JP3307465B2 - Magnetostrictive strain sensor - Google Patents

Magnetostrictive strain sensor

Info

Publication number
JP3307465B2
JP3307465B2 JP17486093A JP17486093A JP3307465B2 JP 3307465 B2 JP3307465 B2 JP 3307465B2 JP 17486093 A JP17486093 A JP 17486093A JP 17486093 A JP17486093 A JP 17486093A JP 3307465 B2 JP3307465 B2 JP 3307465B2
Authority
JP
Japan
Prior art keywords
magnetic film
coil
magnetic
transmitting member
force transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17486093A
Other languages
Japanese (ja)
Other versions
JPH06137981A (en
Inventor
満昭 池田
巖 佐々木
浩司 上村
昭彦 三嶋
長谷川秀法
正生 的野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP17486093A priority Critical patent/JP3307465B2/en
Publication of JPH06137981A publication Critical patent/JPH06137981A/en
Application granted granted Critical
Publication of JP3307465B2 publication Critical patent/JP3307465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁性体の逆磁歪効果を利
用した磁歪式歪センサに関するもので、とくに液体の圧
力測定やワイヤの引張力等を検出するための歪センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive strain sensor utilizing the inverse magnetostriction effect of a magnetic material, and more particularly to a strain sensor for measuring the pressure of a liquid or detecting the tensile force of a wire.

【0002】[0002]

【従来の技術】従来、圧力センサにおいては、油圧を利
用したダイキャストマシンやアクチュエータなどの高性
能化が進められている。例えば、油圧を正確にコントロ
ールすることにより、ダイキャストマシンではダイキャ
スト材の不良率の低下が可能となり、アクチュエータに
おいては動作の正確な制御が可能となる。このような意
味で圧力センサの開発が進められており、半導体のピエ
ゾ効果を利用したものや磁歪を利用した圧力センサが開
発されている。中でも後者は耐熱性に優れているので高
温用として有利である。図10にその構造を示す。二つ
の空洞部である受圧部1と大気圧部2からなるチタン製
パイプ12の周囲にアモルファス磁性材料14を設け、
それぞれの周囲に励磁コイル16、17と検出コイル1
8、9が配置されている。空洞部の一つは配管につなが
っており油圧を直接受けるが、他の一つは油圧を受けな
い。油圧が変化すると受圧部上の磁性材料14に歪がか
かり磁気特性が変化する。それにともない検出コイル1
9のインピーダンスは変化するが検出コイル18は変化
しないのでこの差を検出し、油圧の変化として測定す
る。また、張力センサにおいては、送電線や電車線の張
力を測定する試みが進められている。例えば、送電線の
場合電線に雪が積もり、その重さが増すと電線が荷重に
耐えられなくなり断線にいたる。したがって、電線の張
力を常時監視する必要がある。また、電車線に用いるト
ロリ線の場合、張力を一定に保たないとパンタグラフか
らの集電に支障を来すだけでなく、アーク発生に伴うト
ロリ線の異常摩耗や電波障害を引き起こす。これらの張
力を測定する張力センサには種々有るが、出力を大きく
とれる磁歪式張力センサが優れている。その構造は伝達
部材が中実である他は図10の検出方法と同じである。
張力がかかると力伝達部材が歪み、磁性膜の磁気特性が
変化し、その結果、検出コイルのインピーダンスが変化
する。この変化から張力を計測するものである。
2. Description of the Related Art Conventionally, in a pressure sensor, the performance of a die cast machine, an actuator, and the like using a hydraulic pressure has been improved. For example, by precisely controlling the hydraulic pressure, the defect rate of the die-cast material can be reduced in the die-cast machine, and the operation of the actuator can be accurately controlled. In this sense, pressure sensors are being developed, and pressure sensors utilizing the piezo effect of semiconductors and pressure sensors utilizing magnetostriction have been developed. Among them, the latter is excellent in heat resistance and therefore advantageous for high temperature use. FIG. 10 shows the structure. An amorphous magnetic material 14 is provided around a titanium pipe 12 comprising a pressure receiving portion 1 and an atmospheric pressure portion 2 which are two hollow portions,
Excitation coils 16 and 17 and detection coil 1
8 and 9 are arranged. One of the cavities is connected to the piping and receives hydraulic pressure directly, while the other receives no hydraulic pressure. When the oil pressure changes, the magnetic material 14 on the pressure receiving portion is distorted, and the magnetic characteristics change. Accompanying this, detection coil 1
Since the impedance of 9 changes but the detection coil 18 does not change, this difference is detected and measured as a change in hydraulic pressure. Further, in a tension sensor, an attempt to measure the tension of a transmission line or a train line has been advanced. For example, in the case of a power transmission line, snow accumulates on the electric wire, and when the weight increases, the electric wire cannot withstand the load, leading to disconnection. Therefore, it is necessary to constantly monitor the tension of the electric wire. In the case of a trolley wire used for a train line, if the tension is not maintained at a constant level, not only will the current collection from the pantograph be hindered, but also the trolley wire will be abnormally worn due to the occurrence of an arc and will cause radio interference. There are various types of tension sensors for measuring these tensions, and a magnetostrictive tension sensor capable of obtaining a large output is excellent. Its structure is the same as the detection method of FIG. 10 except that the transmission member is solid.
When the tension is applied, the force transmitting member is distorted, and the magnetic characteristics of the magnetic film change, and as a result, the impedance of the detection coil changes. The tension is measured from this change.

