JPH06180262A - Magnetostrictive strain sensor - Google Patents

Magnetostrictive strain sensor

Info

Publication number
JPH06180262A
JPH06180262A JP4352946A JP35294692A JPH06180262A JP H06180262 A JPH06180262 A JP H06180262A JP 4352946 A JP4352946 A JP 4352946A JP 35294692 A JP35294692 A JP 35294692A JP H06180262 A JPH06180262 A JP H06180262A
Authority
JP
Japan
Prior art keywords
transmitting member
coil
force
power transmitting
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4352946A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Koji Kamimura
浩司 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP4352946A priority Critical patent/JPH06180262A/en
Publication of JPH06180262A publication Critical patent/JPH06180262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To provide a magnetostrictive strain sensor which suppresses temperature drift and has large outputting and high noise-resistance regardless of the material quality of power transmitting member. CONSTITUTION:At least two pairs of coil pairs 6 consisting of exciting coils 7 and 8 and detecting coils 9 and 10 are arranged on the periphery of a power transmitting member 3 consisting of a magnetic material having reverse magnetostrictive effect or a power transmitting member 3 consisting of a non- magnetic material where a magnetic film having reverse magnetostrictive effect is formed on the surface thereof. Further, the changes in magnetic permeability caused by the strain generating on the surface of the member 3 are recognized as impedance change in a detecting coil, and a part where no power is transmitted thereto is arranged in a part of or adjacent to the power transmitting member for a magneto-strictive strain sensor for detecting strain in the power transmitting member, wherein at least one pair of two pairs of coil pairs is arranged in the part with no power transmitted or in the periphery of the magnetic film formed in the part with no power transmitted and another pair is arranged in the periphery of the power transmitting member, while respective coils 7 and 8 are connected in series.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性体の逆磁歪効果を利
用した磁歪式歪センサに関するもので、とくに、液体の
圧力測定やワイヤの張力を測定するための歪センサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive strain sensor utilizing the inverse magnetostrictive effect of a magnetic material, and more particularly to a strain sensor for measuring liquid pressure and wire tension.

【0002】[0002]

