Chemical compound 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、回転軸に加えられたトルクにより磁性膜の磁
気特性が変化することを利用してトルクを非接触検出す
るトルクセンサに係り、特に自動車、工作機械、ロボッ
トなどの回転軸のトルクを検出するのに好適なトルクセ
ンサに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a torque sensor that non-contact detects torque by utilizing the change in the magnetic properties of a magnetic film due to the torque applied to a rotating shaft. In particular, the present invention relates to a torque sensor suitable for detecting torque of rotating shafts of automobiles, machine tools, robots, etc.
回転軸にかかるトルクを正確に検出することが自動車を
はじめ、工作機械、ロボット等の技術の中に求められて
いる。この場合1回転軸に検出体が接触しない非接触方
式が適している。Accurate detection of torque applied to rotating shafts is required in technologies for automobiles, machine tools, robots, etc. In this case, a non-contact method in which the detection body does not come into contact with the shaft of one rotation is suitable.
非接触方式のトルクセンサとして、最近、回転軸として
磁性体を用いるか、或いは非磁性の回転軸に磁性体を取
付けるなどして、磁性体の回転ねじりによる磁気ひずみ
現象を測定することでトルクを検出するものが主流とな
ってきている。Recently, non-contact torque sensors have been developed to measure torque by measuring the magnetostrictive phenomenon caused by the rotational twisting of the magnetic material by using a magnetic material as the rotating shaft or by attaching a magnetic material to a non-magnetic rotating shaft. Detection is becoming mainstream.
自動車の駆動軸やハンドルのように数10キログラム・
メートル以上のトルクがかかる部材においては、機械強
度面および材料コスト面より、回転軸の一部分にトルク
センサ用磁性体を貼り付けて使用している。回転軸にト
ルクがかかると長手方向に対して45″の方向にひずみ
が発生するが、を
回転軸に貼り付けられた磁気ひずみ材料にミ45゜の方
向にひずみが発生し、それが磁気的な異方性、つまり磁
束検出方向による透磁率の差?生じ、磁気ヘッドなどの
磁束検出器で、それを検出することによって回転軸にか
かったトルクを知ることができる。A weight of several tens of kilograms, such as the drive shaft and steering wheel of a car,
In a member to which a torque of 1 meter or more is applied, a magnetic material for a torque sensor is attached to a portion of the rotating shaft for mechanical strength and material cost reasons. When torque is applied to the rotating shaft, strain occurs in the direction of 45° to the longitudinal direction, but strain occurs in the magnetostrictive material attached to the rotating shaft in the direction of 45°, which causes magnetic Anisotropy, that is, a difference in magnetic permeability depending on the magnetic flux detection direction, occurs, and by detecting this with a magnetic flux detector such as a magnetic head, it is possible to determine the torque applied to the rotating shaft.
磁気ひずみを非接触検出する方法として、回転軸に対し
て、ソレノイドコイル状の励磁巻線と検出巻線を採用す
るものが最近、考案された。特開部分を覆うソレノイド
コイルのインダクタンスの変化で行う。ソレノイドコイ
ルには交流電流が流され、電流値、コイル巻数9周波数
などによって、回転軸に与えられたトルクに依存した電
気信号出力が得られる。As a method for non-contact detection of magnetostriction, a method has recently been devised that employs a solenoid coil-shaped excitation winding and a detection winding around a rotating shaft. This is done by changing the inductance of the solenoid coil that covers the patented area. An alternating current is passed through the solenoid coil, and an electrical signal output that depends on the torque applied to the rotating shaft is obtained depending on the current value, the number of turns of the coil (9 frequencies), etc.
この方法は励磁用並びに検出用に回転軸と局部的に磁気
回路を構成する磁路を用いないことが特長であるが、こ
の場合には、回転軸に取付けられる磁性材料の選択が重
要となる。A feature of this method is that it does not use a magnetic path that locally forms a magnetic circuit with the rotating shaft for excitation and detection, but in this case, the selection of the magnetic material to be attached to the rotating shaft is important. .
特開昭59−61731号公報では、かかる場合の磁性
材料としてアモルファス磁性合金薄膜を用いることを提
案している。JP-A-59-61731 proposes the use of an amorphous magnetic alloy thin film as the magnetic material in such a case.
本発明者らの研究によれば、アモルファス磁性合金の薄
帯は、ヒステリシスおよび熱的安定性に改善の余地があ
る。アモルファス合金以外に従来多用されてきた磁性材
料たとえば鉄系合金材料で磁歪係数が小さく、十分な出
力特性が得られない。According to the research conducted by the present inventors, there is room for improvement in the hysteresis and thermal stability of amorphous magnetic alloy ribbons. Magnetic materials other than amorphous alloys that have been widely used in the past, such as iron-based alloy materials, have small magnetostriction coefficients and cannot provide sufficient output characteristics.
磁区構造が制御されていない普通のニッケル系合金では
磁歪係数は大きいが、出力の再現性および熱的安定性が
得られない。Ordinary nickel-based alloys with uncontrolled magnetic domain structures have large magnetostriction coefficients, but do not provide output reproducibility or thermal stability.
このようにソレノイドコイルを有する検出回路により磁
気ひずみを検出するトルクセンサは、適切な磁性材料が
見出されていないため感度および信頼性に欠けていた。Torque sensors that detect magnetostriction using a detection circuit having a solenoid coil lack sensitivity and reliability because no suitable magnetic material has been found.