【0003】[0003]

【発明が解決しようとする課題】ところが、圧力センサ
や張力センサのように、同じ方向の歪みだけが作用する
ので、従来の構造ではトルクセンサで用いられているよ
うな圧縮力との差動により出力を大きくするなどの対策
がとれなかった。すなわち、トルクセンサの場合、トル
クの付加により引張力と圧縮力がかかる部分があり、そ
れぞれの位置に配置したコイルには符号が逆の信号が出
力される。従って、差動をとれば出力が倍になるだけで
なくノイズ分もキャンセルされる。ところが、同一方向
の歪が作用する場合は、コイルを二組設けてその出力の
和をとれば出力は2倍になるが、ノイズも2倍になるの
で意味がなくなり、出力向上はできない。このように従
来の圧力センサや張力センサは、出力が小さいため、ノ
イズ対策によるコスト上昇など実用化に支障をきたす問
題があった。また、このような磁歪式歪センサの歪に対
する出力の変化は、ヒステリシスが約1%と大きいため
測定精度が悪く、より一層の高精度化が望まれていた。
このヒステリシスの原因は、磁性体の磁区構造が面内磁
化膜(図9)であり、しかも、磁壁移動を伴うために起
こるものものである。そこで、本発明の第1の目的は出
力が大きく、ノイズに強い磁歪式歪センサを提供するこ
と、第2の目的はヒステリシスの少ない磁歪式歪センサ
を提供することにある。
However, since only strain in the same direction acts as in a pressure sensor or a tension sensor, in a conventional structure, a difference from a compressive force used in a torque sensor is obtained. Measures such as increasing the output could not be taken. That is, in the case of the torque sensor, there is a portion where a tensile force and a compressive force are applied by the addition of the torque, and signals having opposite signs are output to the coils arranged at the respective positions. Therefore, taking the differential not only doubles the output but also cancels noise. However, when distortion in the same direction acts, if two sets of coils are provided and their outputs are summed, the output will be doubled, but the noise will also be doubled, meaningless and the output cannot be improved. As described above, since the conventional pressure sensor and tension sensor have small outputs, there has been a problem that the practical use is hindered, such as an increase in cost due to measures against noise. Further, the change in the output of such a magnetostrictive strain sensor with respect to the strain has a large hysteresis of about 1%, so that the measurement accuracy is poor, and further higher accuracy has been desired.
This hysteresis is caused by the fact that the magnetic domain structure of the magnetic material is an in-plane magnetized film (FIG. 9) and involves domain wall motion. Therefore, a first object of the present invention is to provide a magnetostrictive strain sensor having a large output and being resistant to noise, and a second object is to provide a magnetostrictive strain sensor having a small hysteresis.

【0004】[0004]

【課題を解決するための手段】上記の問題を解決するた
め、本発明は、力伝達部材の表面に逆磁歪効果を有する
磁性膜を形成し、その近傍に励磁コイルと検出コイルが
巻回されたコイル対を配置し、力伝達部材の表面に発生
する歪に基づく磁性膜の透磁率の変化を検出コイルのイ
ンピーダンス変化としてとらえ、力伝達部材の表面に発
生した歪を検出する磁歪式歪センサのコイル対が少なく
とも二組から構成されており、一方の一組は磁性膜の近
傍に、他の一組は磁性膜の非形成部に配置され、かつ、
二つの励磁コイルが直列に接続された構成にしている。
また、力伝達部材が円柱状または円筒状の形状からなっ
ており、一つは磁性膜が力伝達部材の一部表面の全周に
形成され、コイル対がその周囲に同心状に巻回されたソ
レノイドコイルで、もう一つは磁性膜が力伝達部材の同
一円周上の一部に形成され、コイル対がギャップを有す
るヨークに巻回された磁気ヘッドを備えた構成にしてい
る。さらに、コイル対を四組とし、二組のコイル対を力
伝達部材に他の二組のコイル対を非力伝達部材に設け、
それぞれ、一組は磁性膜の周囲に、他の一組は磁性膜の
非形成部位に配置した構成にしている。また、磁性膜は
磁区構造が縞状磁区からなるようにしている。
In order to solve the above problems, the present invention forms a magnetic film having a reverse magnetostrictive effect on the surface of a force transmitting member, and an exciting coil and a detecting coil are wound near the magnetic film. Magnetostrictive strain sensor that arranges a pair of coils and detects the change in the magnetic permeability of the magnetic film based on the strain generated on the surface of the force transmitting member as a change in the impedance of the detection coil, and detects the strain generated on the surface of the force transmitting member. Coil pair is composed of at least two sets, one set is disposed near the magnetic film, the other set is disposed in the non-formed portion of the magnetic film, and
The configuration is such that two excitation coils are connected in series.
In addition, the force transmitting member has a columnar or cylindrical shape, and in one, a magnetic film is formed all around the partial surface of the force transmitting member, and a coil pair is concentrically wound therearound. The other is a solenoid coil in which a magnetic film is formed on a part of the force transmitting member on the same circumference and a coil pair is provided with a magnetic head wound around a yoke having a gap. Furthermore, four coil pairs are provided, two coil pairs are provided on the force transmitting member and the other two coil pairs are provided on the non-force transmitting member,
One set is arranged around the magnetic film, and the other set is arranged at a portion where the magnetic film is not formed. The magnetic film has a magnetic domain structure composed of stripe magnetic domains.