【従来の技術】最近、油圧を利用したダイキャストマシ
ンやアクチュエータの高性能化が進められている。例え
ば、ダイキャストマシンでは油圧を正確にコントロール
することによりダイキャスト材の不良率の低下が図られ
る。また、アクチュエータにおいては動作の正確な制御
につながる。このような意味で圧力センサの開発が進め
られており、半導体のピエゾ効果を利用したものや磁歪
を利用した圧力センサが開発されている。中でも後者は
耐熱性に優れているので高温用として有利である。図5
にその構造を示す。圧力センサはチタン製パイプを用い
て、受圧部1、大気圧部2を構成し、磁性膜4をパイプ
外周表面に形成し、その周囲に励磁コイル22〜25と
検出コイル26〜29を巻回している。受圧部1の2組
の励磁コイル24、25は直列接続されている。また、
大気圧部2の励磁コイル22、23も直列接続にしてい
る。受圧部1は高圧配管につながっており油圧を直接受
けるが、他の一つは油圧を受けない。今、油圧が変化す
ると受圧部1の磁性膜4に歪がかかり磁気特性が変化す
る。それにともない検出コイル28と29のインピーダ
ンスは互いに反対方向に変化するので、その出力の差動
をとると最終の出力は大きくなりノイズは少なくなる。
一方、検出コイル26と27は変化しないので受圧部と
大気圧部の差を検出し、油圧の変化として測定する。
2. Description of the Related Art Recently, the performance of die cast machines and actuators utilizing hydraulic pressure has been improved. For example, in a die cast machine, the defect rate of the die cast material can be reduced by accurately controlling the hydraulic pressure. Also, in the actuator, it leads to accurate control of the operation. In this sense, pressure sensors are being developed, and pressure sensors that utilize the piezoelectric effect of semiconductors and pressure sensors that utilize magnetostriction are being developed. Of these, the latter is excellent in heat resistance and is therefore advantageous for high temperatures. Figure 5
The structure is shown in. The pressure sensor uses a titanium pipe to form a pressure receiving portion 1 and an atmospheric pressure portion 2, a magnetic film 4 is formed on the outer peripheral surface of the pipe, and excitation coils 22 to 25 and detection coils 26 to 29 are wound around the magnetic film 4. ing. The two sets of exciting coils 24 and 25 of the pressure receiving unit 1 are connected in series. Also,
The exciting coils 22 and 23 of the atmospheric pressure section 2 are also connected in series. The pressure receiving portion 1 is connected to the high pressure pipe and directly receives the hydraulic pressure, but the other one does not receive the hydraulic pressure. When the hydraulic pressure changes, the magnetic film 4 of the pressure receiving portion 1 is distorted and the magnetic characteristics change. Along with this, the impedances of the detection coils 28 and 29 change in the opposite directions, so that when the outputs of the detection coils are differentiated, the final output is increased and the noise is reduced.
On the other hand, since the detection coils 26 and 27 do not change, the difference between the pressure receiving portion and the atmospheric pressure portion is detected and measured as a change in hydraulic pressure.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の圧力
センサの構成では力伝達部材が磁性体の場合は同じ構造
をとることができない。また、非磁性体で構成された圧
力センサの場合でも温度変化により磁性膜がある部分と
無い部分の温度特性が異なるので温度ドリフトが生じる
といった問題を生じていた。そこで、本発明は力伝達部
材の材質によらず、温度ドリフトを小さくし、しかも、
出力がを大きく、ノイズに強い磁歪式歪センサを提供す
ることを目的としたものである。
However, the structure of the conventional pressure sensor cannot have the same structure when the force transmitting member is a magnetic body. Further, even in the case of a pressure sensor made of a non-magnetic material, there is a problem that a temperature drift occurs because the temperature characteristics of a portion with a magnetic film and a portion without a magnetic film are different due to temperature change. Therefore, the present invention reduces the temperature drift regardless of the material of the force transmitting member, and
It is an object of the present invention to provide a magnetostrictive strain sensor which has a large output and is resistant to noise.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するため
本発明は、逆磁歪効果を有する磁性体からなる力伝達部
材または逆磁歪効果を有する磁性膜を表面に形成した非
磁性体からなる力伝達部材の周囲に、励磁コイルと検出
コイルからなるコイル対が少なくとも二組配置されてお
り、前記力伝達部材の表面に発生する歪に基づく透磁率
の変化を検出コイルのインピーダンス変化としてとら
え、前記力伝達部材の歪を検出する磁歪式歪センサにお
いて、前記力伝達部材の一部もしくは近傍に力が伝達さ
れない部分を構成し、前記少なくとも二組のコイル対の
うち一組を、力が伝達されない部分または力が伝達され
ない部分に形成された磁性膜の周囲に、他の一組を力伝
達部材の周囲に配置し、かつ、各々の励磁コイルが直列
に接続した構成にしている。
In order to solve the above problems, the present invention provides a force transmitting member made of a magnetic material having an inverse magnetostrictive effect or a force made of a non-magnetic material having a magnetic film having an inverse magnetostrictive effect formed on its surface. Around the transmission member, at least two sets of coil pairs consisting of an excitation coil and a detection coil are arranged, and the change in magnetic permeability based on the strain generated on the surface of the force transmission member is detected as the change in impedance of the detection coil, In a magnetostrictive strain sensor for detecting the strain of a force transmitting member, a part where the force is not transmitted is formed in a part of or near the force transmitting member, and one of the at least two coil pairs is not transmitted with the force. Another set is arranged around the force transmitting member around the magnetic film formed in the portion or the portion where the force is not transmitted, and each exciting coil is connected in series. There.

【0005】[0005]

【作用】力伝達部材の一部に力が伝達されない部分を形
成し、力が伝達される部分と力が伝達されない部分の磁
性部材の構成を同じにし、かつ、近傍に配置したので、
双方の磁性部材およびコイルの温度変化は同じになる。
従って、双方の出力の差動をとることにより温度変化を
なくすことができ、しかも、出力は従来と同様大きくと
れ、ノイズも少なくなる。
[Function] Since a part where the force is not transmitted is formed in a part of the force transmitting member, and the structure of the magnetic member of the part where the force is transmitted is the same as that of the part where the force is not transmitted, and it is arranged in the vicinity.
The temperature changes of both magnetic members and the coil are the same.
Therefore, it is possible to eliminate the temperature change by taking the differential between both outputs, and moreover, the output can be made large and the noise is reduced as in the conventional case.