本発明の目的は、ソレノイドコイルを有する検出回路に
より磁気ひずみを検出するトルクセンサにおいて、高感
度かつ高信頼性を有するトルクセンサを提供するある。An object of the present invention is to provide a torque sensor that detects magnetostriction using a detection circuit having a solenoid coil and has high sensitivity and high reliability.
本発明は、非磁性回転軸の外周に、該回転軸の円周方向
を磁化容易軸とし軸方向を磁化困難軸とする車軸異方性
を有する磁性膜を設け、ソレノイルクを検出するように
したものである。The present invention provides a magnetic film having an axle anisotropy in which the circumferential direction of the rotating shaft is an axis of easy magnetization and the axial direction is an axis of difficult magnetization, on the outer periphery of a non-magnetic rotating shaft, and a solenoid is detected. It is something.
本発明のトルクセンサにおける磁性膜の材料には、ひず
みに敏感な材料として一般に知られている磁性材料たと
えばニッケル、ニッケルと鉄の合金、ニッケルとコバル
トの合金、コバルトと鉄の合金、鉄とアルミニウムの合
金、鉄とニッケルとコバルトの合金などの結晶質材料お
よび鉄とニッケルとボロンとシリコンを含むアモルファ
ス合金などをいずれも用いることができる。The material of the magnetic film in the torque sensor of the present invention includes magnetic materials generally known as strain-sensitive materials, such as nickel, an alloy of nickel and iron, an alloy of nickel and cobalt, an alloy of cobalt and iron, and iron and aluminum. Crystalline materials such as alloys of iron, nickel, and cobalt, and amorphous alloys containing iron, nickel, boron, and silicon can all be used.
めっきにより作られた磁性膜は、ひずみに対する磁気感
応特性が非常に良好であり、磁性膜として最も好適であ
る。めっき磁性膜のなかでは、磁性材料として鉄とニッ
ケルの合金特にパーマロイを用いたもの脣最も好ましい
。磁界中めっきにより作製されたパーマロイの単軸異方
性膜は、102〜10”J/r+(の範囲の大きさの異
方性が容易に得られ、磁性膜として最適である。A magnetic film made by plating has very good magnetic sensitivity characteristics against strain, and is most suitable as a magnetic film. Among the plated magnetic films, it is most preferable to use an alloy of iron and nickel, particularly permalloy, as the magnetic material. A permalloy uniaxially anisotropic film produced by plating in a magnetic field can easily obtain anisotropy in the range of 102 to 10'' J/r+ (and is optimal as a magnetic film.
磁気ひずみを検出するのに、従来とられてきた一般的な
方法は、非接触に配置されたコ字型の励磁用および検出
用磁心とトルクセンサ磁性材料で形成される磁気回路ブ
リッジによるものである。The conventional and common method for detecting magnetostriction is to use a magnetic circuit bridge formed by U-shaped excitation and detection magnetic cores and torque sensor magnetic materials arranged in a non-contact manner. be.
この方法は、トルクセンサ磁性材料が均一であればすぐ
れた方法であるが、実際は非接触配置をとる励磁用磁心
および検出用磁心と回転軸上のトルクセンサ磁性体との
カップリングが完全な回転対称となし難いこと、回転軸
上のトルクセンサ磁性体に存在する局部的なむらなどの
ために出力の回転角によるゆらぎが避けられない。この
ような欠点を補うために検出センサを多極構造にするな
どの方策があるが、このような事柄は、コスト上昇につ
ながり実際的でない。This method is excellent if the torque sensor magnetic material is uniform, but in reality, the coupling between the excitation magnetic core and the detection magnetic core, which are arranged in a non-contact manner, and the torque sensor magnetic material on the rotating shaft requires complete rotation. Fluctuations in the output due to the rotation angle are unavoidable due to the difficulty in achieving symmetry and local unevenness in the torque sensor magnetic material on the rotation shaft. In order to compensate for such drawbacks, there are measures such as making the detection sensor have a multipolar structure, but such a matter leads to an increase in cost and is not practical.
先に述べたソレノイドコイルを検出回路に用いる方式に
よれば、これらの欠点を解消することができる。According to the method described above in which the solenoid coil is used in the detection circuit, these drawbacks can be eliminated.
回転軸の磁気ひずみ現象をソレノイド状の励磁巻線と検
出巻線で検出する方式の磁歪リング型のトルクセンサに
おいて回転軸に要求される主な事項を挙げると次の通り
である。In a magnetostrictive ring type torque sensor that detects the magnetostrictive phenomenon of the rotating shaft using a solenoid-like excitation winding and a detection winding, the main requirements for the rotating shaft are as follows.
(1)感度が高いこと。感度に対して磁気ひずみ材料の
磁歪係数と磁区構造が関係する。また、磁気ひずみ材料
の動作磁束のレベルが関係する。(1) High sensitivity. The sensitivity is related to the magnetostrictive coefficient and magnetic domain structure of the magnetostrictive material. Also relevant is the level of operating flux of the magnetostrictive material.
更に、励磁周波数を最適化することによって磁気ひずみ
感度を高めることができるので、これらを選択すること
が大切となる。Furthermore, magnetostriction sensitivity can be increased by optimizing the excitation frequency, so it is important to select these.
(2)ヒステリシスが小さいこと。このために外部から
の応力に対して磁化が可逆的に変化することが要求され
る。コイルによる励磁で、たとえば−軸異方性を有する
磁性材料を困難軸方向に励磁する場合などはヒステリシ
スが小さいことが知られている。(2) Hysteresis is small. For this reason, it is required that the magnetization changes reversibly in response to external stress. It is known that hysteresis is small when, for example, a magnetic material having -axis anisotropy is excited in the hard axis direction by excitation by a coil.