【0005】[0005]

【作用】上記手段により、磁性膜を設けた部分と磁性膜
を設けていない部分に励磁コイルと検出コイルからなる
コイル対を2組配置して力伝達部材に引張力をかける
と、磁性膜の磁気特性が変化しインピーダンスが増加す
るので、磁性膜の形成部に配置した検出コイルの出力が
変化する。一方、このインピーダンスの増加にともない
励磁電流は低下するので磁性膜を設けていない方のコイ
ルに流れる電流も低下する。その結果、膜の無い部分の
検出コイルの出力は相互インダクタンスの減少により低
下する。即ち、出力の変化は両コイルで反対になるので
差動をとれば倍の出力が得られる。また、磁性膜の磁区
構造を縞状(図8)とすることにより、歪の付加によっ
て変化する磁気特性のメカニズムが、従来の面内磁化膜
の磁壁移動によるものから磁化の回転によるものに変わ
るため、ヒステリシスが少なくなる。
According to the above-mentioned means, when two pairs of coil pairs each comprising an excitation coil and a detection coil are arranged in a portion where a magnetic film is provided and a portion where no magnetic film is provided, and a tensile force is applied to a force transmitting member, Since the magnetic characteristics change and the impedance increases, the output of the detection coil arranged at the portion where the magnetic film is formed changes. On the other hand, since the exciting current decreases as the impedance increases, the current flowing through the coil without the magnetic film also decreases. As a result, the output of the detection coil in the portion without the film decreases due to the decrease in the mutual inductance. That is, since the output change is opposite in both coils, a double output can be obtained by taking the differential. Further, by forming the magnetic domain structure of the magnetic film into a stripe shape (FIG. 8), the mechanism of the magnetic characteristic which changes by the addition of the strain changes from the conventional one due to the domain wall motion of the in-plane magnetized film to the one due to the rotation of the magnetization. Therefore, the hysteresis is reduced.

【0006】[0006]

【実施例】以下、本発明の実施例を図に基づいて詳細に
説明する。 第1実施例 図1は本発明の第1実施例を示すソレノイドコイルを用
いた磁歪式圧力センサの断面図である。図において、1
は力伝達部材であり、Ti合金製パイプおよびSUS3
16ステンレス製パイプからなる。11は受圧部、7は
磁性膜の非形成部分にもうけた励磁コイル、8は磁性膜
13の形成部分にもうけた励磁コイル、3は励磁コイル
7の外側に同心円に設けた検出コイル、4は励磁コイル
8の外側に同心円に設けた検出コイルである。磁性膜1
3は力伝達部材1の外周表面にイオンプレーティング法
による30%Ni−Co膜および電気メッキ法によるN
iメッキを被覆して形成している。コイルの仕様は励磁
コイル7、8をそれぞれ200ターン、検出コイル3、
4をそれぞれ400ターンとした。図2に電気回路の等
価回路を示すように、励磁コイル7、8は直列接続にし
ている。20は交流電源、21は交流電圧を直流電圧に
変換する直流変換回路、22は差動アンプである。い
ま、受圧部11を高圧油配管につなぎ200気圧まで圧
力を変えて出力を調べた結果、本発明の圧力センサの出
力は従来型に比べ、磁性膜の材質によらず出力で2倍、
S/N比で3倍の向上がみられた。また、図1の構成で
励磁コイルを並列に接続したもので出力を測定した条件
では、従来法の場合の2倍の出力が得られたがS/N比
も2倍になり、効果はみられなかった。並列接続の場
合、各々のコイルは独立であるので磁性膜の特性変化は
一方しか影響しない為と考えられる。直列に接続し、か
つ、磁性膜のあるところと無いところにコイルを配置し
てはじめて、出力の増大とS/N比の向上に効果がある
ことが分かる。なお、磁性膜の無いところに配置するコ
イルは力伝達部材でなくて、他の部分、例えば、空心コ
イルでも良いことは明かである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. First Embodiment FIG. 1 is a sectional view of a magnetostrictive pressure sensor using a solenoid coil according to a first embodiment of the present invention. In the figure, 1
Is a force transmitting member, a pipe made of Ti alloy and SUS3
It consists of 16 stainless steel pipes. Reference numeral 11 denotes a pressure receiving portion, 7 denotes an excitation coil provided in a portion where a magnetic film is not formed, 8 denotes an excitation coil provided in a portion where a magnetic film 13 is formed, 3 denotes a detection coil provided concentrically outside the excitation coil 7, and 4 denotes a detection coil. This is a detection coil provided concentrically outside the excitation coil 8. Magnetic film 1
Reference numeral 3 denotes a 30% Ni—Co film formed on the outer peripheral surface of the force transmitting member 1 by an ion plating method and N formed by an electroplating method.
It is formed by covering with i-plating. The coil specifications are as follows: the excitation coils 7 and 8 each have 200 turns, the detection coil 3
4 for 400 turns each. As shown in an equivalent circuit of the electric circuit in FIG. 2, the exciting coils 7 and 8 are connected in series. 20 is an AC power supply, 21 is a DC conversion circuit for converting an AC voltage into a DC voltage, and 22 is a differential amplifier. As a result of connecting the pressure receiving portion 11 to a high-pressure oil pipe and changing the pressure to 200 atm and examining the output, the output of the pressure sensor of the present invention is twice as large as that of the conventional type regardless of the material of the magnetic film.
A three-fold improvement in S / N ratio was observed. Further, under the condition that the output was measured with the excitation coil connected in parallel in the configuration of FIG. 1, the output was doubled as compared with the conventional method, but the S / N ratio was also doubled, and the effect was seen. I couldn't. In the case of the parallel connection, it is considered that since each coil is independent, the characteristic change of the magnetic film affects only one side. It can be seen that the effects of increasing the output and improving the S / N ratio are obtained only when the coils are connected in series and the coils are arranged at the place where the magnetic film is present and where the coil is not present. It is apparent that the coil disposed in the area where the magnetic film is not provided is not a force transmitting member but may be another part, for example, an air-core coil.

