JPS62205672A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPS62205672A
JPS62205672A JP61049123A JP4912386A JPS62205672A JP S62205672 A JPS62205672 A JP S62205672A JP 61049123 A JP61049123 A JP 61049123A JP 4912386 A JP4912386 A JP 4912386A JP S62205672 A JPS62205672 A JP S62205672A
Authority
JP
Japan
Prior art keywords
solar cell
glass substrate
cell
solar cells
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61049123A
Other languages
Japanese (ja)
Inventor
Tadashi Tomikawa
唯司 富川
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61049123A priority Critical patent/JPS62205672A/en
Publication of JPS62205672A publication Critical patent/JPS62205672A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To keep conversion efficiency at a high level and to make the costs of materials low, by forming solar cells on both surfaces of one glass substrate, and taking out the outputs from both solar cells. CONSTITUTION:Transparent electrodes 2 and 2' are formed on both surfaces of one glass substrate 1. PIN cells 3 and 3' are formed so that the upstream side with respect to incident sunlight becomes a P-type semiconductor. Transparent electrodes 4 and 5 are formed. The output currents from the cells 3 and 3' are separately taken out. As the PIN cell 3, a material comprising, e.g., a-Si:H, is used. As the PIN cell 3', a material comprising, e.g., a-SiGe:H, is used. Only one glass substrate is enough. Therefore the costs of the materials can be reduced. The loss in incident light 6 due to the reflection by the surface of the glass is reduced, and the photoelectric conversion efficiency as a whole can be enhanced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は太陽電池に関し、さらにgTaにいえば、照
射太陽光に対して直列状に配設され、おのおの別に出力
を取出すことができるようにした太陽電池に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to solar cells, and in terms of gTa, solar cells are arranged in series with respect to irradiated sunlight so that output can be extracted separately from each solar cell. Regarding solar cells.

〈従来の技術〉 従来から、新しいエネルギ源としての、太陽電池の聞梵
が進められて33す、照射太陽光を効率よく電気エネル
ギに変換Jることができるものが提供されている。
<Prior Art> Solar cells have been developed as a new energy source for some time, and devices that can efficiently convert irradiated sunlight into electrical energy have been provided.

このような太陽電池としては、 ■ 中層セル構造のもの、 ■ ?!2数個の太陽電池はルを直列に積層形成し、全
体として甲−の出力を取出すようにしたもの(いわゆる
タンデムセル)、および ■ 第2図に承りように、ガラス基板(11)の背面側
に太陽電池ヒル(12)を一体内に形成してなる2個の
太陽電池(13) (13’)を配置し、照射太陽光に
関して下流側の太陽電池(13’)として、−に流側太
陽電池材料と等しいか、若しくは小さい「qを有づる材
料で構成されたものを使用し、照射太陽光を先ず上流側
の太陽電池(13)に照射し、上流側の太陽電池を透過
した光を下流側の太陽電池(13’)に照射し、両太陽
電池(13) (13’)から、おのおの別に出力を取
出づようにしたもの(いわゆる4端了構造セル) があった。
Such solar cells include: ■ medium cell structure; ■ ? ! Two or more solar cells are stacked in series to extract the output from the whole (so-called tandem cell), and ■ As shown in Figure 2, the back side of the glass substrate (11) Two solar cells (13) (13') each having a solar cell hill (12) integrally formed on the side are arranged, and the solar cell (13') on the downstream side with respect to irradiated sunlight is arranged to A material made of a material with a q equal to or smaller than the side solar cell material is used, and the irradiated sunlight is first irradiated on the upstream solar cell (13), and then transmitted through the upstream solar cell. There was a cell in which light was irradiated to the solar cell (13') on the downstream side, and the output was taken out separately from both solar cells (13) (13') (so-called four-end structure cell).

く発明が解決しようとづる問題点〉 上記■の4fj成の太陽電池においては、光吸収波長域
が限られており、照射太陽光スペクトルを有効に電気エ
ネルギに変換づることができないという問題がある。
Problems to be Solved by the Invention In the 4FJ solar cell described in (1) above, the light absorption wavelength range is limited, and there is a problem that the irradiated sunlight spectrum cannot be effectively converted into electrical energy. .