(3)温度変化の小さいこと。磁気ひずみ材料の磁気特
性の温度依存性が関係するので、熱的に安定な磁性材料
が必要である。(3) Small temperature changes. Because of the temperature dependence of the magnetic properties of magnetostrictive materials, thermally stable magnetic materials are required.
単軸異方性を有する磁性膜特にめっきにより作製した磁
性膜は、前記3つの事項を具備することがわかった。It has been found that a magnetic film having uniaxial anisotropy, particularly a magnetic film produced by plating, has the above three properties.
非磁性回転軸の外周に、回転軸の円周方向を磁化容易軸
とし軸方向を磁化困難軸とする単軸異方性を有する磁性
膜を設けることにより、磁気ひずみに対する感受性が高
まり、かつ可逆回転磁化に適した車軸異方性膜となる。By providing a magnetic film on the outer periphery of the non-magnetic rotating shaft with uniaxial anisotropy in which the circumferential direction of the rotating shaft is the axis of easy magnetization and the axial direction is the axis of difficult magnetization, sensitivity to magnetostriction is increased and the magnetization is reversible. This results in an axle anisotropic film suitable for rotational magnetization.
この結果、トルクと電気信号出力の関係、特にトルクを
くり返し与えたときの出力変化を小さくでき、トルク検
出感度の向上、温度を含む使用環境に対しての信頼性の
向上など多くの効果が得られる。また磁気的にすぐれた
単軸異方性膜を使用することにより、トルクセンサとし
ての入出力回路はホイートストンブリッジ型の回路を採
用することができ、安価で大きな出力が得られる。すな
わち、単軸異方性磁性膜を使用することにより、好都合
の回路方式としてホイートストンブリッジ型の回路が採
用され非接触型のトルクセンサとして、従来のものに比
べて著しく構成が簡単で、高感度化を実現できる。As a result, the relationship between torque and electrical signal output, especially the output change when torque is repeatedly applied, can be reduced, and many benefits are obtained, such as improved torque detection sensitivity and improved reliability in use environments including temperature. It will be done. Furthermore, by using a magnetically superior uniaxial anisotropic film, a Wheatstone bridge type circuit can be adopted as the input/output circuit as a torque sensor, and a large output can be obtained at low cost. In other words, by using a uniaxial anisotropic magnetic film, a Wheatstone bridge type circuit is adopted as a convenient circuit system, and as a non-contact torque sensor, the configuration is significantly simpler and the sensitivity is higher than that of conventional ones. can be realized.
ひずみに感応する磁性膜のめつき基台となり、鋼を切削
、研摩、洗浄し、めっき前処理を行ってから、スルファ
ミン酸塩などを用いためつき液で厚さ10ミクロンメー
トル程度の磁性合金をその上にめっきする。この場合、
めっき液組成、めっき電流、めっき温度、めつき槽中に
おける被めっき物の設置、めっき時の印加磁界などの条
件により、結晶粒度、転位密度、内部応力、電着繊維構
造、−軸性磁気異方性を用途に合わせる。This will serve as a plating base for the strain-sensitive magnetic film. After cutting, polishing, cleaning, and pre-plating treatment, the steel is coated with a magnetic alloy approximately 10 micrometers thick using a plating solution using sulfamate. Plate on top of that. in this case,
Depending on conditions such as plating solution composition, plating current, plating temperature, placement of the object to be plated in the plating bath, and applied magnetic field during plating, the crystal grain size, dislocation density, internal stress, electrodeposited fiber structure, and -axial magnetic anisotropy may vary. Match the orientation to the purpose.
次いで、非磁性不銹鋼とめつき磁性膜の界面の整合と合
金化およびめっき膜の残留応力の緩和のために熱処理を
行う。これにより、基台である不銹鋼とめつき磁性膜の
密着は完全となり、くり返しの回転応力に対して剥離す
ることはなくなるとともに、めっき膜に残留する内部応
力は低減し、ひずみに対する磁気感応特性が良好となる
。Next, heat treatment is performed to align and alloy the interface between the nonmagnetic stainless steel and the plated magnetic film, and to alleviate residual stress in the plated film. As a result, the adhesion between the stainless steel base and the plated magnetic film is perfect, and it will not peel off due to repeated rotational stress, and the internal stress remaining in the plated film is reduced, resulting in good magnetic sensitivity characteristics against strain. becomes.
次に、耐湿などの環境条件を考慮して、磁性めっき膜の
上に保護膜を塗布する。これに対して、たとえば、ポリ
イミド系などの樹脂コーテングが有効である。Next, a protective film is applied on the magnetic plating film, taking into consideration environmental conditions such as moisture resistance. On the other hand, for example, a resin coating such as polyimide is effective.
)以下、本発明の一実施例を説明する。) Hereinafter, one embodiment of the present invention will be described.