【0007】第2実施例 図3は本発明の第2実施例を示すソレノイドコイルを用
いた磁歪式圧力センサの断面図である。この構成は第1
実施例の構成に非力伝達部材2の外周部にさらに二組の
コイル対15を加えたものである。すなわち、磁性膜1
3の形成部を非力伝達部材2まで延長し、この外周部に
1組のコイル対15を、磁性膜の非形成部にもう1組の
コイル対15を設けている。図4にその等価回路を示
す。この非力伝達部材2の外周に設けた2組のコイル対
の励磁回路9、10も直列接続にしており、図2と全く
同じ回路としてる。最終出力は受圧部11側の差動出力
と大気圧部12側の差動出力との差動をとっている。第
1実施例と同様に差動出力を調べた結果、本発明の圧力
センサは磁性膜の材質によらず出力で3.5倍、S/N
比で5倍の向上がみられた。 第3実施例 図5は本発明の第3実施例を示すソレノイドコイルを用
いた磁歪式張力センサの部分断面図である。図において
1はチタン合金棒からなる力伝達部材である。磁性膜1
3は第1実施例と同様に形成され、磁性膜13の外周に
1組のコイル対と磁性膜を形成していない部分にもう1
組のコイル対を設けた構成である。コイルの仕様は第1
実施例と同様である。いま、力伝達部材1の両端に引張
力を加え引張力−出力特性を測定した。その結果、従来
法に比べて出力は2倍になり、S/N比も2倍に向上す
ることが分かった。なお、本発明の実施例では磁性膜の
形成にメッキ法及びイオンプレーティング法しか使用し
ていないが、スパッタ法やアモルファス磁性体を接着す
る方法など他の磁性膜形成法を使用しても同じ効果が得
られることは明かである。また、引張力だけ作用する例
について述べたが、圧縮力だけ作用する場合についても
同様の効果があることも明かである。
Second Embodiment FIG. 3 is a sectional view of a magnetostrictive pressure sensor using a solenoid coil according to a second embodiment of the present invention. This configuration is the first
In the configuration of the embodiment, two pairs of coil pairs 15 are further added to the outer peripheral portion of the non-force transmitting member 2. That is, the magnetic film 1
3 is extended to the non-force transmitting member 2, and one set of coil pairs 15 is provided on the outer peripheral portion, and another set of coil pairs 15 is provided on the non-formed portion of the magnetic film. FIG. 4 shows an equivalent circuit thereof. The excitation circuits 9 and 10 of the two pairs of coils provided on the outer periphery of the non-force transmitting member 2 are also connected in series, and have exactly the same circuit as in FIG. The final output is a differential between the differential output on the pressure receiving section 11 side and the differential output on the atmospheric pressure section 12 side. As a result of examining the differential output in the same manner as in the first embodiment, the output of the pressure sensor of the present invention was 3.5 times and the S / N ratio was irrespective of the material of the magnetic film.
A five-fold improvement was seen. Third Embodiment FIG. 5 is a partial sectional view of a magnetostrictive tension sensor using a solenoid coil according to a third embodiment of the present invention. In the figure, reference numeral 1 denotes a force transmitting member made of a titanium alloy rod. Magnetic film 1
Reference numeral 3 is formed in the same manner as in the first embodiment, and one set of coil pairs is formed on the outer periphery of the magnetic film 13 and another is formed on the portion where the magnetic film is not formed.
This is a configuration in which a set of coil pairs is provided. Coil specifications are first
This is the same as the embodiment. Now, a tensile force is applied to both ends of the force transmitting member 1 to measure a tensile force-output characteristic. As a result, it was found that the output was doubled and the S / N ratio was doubled as compared with the conventional method. In the embodiment of the present invention, only the plating method and the ion plating method are used for forming the magnetic film. However, the same applies when other magnetic film forming methods such as a sputtering method and a method of bonding an amorphous magnetic material are used. It is clear that the effect is obtained. In addition, although an example in which only a tensile force is applied has been described, it is apparent that a similar effect is obtained when only a compressive force is applied.