また、上記■の構成の太陽電池においては、太陽光が順
次各層の太陽電池セルに照射8れ、電気エネルギに変換
されるので、上記■の構成のものに比べて変換効率が高
くなるのであるが、全体として単一の出力を取出づよう
にしているので、外部に取出1ことがで°きる電流値が
、各太陽電池セルの出力電流値のうち最小の電流値に制
限されてしまうことになる。即ち、上記タンデムセルの
外部取出可能な電流Inが照射太陽光スペクトルに大さ
く依存づることになり、最適スペクトルからずれると、
変換効率が著しく低下してしまうことになる。したがっ
て、−口中を通してみると、変換効率の変vJ幅が大ぎ
くなってしまうという問題がある。
In addition, in the solar cell with the above configuration (■), sunlight irradiates the solar cells in each layer in sequence and is converted into electrical energy, so the conversion efficiency is higher than that with the above configuration (■). However, since a single output is taken out as a whole, the current value that can be taken out to the outside is limited to the minimum current value among the output current values of each solar cell. become. In other words, the electric current In that can be extracted from the tandem cell to the outside greatly depends on the irradiated sunlight spectrum, and if it deviates from the optimal spectrum,
This results in a significant reduction in conversion efficiency. Therefore, there is a problem in that when the liquid is passed through the mouth, the range of variation in conversion efficiency (vJ) becomes large.

さらに、上記■の構成の太1il電池においては、上記
■■の構!戊の太陽電池に比べて変換効率が高く、しか
も変換効率の変動幅も小さく<hるのであるが、照射太
陽光、Jメよび透過光がそれぞれ各太陽電池(13) 
(13’)を構成づるガラス基板(11)に照q4され
ることにより、2凹表面反射が行なわれるので、入iJ
光ロスが大きくなるという問題があるのみならず、ガラ
ス基板(11)が2枚必要になるので44利費が嵩むこ
とになるという問題がある。
Furthermore, in the thick 1-il battery with the configuration of the above ■■, the structure of the above ■■! The conversion efficiency is higher than that of the conventional solar cell, and the fluctuation range of the conversion efficiency is also small.
(13') is illuminated by the glass substrate (11), which causes two concave surface reflections, so that the input iJ
Not only is there a problem that optical loss increases, but also there is a problem that interest costs increase because two glass substrates (11) are required.

〈発明の目的〉 この発明は上記の問題点に鑑みてなされたものであり、
変換効率を高く維持するとともに、入射光ロスを減少さ
せ、しかも材料費を廉価にすることができる太陽電池を
提供することを目的としCいる。
<Object of the invention> This invention was made in view of the above problems,
The object of the present invention is to provide a solar cell that can maintain high conversion efficiency, reduce loss of incident light, and reduce material costs.

く問題点を解決するための手段〉 上記の目的を達成づるための、この発明の太陽電池は、
1枚のガラス基板の両面に太陽電池セルを形成し、各太
陽電池セルからそれぞれ出力を取出すものである。
Means for Solving the Problems> In order to achieve the above object, the solar cell of the present invention has the following features:
Solar cells are formed on both sides of a single glass substrate, and output is extracted from each solar cell.

但し、照射太陽光の下流側に位置する太陽電池セルの、
下流側の出力取出し電極は、金属電極であってもよい。
However, in the solar cell located downstream of the irradiated sunlight,
The output extraction electrode on the downstream side may be a metal electrode.

く作用〉 以上の構成の太陽電池であれば、1枚のガラス基板の両
面に形成した太陽電池セルの一方から太陽光を照射する
ことにより、先ず、一方の太陽電池セルにおいて光電変
換が行なわれ、次いでガラス基板を透過した光により他
方の太陽電池セルにおいて光電変換が行なわれ、両太陽
電池セルからの出力電流をおのおの別に取出すことかで
きる。
In a solar cell with the above configuration, by irradiating sunlight from one side of the solar cells formed on both sides of a single glass substrate, photoelectric conversion is first performed in one of the solar cells. Then, photoelectric conversion is performed in the other solar cell by the light transmitted through the glass substrate, and output currents from both solar cells can be extracted separately.