実施例−1
第1図は実験に用いた磁性合金めっき膜作製のための装
置の概略図である。1はめつき槽、2はめつき液の循環
方向、3はめつき液貯槽、4は温度コントローラ、5は
ポンプ、6はフィルタ、7は流量計である。8はめつき
される陰極で、試料となるステンレス管である。9は8
を取囲むように配置された陽極で、ニッケル板である。Example 1 FIG. 1 is a schematic diagram of an apparatus for producing a magnetic alloy plating film used in the experiment. 1 is a plating tank, 2 is a plating liquid circulation direction, 3 is a plating liquid storage tank, 4 is a temperature controller, 5 is a pump, 6 is a filter, and 7 is a flow meter. 8 is the cathode to be plated, which is the stainless steel tube that will be the sample. 9 is 8
The anode is a nickel plate that surrounds the
10は被めっき物であるステンレス管8を回転する歯車
であり、11はモータである。12はステンレス管の部
分に円周方向の磁界を発生するための通電用導体で、銅
棒である。磁性合金めっきはステンレス管の円周方向に
磁界を与えながら、かつ、その方向の回転を与えながら
電気めっきによって作製される。10 is a gear that rotates the stainless steel tube 8 which is the object to be plated, and 11 is a motor. Reference numeral 12 denotes a current-carrying conductor, which is a copper rod, for generating a circumferential magnetic field in the stainless steel tube. Magnetic alloy plating is produced by electroplating while applying a magnetic field in the circumferential direction of the stainless steel tube and while applying rotation in that direction.
外径20 mm 、内径12mn、長さ100+++n
+のステンレス管(材質JIS規格5US32)の外表
面て゛。Outer diameter 20mm, inner diameter 12mm, length 100+++n
The outer surface of the + stainless steel pipe (material JIS standard 5US32).
を機械加工によって平滑に仕上げ、その後にアルカリ脱
脂洗浄液に浸漬し、続いて第1図に示す横型のめつき槽
でステンレス管に回転を与えながら磁性合金を電気めっ
きした。使用しためつき液を第1表に示す。The stainless steel tube was finished smooth by machining, and then immersed in an alkaline degreasing solution, and then electroplated with a magnetic alloy while rotating the stainless steel tube in a horizontal plating bath shown in FIG. The tamping liquid used is shown in Table 1.
第1表 めっき液組成
めっき条件としては、電流密度5 A/ d rrl’
、液温50℃、また、ステンレス管の円周方向に磁界強
さ800ATを印加した。めっき時、ステンレス管を3
0rpmで回転し、厚さ0.0111111?膜の平均
組成はニッケル70重量%、鉄30重量%のN i −
F e合金膜を得た。めっきのままの結晶粒径は約20
0人、転位密度は約10”/d、内部応力は約200
M P aであった。Table 1 Plating solution composition Plating conditions include current density 5 A/drrl'
, the liquid temperature was 50° C., and a magnetic field strength of 800 AT was applied in the circumferential direction of the stainless steel tube. When plating, the stainless steel tube is
Rotates at 0 rpm and has a thickness of 0.0111111? The average composition of the film is Ni − 70% by weight of nickel and 30% by weight of iron.
A Fe alloy film was obtained. The crystal grain size as plated is approximately 20
0 people, dislocation density approximately 10"/d, internal stress approximately 200
It was MPa.
次に、これを水素雰囲気中で400℃×30分の熱処理
を行った。熱処理後のN i −F e合金膜、二、〆
果では、Ni−Fe合金膜は結晶の(111)面を表面
とするような繊維構造を有し、その集積度は約80%で
あった。Next, this was heat-treated at 400° C. for 30 minutes in a hydrogen atmosphere. After heat treatment, the Ni-Fe alloy film has a fibrous structure with the (111) crystal plane as the surface, and the degree of integration is about 80%. Ta.
以上のようにして作製したステンレス管表面にめっきし
たN i −F s合金膜の磁気的性質および膜の密着
性を調べた。管の円周方向にOつで磁化したときと管の
長手方向に沿って磁化したときの直流磁化曲線を第2図
に示す。円周方向のB go。The magnetic properties and adhesion of the Ni-Fs alloy film plated on the surface of the stainless steel tube produced as described above were investigated. FIG. 2 shows the DC magnetization curves when the tube is magnetized with O in the circumferential direction and when it is magnetized along the longitudinal direction of the tube. Circumferential B go.
(H=800A/mにおける磁束密度)は1.0テスラ
、保磁力Hcは400 A / m 、角型比Br/
B mは0.96である。管の長手方向のB go。(Magnetic flux density at H = 800 A/m) is 1.0 Tesla, coercive force Hc is 400 A/m, squareness ratio Br/
Bm is 0.96. B go in the longitudinal direction of the tube.
は0.9テスラ、Hcは15A/m、Br/Bmは0.
06である。このように円周方向を容易軸とする単軸異
方性を有する磁性膜である。is 0.9 Tesla, Hc is 15A/m, and Br/Bm is 0.
It is 06. In this way, the magnetic film has uniaxial anisotropy with the easy axis in the circumferential direction.
次に、ステンレス管とめつき磁性膜の密着性を評価する
ために、ステンレス管の一端を固定し、他端に回転力を
与えて、最大トルク2ON−mを106回くり返し加え
たが、めっき磁性膜の剥離やひび割れは全くみられなか
った。Next, in order to evaluate the adhesion between the stainless steel tube and the magnetic film plated, one end of the stainless steel tube was fixed, a rotational force was applied to the other end, and a maximum torque of 2ON-m was applied 106 times. No peeling or cracking of the film was observed.