【0008】第4実施例 図6は本発明の第4実施例を示す磁気ヘッドを用いた磁
歪式張力センサの部分断面図である。図において1は力
伝達部材である張力伝達軸(シャフト)、13は磁性
膜、23、27は磁気ヘッドである。シャフト1はSU
S304からなり、これをトリクレン、純水、アルコー
ルの順に超音波洗浄を施したのち、スパッタ装置内にセ
ットした。5×10-6Torr以下に排気したのち、シ
ャフトを400℃に加熱し、シャフトの一部にほぼ半周
だけ90%NiーFe磁性膜を5μmの厚さに形成し
た。張力伝達軸(シャフト)1の磁性膜13の形成部の
外周に磁気ヘッド23を、磁性膜の非形成部の外周に磁
気ヘッド27を配置した。それぞれ、励磁コイル25、
29は200ターン、検出コイル26、30は600タ
ーンとし、二組の励磁コイルは直列に接続して配線を行
った。いま、張力伝達軸(シャフト)1の両端に引張力
を加え引張力−出力特性を測定した。その結果、実施例
1と同様、従来法に比べて出力は2倍になり、S/N比
も2倍に向上することが分かった。 第5実施例 図7は本発明の第5実施例を示す磁気ヘッドを用いた磁
歪式圧力センサの部分断面図である。図において1は力
伝達部材、11は受圧部、13は磁性膜、31、35は
磁気ヘッドである。力伝達部材1は一つはチタン合金製
パイプからなり、その表面の一部にイオンプレーティン
グ法による30%Ni−Co膜を被覆し、もう一つはS
US316ステンレス製パイプの表面の一部に電気メッ
キ法によるNiメッキを被覆した。圧力センサは受圧部
11の磁性膜13の形成部および非形成部の近傍にそれ
ぞれ磁気ヘッド31、35を一定のギャップを設けて配
置した。磁気ヘッドの励磁コイル33、37、検出コイ
ル34、38の仕様は第4実施例と同じであり、2つの
励磁コイル33、37は直列に接続している。いま、受
圧部11を高圧油配管に接続し200気圧まで圧力を加
えて圧力−出力特性を測定した。その結果、実施例1と
同様、従来法に比べて出力は2倍になり、S/N比も2
倍に向上することが分かった。
FIG. 6 is a partial sectional view of a magnetostrictive tension sensor using a magnetic head according to a fourth embodiment of the present invention. In the figure, reference numeral 1 denotes a tension transmitting shaft (shaft) as a force transmitting member, 13 denotes a magnetic film, and 23 and 27 denote magnetic heads. Shaft 1 is SU
This was composed of S304, which was subjected to ultrasonic cleaning in the order of trichlene, pure water, and alcohol, and then set in a sputtering apparatus. After evacuating to 5 × 10 −6 Torr or less, the shaft was heated to 400 ° C., and a 90% Ni—Fe magnetic film was formed on a part of the shaft to a thickness of 5 μm almost halfway. The magnetic head 23 was arranged on the outer periphery of the portion of the tension transmitting shaft (shaft) 1 where the magnetic film 13 was formed, and the magnetic head 27 was arranged on the outer periphery of the portion where the magnetic film 13 was not formed. The excitation coil 25,
29 is 200 turns, and the detection coils 26 and 30 are 600 turns, and two sets of excitation coils are connected in series for wiring. Now, a tensile force is applied to both ends of the tension transmitting shaft (shaft) 1 to measure a tensile force-output characteristic. As a result, as in Example 1, it was found that the output was doubled and the S / N ratio was doubled as compared with the conventional method. Fifth Embodiment FIG. 7 is a partial sectional view of a magnetostrictive pressure sensor using a magnetic head according to a fifth embodiment of the present invention. In the figure, 1 is a force transmitting member, 11 is a pressure receiving portion, 13 is a magnetic film, and 31 and 35 are magnetic heads. One of the force transmitting members 1 is made of a titanium alloy pipe, a part of the surface of which is coated with a 30% Ni-Co film by an ion plating method, and the other is S
A portion of the surface of the US316 stainless steel pipe was coated with Ni plating by electroplating. In the pressure sensor, magnetic heads 31 and 35 were arranged with a certain gap in the vicinity of a portion where the magnetic film 13 was formed and a portion where the magnetic film 13 was not formed. The specifications of the excitation coils 33 and 37 and the detection coils 34 and 38 of the magnetic head are the same as in the fourth embodiment, and the two excitation coils 33 and 37 are connected in series. Now, the pressure receiving section 11 was connected to a high-pressure oil pipe, pressure was applied to 200 atm, and pressure-output characteristics were measured. As a result, the output is doubled and the S / N ratio is 2
It was found to improve twice.