イして、照射太陽光の下流側に位置する太陽電池セルの
、下流側の出力取出し電極が、金PA電極である場合に
おいても、上記と同様の光電変換動作、および出力電流
の取出しを行なわせることがが可能で、金属電極として
A(+、AI等の高反射率材料を用いることにより、光
を反射して有効に利用することができる。
Even when the output extraction electrode on the downstream side of the solar cell located downstream of the irradiated sunlight is a gold PA electrode, the same photoelectric conversion operation and output current extraction as described above are performed. By using a high reflectance material such as A(+, AI, etc.) as the metal electrode, light can be reflected and used effectively.

〈実施例〉 以下、実施例を示づ添伺図面によってδT細に説明する
<Example> Hereinafter, an example will be explained in detail with reference to accompanying drawings.

第1図はこの発明の太陽電池の一実施例を示す概略図で
あり、1枚のガラス基板(1)の両面に透明電極(21
(2’)を形成し、各透明電極f21(2’)の所定イ
装置に、照射太陽光に関して上流側がp型半導体となる
ようにpinセル+31(3’)を形成し、さらに上記
p i n L?ル(3)の上流側に透明電極(4)を
形成しているとともに、p i nセル(3′)の下流
側に金fl電惨(5)を形成している。
FIG. 1 is a schematic diagram showing an embodiment of the solar cell of the present invention, in which transparent electrodes (21
(2') is formed, and a pin cell +31 (3') is formed in a predetermined device of each transparent electrode f21 (2') so that the upstream side with respect to irradiated sunlight becomes a p-type semiconductor, and furthermore, the above p i nL? A transparent electrode (4) is formed on the upstream side of the cell (3), and a gold fl electrode (5) is formed on the downstream side of the pin cell (3').

尚、上記pinセル(3)としては、例えば、a−3r
:Hからなるもの(Eo =1.8eV)が使用され、
pinセル(3′)としては、例えばa−3iQaニド
1からな・るもの(Eo=1.5eV)が使用されてい
る。
In addition, as the above-mentioned pin cell (3), for example, a-3r
:H (Eo = 1.8eV) is used,
As the pin cell (3'), for example, one made of a-3iQa nide 1 (Eo=1.5 eV) is used.

上記の構成の太陽電池を使用して光電変換を行なわせた
場合の変換効率、出力電流値等は、第1表に承りように
、上記第2図の構成の太陽電池を上記実施例の場合と同
一の材料で構成した場合と比較して増加しており、ガラ
ス基板(1)を1枚のみとしたタノ果が明らかに現れて
いる。
The conversion efficiency, output current value, etc. when photoelectric conversion is performed using the solar cell with the above configuration are as shown in Table 1. This increases compared to the case where the glass substrate (1) is made of the same material, and the effect of using only one glass substrate (1) clearly appears.

第1表 また、材料についても、ガラス基板(1)が1枚でよい
から、I料:1ストを低減することができる。
Table 1 Also, regarding materials, since only one glass substrate (1) is required, the I material can be reduced by one stroke.

尚、この発明は上記の実施例に限定されるものではなく
、例、えば、上記金属電極(5)に代えて透明電極を使
用することが可能である他、pinセル+31 (3’
)として上記材料以外の材料を使用づること、さらに他
の構造の太陽電池を利用すること(但し、上流側の材料
のE(+を下流側の材料の10以上になるように材料を
選定することが好ましい)が可能であり、その他この発
明の要旨を変更しない範囲内にd3いて、種々の設計変
更を施づことが可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments. For example, it is possible to use a transparent electrode in place of the metal electrode (5), and a pin cell +31 (3'
), or use a solar cell with a different structure (however, materials should be selected so that E(+) of the upstream material is 10 or more than that of the downstream material. (preferably) is possible, and various other design changes can be made within the scope of not changing the gist of the present invention.