)最後に、ソレノイドコイルでステンレス管の長手方向
に磁化し、試料であるステンレス管にトルクを与えて、
その上にめっきした磁性膜に捩りひずみを与えたときの
透磁率を測定した。代表的な特性として、励磁周波数1
00 k Hz、励磁振幅80A/mでの印加トルクと
比透磁率の関係を第3図に示す。トル゛りなしでは比透
磁率は900であるが、印加トルクにほぼ比例して比透
磁率は減少し、トルク3ON−mを与えたときの比透磁
率は300であった。このようにトルクに感応して比透
磁率が顕著に変化し、かつ、その変化率は従来の磁性材
料に比して格段に大きいのですぐれた磁気ひずみトルク
センサ材料として本実験のNi−F e合金めつき膜は
格好のものと云うことができる。) Finally, the stainless steel tube is magnetized in the longitudinal direction using a solenoid coil, and a torque is applied to the stainless steel tube that is the sample.
The magnetic permeability was measured when torsional strain was applied to the magnetic film plated thereon. As a typical characteristic, excitation frequency 1
FIG. 3 shows the relationship between applied torque and relative permeability at 00 kHz and excitation amplitude of 80 A/m. The relative magnetic permeability was 900 without torque, but the relative magnetic permeability decreased almost in proportion to the applied torque, and the relative magnetic permeability was 300 when a torque of 3 ON-m was applied. In this way, the relative magnetic permeability changes significantly in response to torque, and the rate of change is much larger than that of conventional magnetic materials, so the Ni-F e used in this experiment was used as an excellent magnetostrictive torque sensor material. The alloy plated film can be said to be a good choice.
実施例−2
外径201m1のステンレス管の表面に厚さ0.01n
ynのN i −F e合金磁性膜を幅70mmのリン
グ状に部分めっきした。めっき槽、めっき液、めっき条
件、めっき時の磁界印加などは実施例−1に述べたもの
と同じである。次いで熱処理および表面の保護コーテン
グを施した。このようにして作製した磁性膜の磁区構造
はステンレス管の円周方向と180°磁区の方向とが一
致し、ステンレス管の長手方向を磁化困難軸とするよう
な単軸異方性を有するものであった。このような試料を
以下の実験に供した。Example-2 Thickness 0.01n on the surface of a stainless steel pipe with an outer diameter of 201m1
A Ni-Fe alloy magnetic film of yn was partially plated in a ring shape with a width of 70 mm. The plating bath, plating solution, plating conditions, magnetic field application during plating, etc. are the same as those described in Example-1. A heat treatment and a protective surface coating were then applied. The magnetic domain structure of the magnetic film produced in this way has uniaxial anisotropy such that the circumferential direction of the stainless steel tube and the direction of the 180° magnetic domain coincide, and the longitudinal direction of the stainless steel tube is the axis of difficulty in magnetization. Met. Such a sample was subjected to the following experiment.
試料であるステンレス管とコイルの位置関係を第4図に
示す。ソレノイドコイルC1とC2はめつきが施されて
いる部分に、ソレノイドコイルC8とC4はめっきが施
されていない部分においた。各ソレノイドコイルは同一
寸法、同じ巻数とした。ソレノイドコイルの仕様を表に
示す。Figure 4 shows the positional relationship between the sample stainless steel tube and the coil. The solenoid coils C1 and C2 were placed on the plated parts, and the solenoid coils C8 and C4 were placed on the unplated parts. Each solenoid coil had the same dimensions and the same number of turns. The specifications of the solenoid coil are shown in the table.
これら4ケのソレノイドコイルを第5図に示すようなブ
リッヂ回路に組み、試料に捩り応力を与えたときの出力
電圧を測定した。入力回路には、表 ソレノイドコイル
の仕様
100 k Hz、正弦波の定電流電源を用い、出力電
圧は実効値電圧で測定した。第6図にトルクと出力電圧
の関係を示す。出力電圧はトルク零のとき最大で、トル
クを増すとほぼそれに比例して出力電圧は低下する。出
力電圧は増幅器なしで80m V / N m程度の変
化を持ちトルクセンサ出力として他の方法に比べて何ら
遜色がない。トルク−電圧特性の再現性も十分に良好で
、非接触型のトルクセンサとして、従来のものに比べて
著しく構成が簡単で、高感度、かつ、高出力を実現した
ので、その実用上の効果は大きい。These four solenoid coils were assembled into a bridge circuit as shown in FIG. 5, and the output voltage was measured when torsional stress was applied to the sample. A 100 kHz, sine wave constant current power supply was used for the input circuit, and the output voltage was measured as an effective value voltage. Figure 6 shows the relationship between torque and output voltage. The output voltage is maximum when the torque is zero, and as the torque increases, the output voltage decreases approximately in proportion to the torque. The output voltage has a change of about 80mV/Nm without an amplifier, and is comparable to other methods as a torque sensor output. The reproducibility of the torque-voltage characteristics is sufficiently good, and as a non-contact torque sensor, it has a significantly simpler configuration than conventional ones, and has achieved high sensitivity and high output, so its practical effects are is big.
本発明において、磁性膜の磁化容易軸を円周方向から軸
方向へ僅かに傾けることは非常に好ましい。傾ける範囲
は10″±5″特に10°近辺にすることが好ましい。In the present invention, it is very preferable that the axis of easy magnetization of the magnetic film is slightly tilted from the circumferential direction to the axial direction. The tilting range is preferably 10''±5'', particularly around 10°.
以下、この理由について説明する。The reason for this will be explained below.
磁化容易方向を傾ける角度は、めっき磁性膜が本来的に
有する磁気異方性Kiの大きさと回転トルクによって誘
起される磁気的異方性にσの大きさによって決められる
。以下、これらの関係を数式を用いて説明する。The angle at which the direction of easy magnetization is tilted is determined by the magnitude of the magnetic anisotropy Ki inherent to the plated magnetic film and the magnitude of σ in the magnetic anisotropy induced by rotational torque. Below, these relationships will be explained using mathematical formulas.