【0009】第6実施例 本発明の第6実施例は図5の第3実施例と同様な磁歪式
張力センサを構成した。図において、1は力伝達部材が
SUS304からなるシャフトであり、13は縞状磁区
の磁区構造を有する磁性膜である。シャフト1はトリク
レン、純水、アルコールの順に超音波洗浄を施したの
ち、スパッタ装置内にセットし、5×10-6Torr以
下に排気し、シャフトを400℃に加熱した後、シャフ
トの一部に90%NiーFe磁性膜を5μmの厚さに形
成して作製したものである。成膜に際しては成膜速度を
種々変えた試料を作製し、膜の磁区観察をカー効果とビ
ッタ法を使って行った。シャフト1の周囲に配置した検
出コイル11は600ターンであり、励磁コイル12は
200ターンとした。つぎに、これらの試料を用い、2
kg/mm2 までの張力を付加してヒステリシスを測定
した。表1に結果を示す。
Sixth Embodiment A sixth embodiment of the present invention comprises a magnetostrictive tension sensor similar to the third embodiment shown in FIG. In the figure, reference numeral 1 denotes a shaft whose force transmitting member is made of SUS304, and 13 denotes a magnetic film having a magnetic domain structure of stripe magnetic domains. The shaft 1 is subjected to ultrasonic cleaning in the order of trichlene, pure water, and alcohol, then set in a sputtering apparatus, evacuated to 5 × 10 −6 Torr or less, heated to 400 ° C., and partially heated. A 90% Ni—Fe magnetic film was formed to a thickness of 5 μm. At the time of film formation, samples with various film formation rates were prepared, and magnetic domains of the film were observed using the Kerr effect and the Bitter method. The detection coil 11 arranged around the shaft 1 has 600 turns, and the excitation coil 12 has 200 turns. Next, using these samples,
Hysteresis was measured by applying a tension up to kg / mm 2 . Table 1 shows the results.

【0010】[0010]

【表1】 [Table 1]

【0011】この結果から成膜速度が速いと縞状磁区に
なり、ヒステリシスも小さい事が分かる。表1内の面内
磁化と記したものは従来例であり、ヒステリシスは大き
い。 第7実施例 本発明の第7実施例は図1の第1実施例と同様な磁歪式
圧力センサを構成した。図において、1は力伝達部材が
Ti合金からなるシャフトであり、13は縞状磁区の磁
区構造を有する磁性膜である。Ti合金製のシャフト1
の前処理は第6実施例と同様にし、磁性膜13はスパッ
タリング法により30%Ni−Co膜を種々のアルゴン
分圧のもとで被覆して作製した。また、巻線仕様や磁区
観察方法も第6実施例と同様にした。つぎに、これらの
試料を用い、200気圧までの種々の圧力を付加してヒ
ステリシスを調べた結果を表2に示す。
From these results, it can be seen that when the film forming speed is high, stripe-shaped magnetic domains are formed and the hysteresis is small. What is described as in-plane magnetization in Table 1 is a conventional example, and the hysteresis is large. Seventh Embodiment A seventh embodiment of the present invention constitutes a magnetostrictive pressure sensor similar to the first embodiment of FIG. In the figure, reference numeral 1 denotes a shaft whose force transmitting member is made of a Ti alloy, and 13 denotes a magnetic film having a magnetic domain structure of stripe magnetic domains. Shaft made of Ti alloy 1
Was performed in the same manner as in the sixth embodiment, and the magnetic film 13 was formed by coating a 30% Ni—Co film under various argon partial pressures by a sputtering method. The winding specifications and magnetic domain observation method were the same as in the sixth embodiment. Next, using these samples, various pressures up to 200 atm were applied and the results of examining the hysteresis are shown in Table 2.

【0012】[0012]

【表2】 [Table 2]

【0013】第6実施例と同じく縞状磁区になるとヒス
テリシスが小さくなる事が分かる。なお、磁性体の磁区
が縞状磁区になる条件は種々あると考えられる。本発明
の実施例では成膜速度が大きいほど、また、アルゴン分
圧が小さいほど縞状磁区になっている。しかし、スパッ
タ法以外でも縞状磁区を作製する事は可能であると考え
られる。
It can be seen that the hysteresis is reduced when the magnetic domains are stripes as in the sixth embodiment. It is considered that there are various conditions under which the magnetic domains of the magnetic material become stripe magnetic domains. In the embodiment of the present invention, the stripe-shaped magnetic domains are formed as the film formation rate is increased and the argon partial pressure is decreased. However, it is considered that stripe magnetic domains can be produced by a method other than the sputtering method.

【0014】[0014]

【発明の効果】以上述べたように、本発明によれば、力
伝達部材の磁性膜の近傍と磁性膜のない部分にそれぞれ
設けたソレノイドコイルまたは磁気ヘッドの2つの励磁
コイルを直列に接続した構成にしたので、歪に対する出
力が大きくとれ、しかもS/N比が大きくノイズに強い
磁歪式歪センサを得ることができる。また、磁性膜の磁
区構造を縞状にしたので、ヒステリシスが小さい高精度
な磁歪式歪センサを提供できる。
As described above, according to the present invention, two exciting coils of a solenoid coil or a magnetic head provided respectively in the vicinity of the magnetic film of the force transmitting member and in the portion without the magnetic film are connected in series. With this configuration, it is possible to obtain a magnetostrictive strain sensor capable of obtaining a large output with respect to distortion, having a large S / N ratio, and being resistant to noise. Further, since the magnetic domain structure of the magnetic film is formed in a stripe shape, a high-precision magnetostrictive strain sensor with small hysteresis can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す磁歪式圧力センサの
断面図である。
FIG. 1 is a sectional view of a magnetostrictive pressure sensor according to a first embodiment of the present invention.

【図2】本発明の第1実施例の等価回路を示す図であ
る。
FIG. 2 is a diagram showing an equivalent circuit of the first embodiment of the present invention.