く発明の効果) 以1のようにこの51明は、1枚のガラス基板の両側に
太陽電池セルを形成しているとともに、おのおの別に出
力電流を取出すようにしているので、ガラスの表面反0
4による入射光ロスを減少させて仝休としての光電変換
効率を高くすることができるととしに、材料コストを低
減することができるという時打の効果を奏する。
(Effects of the invention) As described in 1 below, this 51 light has solar cells formed on both sides of a single glass substrate, and output current is taken out separately from each, so that the surface of the glass is
It is possible to reduce the loss of incident light due to 4 and increase the photoelectric conversion efficiency as a rest, and it also has the advantage of reducing material costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の太陽電池の一実施例を示ず概略図、 第2図は従来例を示す概略図。 (1)・・・ガラス基板、+21 (2’> +41・
・・透明電極、f3H3’)・・・p i r1セル、
(5)・・・金属電橿第1図 手  続  補  正  書(自発) 昭和61年12月170 0工・[庁長官 黒田明雄殿      −1、事件の
表示 昭和61年特許願第49123号 2、発明の名称 太  陽  電  池 代表者  川  上  哲  部 4、代理人 之゛(う 6、補正の対象 明細書中、発明の詳細な説明の欄 7、補正の内容 すること」と訂正する。
FIG. 1 is a schematic diagram showing an embodiment of the solar cell of the present invention, and FIG. 2 is a schematic diagram showing a conventional example. (1)...Glass substrate, +21 (2'> +41・
...transparent electrode, f3H3')...p i r1 cell,
(5) ...Metal Electric Rope Diagram 1 Procedural Amendment (Spontaneous) December 1986 1700 0 [Agency Commissioner Akio Kuroda -1, Incident Indication 1985 Patent Application No. 49123 2 , Name of the invention Solar cell Representative Tetsu Kawakami Department 4, Agent (6) In the specification subject to amendment, Column 7, Detailed explanation of the invention, Contents of the amendment shall be corrected.

Claims (1)

【特許請求の範囲】 1、1枚のガラス基板の両面に太陽電池セルを形成し、
各太陽電池セルからそれぞれ出力を取出すことを特徴と
する太陽電池。 2、照射太陽光の下流側に位置する太陽電池セルの、下
流側の出力取出し電極が、金属電極である上記特許請求
の範囲第1項記載の太陽電池。
[Claims] 1. Forming solar cells on both sides of one glass substrate,
A solar cell characterized by extracting output from each solar cell. 2. The solar cell according to claim 1, wherein the output extraction electrode on the downstream side of the solar cell located downstream of the irradiated sunlight is a metal electrode.
JP61049123A 1986-03-06 1986-03-06 Solar battery Pending JPS62205672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049123A JPS62205672A (en) 1986-03-06 1986-03-06 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049123A JPS62205672A (en) 1986-03-06 1986-03-06 Solar battery

Publications (1)

Publication Number Publication Date
JPS62205672A true JPS62205672A (en) 1987-09-10

Family

ID=12822285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049123A Pending JPS62205672A (en) 1986-03-06 1986-03-06 Solar battery

Country Status (1)

Country Link
JP (1) JPS62205672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084282A1 (en) * 2003-03-14 2004-09-30 Midwest Research Institute Bifacial structure for tandem solar cell formed with amorphous semiconductor materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084282A1 (en) * 2003-03-14 2004-09-30 Midwest Research Institute Bifacial structure for tandem solar cell formed with amorphous semiconductor materials

Similar Documents

Publication Publication Date Title
Masson et al. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high‐efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture
JPH0251282A (en) Photoelectric conversion device
JPH0338887A (en) Semiconductor photodetector
Eckert et al. A multilayer iron-thionine photogalvanic cell
Zhao et al. Energy band adjustment of 808 nm GaAs laser power converters via gradient doping
JPS6477973A (en) Photovoltaic device
CN105932953A (en) Photovoltaic module based on spectrums
JPS62205672A (en) Solar battery
JPS57181176A (en) High voltage amorphous semiconductor/amorphous silicon hetero junction photosensor
JP2010538455A (en) High efficiency hybrid solar cell
JPS62101084A (en) Optical confinement solar battery
JPS5996777A (en) Photovoltaic element
JPH03285360A (en) Solar cell
JPS61135167A (en) Thin-film solar cell
Peng et al. Role of light trapping structures on the performance of perovskite solar cells
JPH046880A (en) Amorphous silicon carbide film, formation thereof and photovoltaic device using same
JPS60157270A (en) Thin film light receiving element
JPS59126681A (en) Solar battery device
JPS5522812A (en) Semiconductor photodetector
Sakaki et al. Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters
JPH0323678A (en) Light-receiving generation element
Sopori Inhomogeneities in silicon solar cells and their influence on cell performance-an experimental study
JPS60130866A (en) Photoelectric conversion element
Popkirov et al. Spectral dependence of the quantum efficiency of thin film semiconductor photoelectrodes: Reflection from either the back or the front side
KR920005036Y1 (en) Stocked amorphous silicon solar cell