【0006】[0006]

【実施例】以下、本発明の実施例を図に基づいて詳細に
説明する。 第1実施例 図1は本発明の第1実施例を示す圧力センサの断面図で
ある。図において、1は受圧部、3は力伝達部材、5は
非力伝達部材、7〜8は励磁コイル、9〜10は検出コ
イルである。受圧部1はマルエージング鋼製の磁性パイ
プを同心円状の段付に加工された圧力を感じる力伝達部
材3からなる。非力伝達部材5は力伝達部材3の段付部
に設けられ外形は同じ寸法の圧力を感じない部材であ
る。力伝達部材3の周囲には励磁コイル7と検出コイル
9からなるコイル対6を、非力伝達部材5の周囲には励
磁コイル8と検出コイル10からなるコイル対6を設け
ている。コイルの仕様は励磁コイル7と8をそれぞれ2
00ターン、検出コイル9、10をそれぞれ400ター
ンとした。励磁コイル7、8は図2に電気回路の等価回
路を示すように、直列接続にしている。19は交流電
源、20は交流電圧を直流電圧に変換する直流変換回
路、21は差動アンプである。いま、受圧部1を高圧油
配管に接続し周囲温度を零から100℃まで変化して温
度ドリフトを調べた。温度変化が10℃に対して、従来
法の圧力センサが1%、本発明の圧力センサは0.01
%と非常に小さく良好な結果が得られた。 第2実施例 図3は本発明の第2実施例を示す圧力センサの断面図で
ある。この構成はTi合金製パイプからなり受圧部1の
構成に、大気圧部2にコイル対6を二組加えたものであ
る。図において、4は磁性膜、11〜14は励磁コイ
ル、15〜18は検出コイルである。受圧部1および大
気圧部2ともにTi合金製パイプに段付部を加工し、圧
力を感じない非力伝達部材5を設けている。そして、伝
達部材3および非力伝達部材5の周囲にイオンプレーテ
ィング法により50%Ni−Fe膜を被覆しいてる。図
4に電気回路の等価回路を示すように、励磁コイル11
と12、13と14を直列接続にしている。コイルの仕
様は第1実施例と同様に励磁コイルがそれぞれ200タ
ーン、検出コイルがそれぞれ400ターンである。い
ま、第1実施例と同様に受圧部1を高圧油配管に接続し
周囲温度を零から100℃まで変化して温度ドリフトを
調べた。温度変化が10℃に対して、従来法の圧力セン
サが1%、本発明の圧力センサは0.02%と非常に小
さく良好な結果が得られた。なお、本発明の実施例では
磁性膜の形成にイオンプレーティング法しか使用してい
ないが、スパッタ法やアモルファス磁性体を接着する方
法など他の磁性膜形成法を使用しても同じ効果が得られ
ることは明らかである。また、圧力が印加した際の張力
だけ作用する例について述べたが、圧縮力だけ作用する
場合についても同様の効果があることも明かである。。
Embodiments of the present invention will now be described in detail with reference to the drawings. First Embodiment FIG. 1 is a sectional view of a pressure sensor showing a first embodiment of the present invention. In the figure, 1 is a pressure receiving portion, 3 is a force transmitting member, 5 is a non-force transmitting member, 7 to 8 are exciting coils, and 9 to 10 are detecting coils. The pressure receiving portion 1 is composed of a force-transmitting member 3 which is formed by processing a magnetic pipe made of maraging steel into concentric steps and which senses pressure. The non-force transmission member 5 is a member that is provided on the stepped portion of the force transmission member 3 and has the same outer shape that does not feel pressure. A coil pair 6 including an exciting coil 7 and a detection coil 9 is provided around the force transmitting member 3, and a coil pair 6 including an exciting coil 8 and a detecting coil 10 is provided around the non-force transmitting member 5. Coil specifications are 2 for each excitation coil 7 and 8.
00 turns, and the detection coils 9 and 10 were each 400 turns. The exciting coils 7 and 8 are connected in series as shown in the equivalent circuit of the electric circuit in FIG. Reference numeral 19 is an AC power source, 20 is a DC conversion circuit for converting an AC voltage into a DC voltage, and 21 is a differential amplifier. Now, the pressure receiving part 1 was connected to a high-pressure oil pipe, the ambient temperature was changed from zero to 100 ° C., and the temperature drift was examined. With respect to a temperature change of 10 ° C., the pressure sensor of the conventional method is 1% and the pressure sensor of the present invention is 0.01
%, Which is very small and a good result was obtained. Second Embodiment FIG. 3 is a sectional view of a pressure sensor showing a second embodiment of the present invention. In this configuration, a pipe made of a Ti alloy is used, and two pairs of coil pairs 6 are added to the atmospheric pressure section 2 in addition to the configuration of the pressure receiving section 1. In the figure, 4 is a magnetic film, 11-14 are excitation coils, and 15-18 are detection coils. Both the pressure receiving portion 1 and the atmospheric pressure portion 2 are made of Ti alloy pipe with stepped portions, and a non-force transmission member 5 that does not feel pressure is provided. Then, the periphery of the transmission member 3 and the non-force transmission member 5 is coated with a 50% Ni-Fe film by the ion plating method. As shown in the equivalent circuit of the electric circuit in FIG.
, 12, 13 and 14 are connected in series. The specifications of the coil are 200 turns for each exciting coil and 400 turns for each detecting coil as in the first embodiment. Now, similarly to the first embodiment, the pressure receiving portion 1 was connected to a high-pressure oil pipe and the ambient temperature was changed from zero to 100 ° C. to examine the temperature drift. With respect to the temperature change of 10 ° C., the pressure sensor of the conventional method was 1%, and the pressure sensor of the present invention was 0.02%, which were very small and good results were obtained. Although only the ion plating method is used for forming the magnetic film in the embodiments of the present invention, the same effect can be obtained by using another magnetic film forming method such as a sputtering method or a method of adhering an amorphous magnetic material. It is obvious that Further, although the example in which only the tension when the pressure is applied acts has been described, it is also clear that the same effect can be obtained when only the compression force acts. .

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、非
力伝達部の検出部に力伝達部と同様の磁性体の構成をと
ったので、温度ドリフトが非常に小さく、しかも、歪に
対する出力が大きくとれ、ノイズに対して強い歪センサ
を提供できる効果がある。
As described above, according to the present invention, since the detecting portion of the non-force transmitting portion has the same magnetic material structure as that of the force transmitting portion, the temperature drift is very small and the strain against the strain is large. There is an effect that a large output can be obtained and a strain sensor that is strong against noise can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す磁歪式歪センサの断
面図である。
FIG. 1 is a sectional view of a magnetostrictive strain sensor showing a first embodiment of the present invention.

【図2】本発明の第1実施例の等価回路を示す図であ
る。
FIG. 2 is a diagram showing an equivalent circuit of the first exemplary embodiment of the present invention.

【図3】本発明の第2実施例を示す磁歪式歪センサの断
面図である。
FIG. 3 is a sectional view of a magnetostrictive strain sensor showing a second embodiment of the present invention.

【図4】本発明の第2実施例の等価回路を示す図であ
る。
FIG. 4 is a diagram showing an equivalent circuit of a second embodiment of the present invention.

【図5】従来の圧力センサを示す断面図である。FIG. 5 is a cross-sectional view showing a conventional pressure sensor.

【符号の説明】[Explanation of symbols]

1 受圧部 2 大気圧部 3 力伝達部材 4 磁性膜 5 非力伝達部材 6 コイル対 7〜8、22〜25 励磁コイル 9〜10、26〜29 検出コイル 19 交流電源 20 直流変換回路 21 差動アンプ DESCRIPTION OF SYMBOLS 1 Pressure receiving part 2 Atmospheric pressure part 3 Force transmission member 4 Magnetic film 5 Non-force transmission member 6 Coil pair 7-8, 22-25 Excitation coil 9-10, 26-29 Detection coil 19 AC power supply 20 DC conversion circuit 21 Differential amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 逆磁歪効果を有する磁性体からなる力伝
達部材または逆磁歪効果を有する磁性膜を表面に形成し
た非磁性体からなる力伝達部材の周囲に、励磁コイルと
検出コイルからなるコイル対が少なくとも二組配置され
ており、前記力伝達部材の表面に発生する歪に基づく透
磁率の変化を検出コイルのインピーダンス変化としてと
らえ、前記力伝達部材の歪を検出する磁歪式歪センサに
おいて、前記力伝達部材の一部もしくは近傍に力が伝達
されない部分を構成し、前記少なくとも二組のコイル対
のうち一組を、力が伝達されない部分または力が伝達さ
れない部分に形成された磁性膜の周囲に、他の一組を力
伝達部材の周囲に配置し、かつ、各々の励磁コイルが直
列に接続されていることを特徴とする磁歪式歪センサ。
1. A coil comprising an exciting coil and a detection coil around a force transmitting member made of a magnetic material having an inverse magnetostrictive effect or a force transmitting member made of a non-magnetic material having a magnetic film having an inverse magnetostrictive effect formed on the surface. At least two pairs are arranged, the change in magnetic permeability based on the strain generated on the surface of the force transmission member is detected as an impedance change of the detection coil, and in the magnetostrictive strain sensor that detects the strain of the force transmission member, A part of the force transmission member or a part thereof in the vicinity where a force is not transmitted is formed, and one set of the at least two coil pairs is formed of a magnetic film formed in a part where force is not transmitted or a part where force is not transmitted. A magnetostrictive strain sensor, characterized in that another set is arranged around the force transmitting member and each exciting coil is connected in series.
JP4352946A 1992-12-11 1992-12-11 Magnetostrictive strain sensor Pending JPH06180262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4352946A JPH06180262A (en) 1992-12-11 1992-12-11 Magnetostrictive strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4352946A JPH06180262A (en) 1992-12-11 1992-12-11 Magnetostrictive strain sensor

Publications (1)

Publication Number Publication Date
JPH06180262A true JPH06180262A (en) 1994-06-28

Family

ID=18427538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4352946A Pending JPH06180262A (en) 1992-12-11 1992-12-11 Magnetostrictive strain sensor

Country Status (1)

Country Link
JP (1) JPH06180262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152868A1 (en) * 2015-03-23 2016-09-29 ナブテスコ株式会社 Pressure sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152868A1 (en) * 2015-03-23 2016-09-29 ナブテスコ株式会社 Pressure sensor
JPWO2016152868A1 (en) * 2015-03-23 2017-12-07 ナブテスコ株式会社 Pressure sensor
US20180058966A1 (en) * 2015-03-23 2018-03-01 Nabtesco Corporation Pressure sensor
EP3276323A4 (en) * 2015-03-23 2018-11-14 Nabtesco Corporation Pressure sensor
US10571350B2 (en) 2015-03-23 2020-02-25 Nabtesco Corporation Pressure sensor

Similar Documents

Publication Publication Date Title
JP5684442B2 (en) Magnetic sensor device
JPH05196517A (en) Torque detecting device and torque measuring method
EP1947434A2 (en) Magnetostrictive strain sensor
US5323659A (en) Multifunctional torque sensor
JPH0326339B2 (en)
JPH06180262A (en) Magnetostrictive strain sensor
JPH07103291A (en) Harmonic drive reduction gear
CN115452204A (en) Force sensing measurement method based on inverse magnetostriction effect
JPH05231967A (en) Magnetostrictive torque sensor
JP2001056266A (en) Method and device for determining time characteristic of shock wave in ferromagnetic body subject to impact load
JPH06137981A (en) Magnetostriction type distortion sensor
JPH0979922A (en) Magnetostrictive sensor
JP3702451B2 (en) Magnetostrictive torque sensor
JPS61240132A (en) Sensor detection method
JPH04155232A (en) Manufacture of magnetostrictive detector for torque sensor
JP4905215B2 (en) Magnetostrictive axial force sensor
CN218724901U (en) Force sensor based on inverse magnetostrictive effect
JP4337180B2 (en) Magnetostrictive torque sensor
JPH08219908A (en) Magnetstrictive strain sensor
JPH05187934A (en) Magnetostriction type strain sensor
JPS62203032A (en) Magnetostriction type torque sensor
JPH02154130A (en) Strain detector
JPH02154129A (en) Strain detector
JPS60262034A (en) Detection of internal stress
JPH0210233A (en) Strain detector