【図3】本発明の第2実施例を示す磁歪式圧力センサの
断面図である。
FIG. 3 is a sectional view of a magnetostrictive pressure sensor according to a second embodiment of the present invention.

【図4】本発明の第2実施例の等価回路を示す図であ
る。
FIG. 4 is a diagram showing an equivalent circuit according to a second embodiment of the present invention.

【図5】本発明の第3実施例を示す磁歪式張力センサの
部分断面図である。
FIG. 5 is a partial sectional view of a magnetostrictive tension sensor showing a third embodiment of the present invention.

【図6】本発明の第4実施例を示す張力センサの部分断
面図である。
FIG. 6 is a partial sectional view of a tension sensor showing a fourth embodiment of the present invention.

【図7】本発明の第5実施例を示す圧力センサを示す部
分断面図である。
FIG. 7 is a partial sectional view showing a pressure sensor according to a fifth embodiment of the present invention.

【図8】本発明の磁歪式歪センサに用いた磁性膜の縞状
磁区を表す模式図である。
FIG. 8 is a schematic diagram showing stripe magnetic domains of a magnetic film used in the magnetostrictive strain sensor of the present invention.

【図9】従来の磁歪式歪センサで使用されている磁性膜
の面内磁化膜の磁区構造を表す模式図である。
FIG. 9 is a schematic diagram showing a magnetic domain structure of an in-plane magnetized film of a magnetic film used in a conventional magnetostrictive strain sensor.

【図10】従来の圧力センサを示す断面図である。FIG. 10 is a sectional view showing a conventional pressure sensor.

【符号の説明】[Explanation of symbols]

1 力伝達部材 2 非力伝達部材 3、4、5、6、18、19、26、29、34、38
検出コイル 7、8、9、10、16、17、25、30、33、3
7 励磁コイル 11 受圧部 12 大気圧部 13、14 磁性膜 15 コイル対 20 交流電源 21 直流変換回路 22 差動アンプ 23、27、31、35 磁気ヘッド 24、28、32、36 ヨーク
1 Force transmission member 2 Non-force transmission member 3, 4, 5, 6, 18, 19, 26, 29, 34, 38
Detection coil 7, 8, 9, 10, 16, 17, 25, 30, 33, 3
7 Excitation coil 11 Pressure receiving part 12 Atmospheric pressure part 13, 14 Magnetic film 15 Coil pair 20 AC power supply 21 DC conversion circuit 22 Differential amplifier 23, 27, 31, 35 Magnetic head 24, 28, 32, 36 Yoke

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川秀法 福岡県北九州市八幡西区黒崎城石2番1 号 株式会社安川電機内 (72)発明者 的野 正生 福岡県北九州市八幡西区黒崎城石2番1 号 株式会社安川電機内 審査官 長井 真一 (56)参考文献 特開 平3−131733(JP,A) 特開 平3−10138(JP,A) 特開 平3−10137(JP,A) 特開 平2−128131(JP,A) 特開 平4−145334(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01L 9/16 G01L 1/12 G01L 5/10 G01L 3/10 G01R 33/18 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hidenori Hasegawa 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture (72) Inventor Masao Matino 2 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture No. 1 Examiner, Yaskawa Electric Co., Ltd. Shinichi Nagai (56) References JP-A-3-131733 (JP, A) JP-A-3-10138 (JP, A) JP-A-3-10137 (JP, A) JP-A-2-128131 (JP, A) JP-A-4-145334 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01L 9/16 G01L 1/12 G01L 5/10 G01L 3/10 G01R 33/18 JICST file (JOIS)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】力伝達部材の表面に逆磁歪効果を有する磁
性膜を形成し、その近傍に励磁コイルと検出コイルが巻
回されたコイル対が配置され、前記力伝達部材の表面に
発生する歪に基づく前記磁性膜の透磁率の変化を検出コ
イルのインピーダンス変化としてとらえ、前記力伝達部
材の表面に発生した歪を検出する歪センサにおいて、前
記コイル対が少なくとも二組から構成されており、一方
の一組は前記磁性膜の近傍に、他の一組は前記磁性膜の
非形成部に配置され、かつ、二つの励磁コイルが直列に
接続されていることを特徴とする磁歪式歪センサ。
1. A magnetic film having an inverse magnetostriction effect is formed on a surface of a force transmitting member, and a coil pair in which an exciting coil and a detecting coil are wound is disposed near the magnetic film, and the magnetic film is generated on the surface of the force transmitting member. In a strain sensor that detects a change in magnetic permeability of the magnetic film based on strain as a change in impedance of a detection coil and detects strain generated on the surface of the force transmitting member, the coil pair includes at least two pairs, Magnetostrictive strain sensors characterized in that one set is located near the magnetic film and the other set is located at the non-formed portion of the magnetic film, and two exciting coils are connected in series. .
【請求項2】前記力伝達部材が円柱状または円筒状の形
状からなり、前記磁性膜が前記力伝達部材の一部表面の
全周に形成され、前記コイル対がその周囲に同心状に巻
回されたソレノイドコイルであることを特徴とする請求
項1記載の磁歪式歪センサ。
2. The force transmitting member has a columnar or cylindrical shape, the magnetic film is formed on the entire periphery of a partial surface of the force transmitting member, and the coil pair is concentrically wound therearound. 2. The magnetostrictive strain sensor according to claim 1, wherein the magnetostrictive strain sensor is a turned solenoid coil.
【請求項3】前記力伝達部材が円柱状または円筒状の形
状からなり、前記磁性膜が前記力伝達部材の同一円周上
の一部に形成され、前記コイル対がギャップを有するヨ
ークに巻回された磁気ヘッドであることを特徴とする請
求項1記載の磁歪式歪センサ。
3. The force transmitting member has a cylindrical or cylindrical shape, the magnetic film is formed on a part of the force transmitting member on the same circumference, and the coil pair is wound around a yoke having a gap. 2. The magnetostrictive strain sensor according to claim 1, wherein the magnetostrictive strain sensor is a turned magnetic head.
【請求項4】前記磁性膜の非形成部が非力伝達部材であ
ることを特徴とする請求項2または3記載の磁歪式歪セ
ンサ。
4. The magnetostrictive strain sensor according to claim 2, wherein the non-formed portion of the magnetic film is a non-force transmitting member.
【請求項5】前記コイル対を四組とし、二組のコイル対
を力伝達部材に他の二組のコイル対を非力伝達部材に設
け、それぞれ、一組は磁性膜の周囲に、他の一組は磁性
膜の非形成部に配置したことを特徴とする請求項2また
は3記載の磁歪式歪センサ。
5. The apparatus according to claim 1, wherein the coil pairs are four sets, two coil pairs are provided on the force transmitting member, and the other two coil pairs are provided on the non-force transmitting member. 4. The magnetostrictive strain sensor according to claim 2, wherein one set is arranged in a portion where no magnetic film is formed.
【請求項6】前記磁性膜の磁区構造が縞状磁区からなる
ことを特徴とする請求項1から5記載の磁歪式歪セン
サ。
6. The magnetostrictive strain sensor according to claim 1, wherein the magnetic domain structure of the magnetic film is a stripe magnetic domain.
【請求項7】前記縞状磁区の縞の方向が磁性膜内で揃っ
ていることを特徴とする請求項6記載の磁歪式歪セン
サ。
7. The magnetostrictive strain sensor according to claim 6, wherein the directions of the stripes of the stripe magnetic domains are aligned in the magnetic film.
JP17486093A 1992-09-10 1993-06-21 Magnetostrictive strain sensor Expired - Fee Related JP3307465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17486093A JP3307465B2 (en) 1992-09-10 1993-06-21 Magnetostrictive strain sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-269755 1992-09-10
JP26975592 1992-09-10
JP17486093A JP3307465B2 (en) 1992-09-10 1993-06-21 Magnetostrictive strain sensor