可逆回転磁化の理論が示すように、単軸異方性Kuを有
する磁性体が磁界Hと角度θOに置かれると、自発磁化
Bsは回転し、角度θに落ち着く。As shown by the theory of reversible rotational magnetization, when a magnetic body with uniaxial anisotropy Ku is placed at an angle θO with the magnetic field H, the spontaneous magnetization Bs rotates and settles at the angle θ.
励磁界Hが十分小さいならばふれ角へ〇=00−〇は
Ku
であるから、B=Bscosθの関係より、下記(2)
式が得られる。If the excitation field H is small enough, the deflection angle 〇=00-〇 is Ku, so from the relationship B=Bscosθ, the following (2) is obtained.
The formula is obtained.
(stress 1nduced)のベクトル和であっ
て、(3)式第7図に示すように、非磁性パイプ30と
磁歪リング材31すなわち磁性膜の密着が完全であると
し、かつ、磁歪リング材の厚さはパイプ肉厚に比べて十
分小さいとすると、トルクTによる応力誘起異方性にσ
は、磁歪リング材の磁歪係数をλとすると
である。ここで、dl 、dlはパイプの内径と外径、
GR,GPは磁性リング材とパイプ材の剛、性率である
。磁気式トルクセンサにおいて、KσはI X 102
〜lX10’J/イが適する。何故ならば、KσはKu
に影響し、それは(2)式に示すようにμmに関係する
ためである。(stress 1 induced), and as shown in equation (3) in FIG. Assuming that the diameter is sufficiently small compared to the pipe wall thickness, the stress-induced anisotropy due to torque T is σ
is given when the magnetostrictive coefficient of the magnetostrictive ring material is λ. Here, dl and dl are the inner diameter and outer diameter of the pipe,
GR and GP are the stiffness and modulus of the magnetic ring material and pipe material. In a magnetic torque sensor, Kσ is I x 102
~lX10'J/i is suitable. This is because Kσ is Ku
This is because it is related to μm as shown in equation (2).
(3)式に示したようにKuは応力誘起異方性にσと磁
性膜が作られたときに本来的に有する単軸異方性Kt
の和である。Kσの方向はパイプの円周方向に対して4
5″であるから、いま、Kl を円周方向からα0だけ
傾けると、
したがって、
鉄・ニッケルめっき磁性膜で本来的に異方性を付与する
方法は、磁界中めっき、めっき基台あるいはめつき膜の
切りみぞなどの方法が有効である。As shown in equation (3), Ku is the stress-induced anisotropy σ and the uniaxial anisotropy Kt that the magnetic film inherently has when it is made.
is the sum of The direction of Kσ is 4 with respect to the circumferential direction of the pipe.
5", now if Kl is tilted by α0 from the circumferential direction. Therefore, the methods of inherently imparting anisotropy to an iron/nickel plated magnetic film are plating in a magnetic field, plating base, or plating. Methods such as cutting grooves in the membrane are effective.
これらの方法によりに1は2 X 10”〜2X108
J / rrrとすることができる。By these methods, 1 becomes 2 x 10” ~ 2 x 108
J/rrr.
(7)式におけるμmとにσの関係で、K1とsinα
を最適化することによってにσの正の領域から負の領
域で一義的となる。具体的数値例として、l Ki I
=10 X 10”J/rrr、 a= 10°(si
n+
α=0.174)、にσ=−5X10”〜45×10”
J/rrrでは、Kuとにσの関係は一義的である。In the relationship between μm and σ in equation (7), K1 and sinα
By optimizing σ, it becomes unique from the positive region to the negative region. As a specific numerical example, l Ki I
= 10 x 10”J/rrr, a= 10°(si
n+ α=0.174), σ=-5×10” to 45×10”
In J/rrr, the relationship between σ and Ku is unique.
以上の検討かられかるように、Kl に適当な角度付け
を行うことにより正逆のトルクに対して、磁性膜を透磁
率は一義的となる。すなわち、透磁率の変化を検出する
ことにより、正逆を含むトルクが検出できることになる
。この角度として10’±5°が適する。As can be seen from the above discussion, by setting Kl at an appropriate angle, the magnetic permeability of the magnetic film becomes unique with respect to forward and reverse torques. That is, by detecting changes in magnetic permeability, torque including forward and reverse torques can be detected. A suitable angle is 10'±5°.
トルクの検出は回転軸上のめつき磁性膜部分を蔽うソレ
ノイドコイルのインダクタンスの変化で行う。入出力回
路はホイートストンブリッジ型の回路を採用することが
でき、ソレノイドコイルには交流電流が流され、電流値
、コイル巻数2周波数などによって、回転軸に与えられ
たトルクに依存した電気信号出力が得られる。Torque is detected by changes in the inductance of the solenoid coil that covers the plated magnetic film on the rotating shaft. The input/output circuit can adopt a Wheatstone bridge type circuit, and an alternating current is passed through the solenoid coil, and an electric signal output that depends on the torque applied to the rotating shaft is generated depending on the current value, number of coil turns, frequency, etc. can get.
非磁性不銹鋼の回転軸上に適当な大きさの本来的な単軸
異方性と応力誘起異方性を有する鉄・ニッケル系合金の
磁性膜を設け、トルクによる透磁率の変化をソレノイド
状のコイルで可逆回転磁化範囲で検出することにより、
トルクと電気信号出力の一義的な関係、特にトルクをく
り返し与えたときの出力変化が小さく、トルク検出感度
の向上など多くの点ですぐれた磁気式トルクセンサを可
能とする。これは非接触型のトルクセンサとして、従来
のものに比べて著しく構成が簡単であるのが本発明のト
ルクセンサである。A magnetic film made of an iron-nickel alloy with an appropriate size of inherent uniaxial anisotropy and stress-induced anisotropy is placed on a rotating shaft made of non-magnetic stainless steel, and changes in magnetic permeability due to torque are controlled by a solenoid-like magnetic film. By detecting in the reversible magnetization range with a coil,
A magnetic torque sensor that is superior in many respects such as a unique relationship between torque and electrical signal output, particularly small output changes when torque is repeatedly applied, and improved torque detection sensitivity, is made possible. As a non-contact type torque sensor, the torque sensor of the present invention has a significantly simpler structure than conventional ones.
以上説明した通り、本発明によれば磁気ひずみの検出感
度を高め、かつ熱的安定性のすぐれた信頼性の高いトル
クセンサが得られる。しかもホイーストンブリッジ型の
検出回路を用いることができるので、検出方法も簡便に
なる。As explained above, according to the present invention, it is possible to obtain a highly reliable torque sensor with improved magnetostriction detection sensitivity and excellent thermal stability. Furthermore, since a Wheatstone bridge type detection circuit can be used, the detection method is also simplified.
第1図はめつき磁性膜作製装置の概略構成図、第2図は
本発明の一実施例によるトルクセンサの直流磁化曲線図
、第3図は本発明の一実施例によるトルクセンサの透磁
率とトルクの関係を示す特性図、第4図は本発明の一実
施例によるトルクセンサの配置構成図、第5図は本発明
のトルクセンサの検出回路の一実施例を示す回路図、第
6図はトルクと出力電圧との関係を示す特性図、第7図
はトルクセンサの他の例を示す斜視図である。
20・・・ステンレス管(回転軸)、21・・・磁性膜
。Fig. 1 is a schematic configuration diagram of an apparatus for producing a fitted magnetic film, Fig. 2 is a DC magnetization curve diagram of a torque sensor according to an embodiment of the present invention, and Fig. 3 is a diagram showing the magnetic permeability and magnetic permeability of a torque sensor according to an embodiment of the present invention. A characteristic diagram showing the relationship between torques, FIG. 4 is a layout configuration diagram of a torque sensor according to an embodiment of the present invention, FIG. 5 is a circuit diagram showing an embodiment of a detection circuit of a torque sensor according to the present invention, and FIG. 6 7 is a characteristic diagram showing the relationship between torque and output voltage, and FIG. 7 is a perspective view showing another example of the torque sensor. 20... Stainless steel tube (rotating shaft), 21... Magnetic film.
Claims (7)
気特性の変化をソレノイドコイルを有する検出回路によ
り非接触検出することにより前記回転軸に加わるトルク
を検出するトルクセンサにおいて、前記磁性膜が前記回
転軸の円周方向を磁化容易軸とし軸方向を磁化困難軸と
する単軸異方性を有することを特徴とするトルクセンサ
。1. A torque sensor that detects torque applied to the rotating shaft by providing a magnetic film on the outer periphery of a non-magnetic rotating shaft and detecting changes in the magnetic properties of the magnetic film in a non-contact manner using a detection circuit having a solenoid coil. has uniaxial anisotropy in which the circumferential direction of the rotating shaft is an axis of easy magnetization and the axial direction is an axis of difficult magnetization.
き膜よりなることを特徴とするトルクセンサ。2. The torque sensor according to claim 1, wherein the magnetic film is a plated film.
が鉄とニッケルの合金よりなることを特徴とするトルク
センサ。3. 3. The torque sensor according to claim 2, wherein the magnetic film is made of an alloy of iron and nickel.
応力除去熱処理されためつき膜よりなることを特徴とす
るトルクセンサ。4. 4. The torque sensor according to claim 3, wherein the magnetic film is a tamped film that has been heat-treated to remove residual stress.
方向から軸方向へ10度±5度傾いた方向に前記磁性膜
の磁化容易軸を有することを特徴とするトルクセンサ。5. The torque sensor according to claim 1, wherein the axis of easy magnetization of the magnetic film is in a direction inclined by 10 degrees ± 5 degrees from the circumferential direction of the rotating shaft toward the axial direction.
気特性の変化をソレノイドコイルを有する検出回路によ
り非接触検出することにより前記回転軸に加わるトルク
を検出するトルクセンサにおいて、前記磁性膜が前記回
転軸の円周方向を磁化容易軸とし軸方向を磁化困難軸と
する単軸異方性を有し、前記検出回路がホイーストンブ
リッジ型の検出回路よりなることを特徴とするトルクセ
ンサ。6. A torque sensor that detects torque applied to the rotating shaft by providing a magnetic film on the outer periphery of a non-magnetic rotating shaft and detecting changes in the magnetic properties of the magnetic film in a non-contact manner using a detection circuit having a solenoid coil. has uniaxial anisotropy in which the circumferential direction of the rotating shaft is an axis of easy magnetization and the axial direction is an axis of difficult magnetization, and the detection circuit is comprised of a Wheatstone bridge type detection circuit. .
ブリッジ型の検出回路が、前記磁性膜を覆う2つのソレ
ノイドコイルと前記磁性膜から離れた位置の2つのソレ
ノイドコイルを含むことを特徴とするトルクセンサ。7. The torque sensor according to claim 6, wherein the Wheatstone bridge type detection circuit includes two solenoid coils covering the magnetic film and two solenoid coils located away from the magnetic film. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61048364A JPS62206421A (en) | 1986-03-07 | 1986-03-07 | Torque sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61048364A JPS62206421A (en) | 1986-03-07 | 1986-03-07 | Torque sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62206421A true JPS62206421A (en) | 1987-09-10 |
JPH0523612B2 JPH0523612B2 (en) | 1993-04-05 |
Family
ID=12801290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61048364A Granted JPS62206421A (en) | 1986-03-07 | 1986-03-07 | Torque sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62206421A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0321662A2 (en) * | 1987-12-28 | 1989-06-28 | Kubota Corporation | Torque measuring device |
US4989460A (en) * | 1987-12-26 | 1991-02-05 | Nissan Motor Company, Limited | Magnetostriction type torque sensor with temperature dependent error compensation |
JP2007093244A (en) * | 2005-09-27 | 2007-04-12 | Honda Motor Co Ltd | Magnetostrictive torque sensor and electric steering device |
JP2008026160A (en) * | 2006-07-21 | 2008-02-07 | Toshiba Corp | Method for manufacturing magnetostrictive torque sensor shaft |
US7363827B2 (en) | 2005-10-21 | 2008-04-29 | Stoneridge Control Devices, Inc. | Torque sensor system including an elliptically magnetized shaft |
US7469604B2 (en) | 2005-10-21 | 2008-12-30 | Stoneridge Control Devices, Inc. | Sensor system including a magnetized shaft |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7151972B2 (en) * | 2019-03-07 | 2022-10-12 | 多摩川精機株式会社 | Method for manufacturing magnetostrictive torque sensor and magnetostrictive torque sensor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59164932A (en) * | 1983-03-10 | 1984-09-18 | Aisin Seiki Co Ltd | Torque detector |
-
1986
- 1986-03-07 JP JP61048364A patent/JPS62206421A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59164932A (en) * | 1983-03-10 | 1984-09-18 | Aisin Seiki Co Ltd | Torque detector |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4989460A (en) * | 1987-12-26 | 1991-02-05 | Nissan Motor Company, Limited | Magnetostriction type torque sensor with temperature dependent error compensation |
EP0321662A2 (en) * | 1987-12-28 | 1989-06-28 | Kubota Corporation | Torque measuring device |
US4972727A (en) * | 1987-12-28 | 1990-11-27 | Kubota Ltd. | Torque measure device |
JP2007093244A (en) * | 2005-09-27 | 2007-04-12 | Honda Motor Co Ltd | Magnetostrictive torque sensor and electric steering device |
US7363827B2 (en) | 2005-10-21 | 2008-04-29 | Stoneridge Control Devices, Inc. | Torque sensor system including an elliptically magnetized shaft |
US7469604B2 (en) | 2005-10-21 | 2008-12-30 | Stoneridge Control Devices, Inc. | Sensor system including a magnetized shaft |
US7895906B2 (en) | 2005-10-21 | 2011-03-01 | Stoneridge Control Devices, Inc. | Sensor system including a magnetized shaft |
US8001850B2 (en) | 2005-10-21 | 2011-08-23 | Stoneridge Control Devices, Inc. | Sensor system including a magnetized shaft |
JP2008026160A (en) * | 2006-07-21 | 2008-02-07 | Toshiba Corp | Method for manufacturing magnetostrictive torque sensor shaft |
Also Published As
Publication number | Publication date |
---|---|
JPH0523612B2 (en) | 1993-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3861206A (en) | Method and device for measuring a stress employing magnetostriction | |
Narita et al. | Measurement of saturation magnetostriction of a thin amorphous ribbon by means of small-angle magnetization rotation | |
EP1181516B1 (en) | Magnetoelastic load cell | |
US20020078765A1 (en) | Torque sensor and manufacturing method of the same | |
JPS63109338A (en) | Device for electrically measuring torque in shaft indirectly in noncontact manner | |
EP0753132B1 (en) | Magnetoelastic non-contacting torque transducer | |
JPH02126174A (en) | Torque sensor | |
JPS62206421A (en) | Torque sensor | |
US4873874A (en) | Magnetoelastic torque transducer | |
JP3494018B2 (en) | Magnetic field detection sensor | |
JPS62184323A (en) | Magneto-striction type torque sensor | |
US4784003A (en) | Mechanical quantity sensor element | |
JP5081353B2 (en) | Torque transducer | |
JP2582161B2 (en) | Manufacturing method of torque sensor | |
JP3676579B2 (en) | Magneto-impedance element | |
JPH08510836A (en) | Non-contact magnetoelastic torque transducer with double anisotropic microstructure | |
JP4638713B2 (en) | Coil for sensor and magnetic sensor using the same | |
JPH0424530A (en) | Magnetostriction torque sensor | |
JPH0242419B2 (en) | ||
JPH08219908A (en) | Magnetstrictive strain sensor | |
JP3307465B2 (en) | Magnetostrictive strain sensor | |
JPH1038714A (en) | Torque measuring apparatus and paper currency feeding mechanism employing it | |
JP3024817B2 (en) | Magnetostrictive detector for magnetostrictive torque sensor and method of manufacturing the same | |
JPH10185713A (en) | Method for manufacturing strain-generating body for magnetostriction type distortion sensor | |
JPH081399B2 (en) | Physical quantity detection element and manufacturing method thereof |