Publications (2)

Publication Number Publication Date
JPH06137981A JPH06137981A (en) 1994-05-20
JP3307465B2 true JP3307465B2 (en) 2002-07-24

Family

ID=26496320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17486093A Expired - Fee Related JP3307465B2 (en) 1992-09-10 1993-06-21 Magnetostrictive strain sensor

Country Status (1)

Country Link
JP (1) JP3307465B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600808B1 (en) * 2004-12-08 2006-07-18 주식회사 엠디티 Variable inductor type MEMS pressure sensor using magnetostrictive effect
CN113227736B (en) * 2018-12-28 2023-10-10 日本发条株式会社 Stress detection device
CN115452204B (en) * 2022-08-30 2023-05-12 华能广西清洁能源有限公司 Force sensing measurement method based on inverse magnetostriction effect

Also Published As

Publication number Publication date
JPH06137981A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
US4750371A (en) Torque sensor for detecting a shaft torque and an electric machine in which the torque sensor is mounted
JPH05196517A (en) Torque detecting device and torque measuring method
JP2785839B2 (en) Soft magnetic film bias type magnetoresistive sensor
JPS5977326A (en) Magneto-striction type torque sensor
JP3307465B2 (en) Magnetostrictive strain sensor
US4762008A (en) Torque detecting apparatus
JP3494018B2 (en) Magnetic field detection sensor
JPS62184323A (en) Magneto-striction type torque sensor
JPS62206421A (en) Torque sensor
CN111381200B (en) Magnetic sensor for differential output by using 180-degree reverse phase modulation nonlinear magnetoelectric effect
JPS59164931A (en) Torque detector
JPS59166827A (en) Magnetostriction type torque sensor by differential system
JP3521010B2 (en) Magnetostrictive strain sensor
JPH08510836A (en) Non-contact magnetoelastic torque transducer with double anisotropic microstructure
Rissing et al. Inductive microtransformer exploiting the magnetoelastic effect
JPS60123078A (en) Torque sensor
JPS59166828A (en) Torque detector
JPS59164932A (en) Torque detector
Kinoshita Estimation of the radius of the inner core and the angle of the easy axis of its magnetization for as-prepared amorphous magnetostrictive wire
JPH0979922A (en) Magnetostrictive sensor
JPH08219908A (en) Magnetstrictive strain sensor
CN114688962B (en) System and method for measuring magnetostrictive strain of rare earth giant magnetostrictive material
JPS61240132A (en) Sensor detection method
JPH06180262A (en) Magnetostrictive strain sensor
JPH04221726A (en) Manufacture of magnetostriction detector for torque sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees