JPS62205667A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS62205667A
JPS62205667A JP61048975A JP4897586A JPS62205667A JP S62205667 A JPS62205667 A JP S62205667A JP 61048975 A JP61048975 A JP 61048975A JP 4897586 A JP4897586 A JP 4897586A JP S62205667 A JPS62205667 A JP S62205667A
Authority
JP
Japan
Prior art keywords
layer
carriers
grooves
electrode
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61048975A
Other languages
Japanese (ja)
Other versions
JPH0563030B2 (en
Inventor
Yoshio Miura
三浦 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61048975A priority Critical patent/JPS62205667A/en
Publication of JPS62205667A publication Critical patent/JPS62205667A/en
Publication of JPH0563030B2 publication Critical patent/JPH0563030B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enhance photoelectric conversion efficiency, by preventing disappearance of carriers, which are yielded by light having short wavelengths due to recombination, and taking out the carriers, which are yielded at the deep part of a low impurity concentration layer, to the outside effectively. CONSTITUTION:In the surface of a silicon substrate 10 comprising a low impurity concentration layer (i layer), a plurality of grooves are provided at an interval of about 50mum. Charge lead-out electrodes 13 (13a, 13b) comprising Al are formed in the grooves. An n<+> diffused layer 12 is formed at the side surface and the bottom surface part of the groove, in which the electrode 13a is formed. A p<+> diffused layer 14 is formed on the side surface and the bottom surface part of the groove, in which the electrode 13b is formed. A reflection preventing film 15 comprising an SiO film is formed on the surface. Light over a short wavelength to a long wavelength is efficiently inputted into the silicon substrate 10. Yielded carriers are located within 25mum from the charge lead-out electrodes 13. Therefore, the rates of recombination and disappearance of the carriers are few. The carriers reach the electrodes 13 efficiently and are taken out as a current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光4変換効率の高い光電変換素子の構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure of a photoelectric conversion element with high four-light conversion efficiency.

〔従来の技術〕[Conventional technology]

従来、光電変換素子としては、例えば第4図に示される
構造のものが実用化されている。
Conventionally, as a photoelectric conversion element, one having the structure shown in FIG. 4, for example, has been put into practical use.

第4図にゴdいて、若干のn型伝導な示す低不純物濃度
層(i層)1からなるシリコン基板10の、光の入射す
る表面には薄いn 拡散層2が形成されている。そして
、このn 拡散層2上には、一方の電荷取出し用電極と
して、光が良好に入射するように格子状電画3が設ゆら
れて?す、又i層1の裏面には厚いp+拡散/2i4を
介して他方の電荷取出し用電極としての板状成極5が設
けられている。なお、6はSiO膜、8102膜等から
なる反射防止膜であを。
As shown in FIG. 4, a thin n-diffusion layer 2 is formed on the surface onto which light enters a silicon substrate 10 consisting of a low impurity concentration layer (i-layer) 1 exhibiting some n-type conductivity. Then, on this n diffusion layer 2, a grid-like electric image 3 is provided as one of the charge extraction electrodes so that light can be incident well. Also, on the back surface of the i-layer 1, a plate-shaped polarization 5 as the other charge extraction electrode is provided via a thick p+ diffusion/2i4. Note that 6 is an anti-reflection film made of SiO film, 8102 film, etc.

この、J:5に構成された従来の光電変換素子に8いて
は、外部回路に取出丁ことのできるα波は主に1層1に
入射し吸収されろ光量に対応し、口1拡散層2及びp 
拡散層4は′成極とのオーミック接触並びに電子親和力
の異なる1層1との接続により1発生したキャリア(電
子と正札対)収集の為の動作領域を形成する働きをして
いる。
In this conventional photoelectric conversion element configured as J:5, α waves that can be extracted to the external circuit mainly enter layer 1 and are absorbed, corresponding to the amount of light that is absorbed by layer 1. 2 and p
The diffusion layer 4 functions to form an operating region for collecting carriers (electrons and genuine tag pairs) generated by ohmic contact with polarization and connection with a layer 1 having a different electron affinity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、リン等のn型不純物を高濃度に含むn十
拡散層2は、特に短波長の光により発生する電子と正札
対が再結合して吸収されるため光電変換効率を低下させ
る欠点がある。このため。
However, the n-diffusion layer 2 containing a high concentration of n-type impurities such as phosphorus has the drawback of reducing photoelectric conversion efficiency, especially since electrons generated by short-wavelength light and genuine tag pairs are recombined and absorbed. . For this reason.

n+拡散層2を厚さ0.5μIn以下に薄く形成するこ
とが試みられているが、「l十拡散層2が薄い場合は抵
抗が高くな′9電力の損失を増大させる。更に格子電極
3を形成する時1層1との接合が破壊される恐れがある
Attempts have been made to form the n+ diffusion layer 2 as thin as 0.5 μIn or less, but if the n+ diffusion layer 2 is thin, the resistance will be high and power loss will increase. When forming the layer 1, there is a risk that the bond with the layer 1 may be destroyed.

また、シリコン基板内でキャリアを発生することが可能
な光の大部分を吸収するためには、1ja1の厚さを数
十μmにする必要があるが、そのためにはエピタキシア
ル成長法か、長時間の拡散工程によりi /J lやp
+拡散層を形成する必要があり、製造コストが高(なる
欠点がある。
In addition, in order to absorb most of the light that can generate carriers within the silicon substrate, the thickness of 1ja1 must be several tens of μm, but for this purpose, epitaxial growth or long Due to the time diffusion process, i / J l and p
+ It is necessary to form a diffusion layer, which has the disadvantage of high manufacturing cost.

一方、厚さ数十μmの1層1?:形成した場合、その深
部で発生したキャリアの4極迄の到達距離が長くなるた
め、電#を効率工く取出1°ことが困難となる。従って
、一般的には厚さ1〜20μmのi層を有′1−る構造
のものが多く用いられている。
On the other hand, one layer with a thickness of several tens of μm? : When formed, the reach distance of the carriers generated in the deep part to the four poles becomes longer, making it difficult to efficiently extract the electrodes by 1°. Therefore, in general, a structure having an i-layer with a thickness of 1 to 20 μm is often used.

本発明の目的は、上記欠点を除去し、光゛−変変効効率
高い光電変換素子を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a photoelectric conversion element with high phototransformation efficiency.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の光電変換素子は、半導体基板表面の低不純物濃
度層に複数の溝を設け、この溝中に4荷取出し用電事を
設けた溝遺となっている。
In the photoelectric conversion element of the present invention, a plurality of grooves are provided in a low impurity concentration layer on the surface of a semiconductor substrate, and four electrical outlets for taking out charges are provided in the grooves.

〔作用〕[Effect]

本発月による光′シ変換素子は第1(凶に示されるよう
に、1氏不鋪物a度)jllからなる半導体膚版面に、
ktぼ垂直に複数の溝′?:形成し、この溝中に・1荷
取出し用+1li13を形成しであるため、半導体表面
に高不純・物請度ノΔを形成する必要がない。
The light converting element according to the present invention is a semiconductor layer consisting of a first (as shown in Fig. 1) a semiconductor layer,
Multiple grooves perpendicular to kt? : is formed, and the +1li13 for unloading is formed in this groove, so there is no need to form a high impurity/removal rate Δ on the semiconductor surface.

従って、短波長光により発生したキャリアの再結合は極
めて小さいものとなる0 また、複数の゛1極が1発生した電荀収畷に好都合な間
隔でほぼ垂直に形成されているため、半導体基鈑の澤い
部分で発生したキャリアであっても電極迄の到達距離は
変ることはなく、キャリアを有効に取り出てことができ
る。
Therefore, the recombination of carriers generated by short wavelength light is extremely small. In addition, since multiple single poles are formed almost perpendicularly at intervals convenient for the single generated charge collection, the semiconductor substrate Even if carriers are generated in the thicker parts of the plate, the distance they can reach the electrode will not change, and the carriers can be effectively extracted.

〔実施例〕〔Example〕

次に本発明の実施例を図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.

第1図にどいて、厚さ約200〜300μmの低不純物
濃度層(i層)11からなるシリコン基板10の表面は
に1幅約2μm、深さ約20μmの複数の溝が約50μ
m間隔にあけられて8つ、その溝中にはA/からなる′
4荷取出し用電極13(13a、13b)が形成されて
いる。
In FIG. 1, the surface of a silicon substrate 10 consisting of a low impurity concentration layer (i-layer) 11 with a thickness of about 200 to 300 μm has a plurality of grooves each having a width of about 2 μm and a depth of about 20 μm.
There are 8 grooves spaced at m intervals, and in the grooves there are A/'
Four cargo unloading electrodes 13 (13a, 13b) are formed.

そして、・電極13aが形成された溝の側面及び底面部
には口1拡散層12が形成されてKつ、又電極13bが
形成された溝の側面及び底面部にはp+拡散層14が形
成さ4ている。丁なわち、n+拡散R12とp+拡散層
14は交互の背中に形成されてZつ、シリコン基板10
中で光により発生したキャリアと′fJL極13間の距
離は最大25μm程になるように構成されている。
And, - The mouth 1 diffusion layer 12 is formed on the side and bottom parts of the groove where the electrode 13a is formed, and the p+ diffusion layer 14 is formed on the side and bottom part of the groove where the electrode 13b is formed. There are four. That is, the n+ diffusion layer R12 and the p+ diffusion layer 14 are formed on the back side of the silicon substrate 10 alternately.
The distance between the carriers generated by light and the 'fJL pole 13 is about 25 μm at maximum.

な8.15はSiO膜からなる反射防止膜である。8.15 is an antireflection film made of SiO film.

このように構成された本発明の実施例に16いては、シ
リコン基板10表面にn 拡散層が形成されていないた
めに、短波長から長波長にわたる光が効率よくシリコン
基板10内に入射してキャリアを発生する。しかし、発
生したキャリアは、電荷取出し用電極30から25μm
以内にあるため再結合して消滅する割合は少く、効率よ
く電極に到達し低流として外部に取出されろ。
In the sixteenth embodiment of the present invention configured in this way, since no n diffusion layer is formed on the surface of the silicon substrate 10, light ranging from short wavelengths to long wavelengths efficiently enters the silicon substrate 10. Generate a carrier. However, the generated carriers are 25 μm from the charge extraction electrode 30.
Since the particles are within the same range, the rate at which they recombine and disappear is small, so they efficiently reach the electrodes and are taken out as a low flow.

次にその製造方法の概略を説明する。Next, the outline of the manufacturing method will be explained.

シリコン基板100表面にほぼ垂直に溝を形成するには
5例えば、Ifr定部分に開孔を設けたフォトレジスト
膜をマスクとし、CFA  系の反応ガスを用いるドラ
イエツチング法が適している。
In order to form grooves substantially perpendicular to the surface of the silicon substrate 100, for example, a dry etching method using a CFA-based reactive gas using a photoresist film with openings in the Ifr constant portion as a mask is suitable.

溝を形成した後、n型及びp型不純物ガスを用いる拡散
法により、1本3きの溝内にn型又はp型不純物を導入
し、n+拡散j傷12及びp+拡散ノー14を形成する
。尚この際1表面保獲模としてシリコン基板10表面に
5iOz膜を形成して8いてもよい。
After forming the grooves, an n-type or p-type impurity is introduced into each three grooves by a diffusion method using n-type and p-type impurity gases to form an n+ diffusion j wound 12 and a p+ diffusion no 14. . At this time, a 5iOz film may be formed on the surface of the silicon substrate 10 as a surface capture pattern.

次で、CVD法又はスパッタ法により全面にAJを堆積
させて溝?:埋めたのち、表面のAA”を接続部を除い
て除去し、電極13?:形成する。
Next, AJ is deposited on the entire surface by CVD or sputtering to create a groove. : After filling, the surface AA" is removed except for the connection part, and the electrode 13? : is formed.

最後に8i0膜をスパッタ法により表面に形成して反射
防止膜15とし、光電変換素子を完成させる。
Finally, an 8i0 film is formed on the surface by sputtering to form an antireflection film 15, thereby completing the photoelectric conversion element.

第2図は本発明の第2の実施例の断面図であり。FIG. 2 is a sectional view of a second embodiment of the invention.

第1図と異なる点はシリコン基板10の裏面にもp+拡
散層と電極を設けたことである。
The difference from FIG. 1 is that a p+ diffusion layer and an electrode are also provided on the back surface of the silicon substrate 10.

第2図に2いて、厚さ約100μmのシリコン基板10
の1層11表面には8i0膜からなる反射防止膜15が
形成されてRつ、この反射防止膜15を貫通して深さの
異なる2種類の溝がドライエツチング法によりi層ll
中に形成されている。
A silicon substrate 10 with a thickness of approximately 100 μm is shown in FIG.
An anti-reflection film 15 made of an 8i0 film is formed on the surface of one layer 11 of R, and two types of grooves with different depths are formed through this anti-reflection film 15 by dry etching.
formed inside.

そして、この浅い溝及び深い溝の側面と底面部にそれぞ
n、p+拡散ノー14及びn+拡散ノ412が形成され
、各溝中にはAiからなる電荷取出し用成極13b、1
3aが形成されている。
Then, n and p+ diffusion holes 14 and n+ diffusion holes 412 are formed on the side and bottom parts of the shallow and deep grooves, respectively, and charge extraction polarization 13b and 1 made of Ai are formed in each groove.
3a is formed.

一方、シリコン基板10のg面には1層11に接してp
+拡散層14aが設げられて2す、その面にはAiから
なる板状の゛電荷取出し用電極13cが形成されている
On the other hand, on the g-plane of the silicon substrate 10, p
A diffusion layer 14a is provided, and a plate-shaped charge extraction electrode 13c made of Al is formed on its surface.

このよ5に構1−zされた第2の実施例にだいては、’
IQ?の深部に発生(−だキャリアは、溝中に形成さハ
、た電極13a、13+)と裏面に形成さね、た表面積
の大きなg:rii3cとにエリ外部に引き出されろた
め、再結合に工つ消滅する割合が少くなり、光dL変換
効率は向上したものとなる。
In the second embodiment configured as above, '
IQ? The negative carriers generated in the deep part of the groove are drawn out to the outside of the area by the electrodes 13a and 13+ formed in the groove and the large surface area of the electrode 13a and 13+, which is formed on the back surface. The rate of annihilation is reduced, and the optical dL conversion efficiency is improved.

第3図は本発明の第3の実施例の断面図であり、第1図
と異なる点は、4荷取出し用’4fとしてシリコン層と
接続してショットキー障壁を形成する金属を用いたこと
である。
FIG. 3 is a cross-sectional view of the third embodiment of the present invention, and the difference from FIG. 1 is that metal is used as the 4f for unloading 4 cargoes, which is connected to the silicon layer to form a Schottky barrier. It is.

第3図にMいて、厚さ約30μmの1層11からなるシ
リコン基板100表面には、ドライエツチング法により
@2μm、深さ約25μm0)複数の溝が形成されたの
ち、交互の溝中にタングステン(W)及びモリブデン(
MO)からなる電荷取出し用電極16.17がCVD法
により形成されている。
As shown in FIG. 3, on the surface of a silicon substrate 100 consisting of a single layer 11 with a thickness of about 30 μm, a plurality of grooves @2 μm and a depth of about 25 μm0) are formed by dry etching, and then in the alternate grooves. Tungsten (W) and molybdenum (
Charge extraction electrodes 16 and 17 made of MO) are formed by the CVD method.

そして、シリコン基板100表面は、8i0 膜からな
る反射防止膜15により覆わ4ている。
The surface of the silicon substrate 100 is covered with an antireflection film 15 made of an 8i0 film.

このように構成された第3の実施例に8いては。8 in the third embodiment configured in this way.

W電極17は1層11と接触してショットキー障壁を形
成する。丁なわち、W電極16及びMO1t極17は第
1図にてける、n 拡散層12とこれに接触する゛4僕
13a及びp 拡散層14とこハ接触する電極131)
とにそれぞれ相当することになろ。従って本実施例に8
いてはn+拡散層12及びp+拡散層14が不要になな
利点がある。尚。
The W electrode 17 contacts the first layer 11 to form a Schottky barrier. In other words, the W electrode 16 and the MO1t electrode 17 in FIG.
They are equivalent to each of them. Therefore, in this example, 8
In this case, there is an advantage that the n+ diffusion layer 12 and the p+ diffusion layer 14 are not required. still.

ショットキー障壁を形成する金属としてはW、M。The metals forming the Schottky barrier are W and M.

の他のP t 、 AJ等を利用することが可能である
It is possible to use other P t , AJ, etc. of .

上記各実施例に?けるi層とp+拡散層14aの厚さ及
び各溝の幅、深さ、間隔等は特に制限されるものではな
く1種々の組合せを用いることが可能である。また、上
記説明にゴdいてはi層をn型伝導を示す層として取扱
ったか、若干のn型伝導を示す層であってもよいことは
勿論である。
For each of the above examples? The thicknesses of the i-layer and p+ diffusion layer 14a and the width, depth, interval, etc. of each groove are not particularly limited, and various combinations can be used. Further, in the above description, the i-layer is treated as a layer exhibiting n-type conduction, but it goes without saying that it may be a layer exhibiting some n-type conduction.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、光の入射
によりキャリアが発生する低不純物濃度層に複数の溝を
形成し、この溝中に電荷取出5用電極を形成することに
より、短波長光により発生したキャリアの再結合による
消滅を防止すると共に、低不純物濃度層の深部に発生し
たキャリアを有効に外部に取出丁ことのできる光電変換
効率の高い光電変換素子が得られるのでその効果は大き
い。
As described above in detail, according to the present invention, a plurality of grooves are formed in the low impurity concentration layer in which carriers are generated by the incidence of light, and the electrode for charge extraction 5 is formed in the grooves. This is effective because a photoelectric conversion element with high photoelectric conversion efficiency can be obtained that can prevent carriers generated by wavelength light from disappearing due to recombination and can effectively extract carriers generated deep in a low impurity concentration layer to the outside. is big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の第1〜第3の実施例の断面図
、第4図は従来の光電変換素子の断面図である。 1・・・・・・低不純物濃度層、2・−・・・・0 拡
散層、3・・・・・・格子状電極、4・・・・−・p十
拡散層、訃・・・・・板状電極、6・・・・・・反射防
止膜、10・・・・・・シリコン基板。 11・・・・−・低不純物濃度層、12・−・・・・n
+拡散層。 13 (13a、13b、13C)−・−電極、 14
 ・−・−1)”拡散層、15・・・・・・反射防止膜
、16・−・・・・W4極、17・・・・・・MO電極
。 代理人 弁理士  内 原   音 I3電極  !5反射防止護 11i層 第1図 第2図 wt椙               Mo電椙第3図 第4図(従来例)
1 to 3 are cross-sectional views of first to third embodiments of the present invention, and FIG. 4 is a cross-sectional view of a conventional photoelectric conversion element. 1...Low impurity concentration layer, 2...0 diffusion layer, 3...Grid electrode, 4...P10 diffusion layer, Death... ... Plate electrode, 6 ... Antireflection film, 10 ... Silicon substrate. 11...Low impurity concentration layer, 12...n
+ Diffusion layer. 13 (13a, 13b, 13C) --- electrode, 14
・-・-1)" Diffusion layer, 15... Anti-reflection film, 16... W4 pole, 17... MO electrode. Agent Patent attorney Uchi Hara Sound I3 electrode !5 Anti-reflection protection 11i layer Fig. 1 Fig. 2 wt lamp Mo electric lamp Fig. 3 Fig. 4 (conventional example)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板表面層に形成された複数の溝と、該溝
中に形成された電荷取出し用電極とを含むことを特徴と
する光電変換素子。
(1) A photoelectric conversion element comprising a plurality of grooves formed in a surface layer of a semiconductor substrate and a charge extraction electrode formed in the grooves.
(2)前記半導体基板表面層は低不純物濃度層である特
許請求の範囲第(1)項記載の光電変換素子。
(2) The photoelectric conversion element according to claim (1), wherein the semiconductor substrate surface layer is a low impurity concentration layer.
JP61048975A 1986-03-05 1986-03-05 Photoelectric conversion element Granted JPS62205667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61048975A JPS62205667A (en) 1986-03-05 1986-03-05 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61048975A JPS62205667A (en) 1986-03-05 1986-03-05 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS62205667A true JPS62205667A (en) 1987-09-10
JPH0563030B2 JPH0563030B2 (en) 1993-09-09

Family

ID=12818261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61048975A Granted JPS62205667A (en) 1986-03-05 1986-03-05 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS62205667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165578A (en) * 1989-11-24 1991-07-17 Hitachi Ltd Solar cell and manufacture thereof
US5538564A (en) * 1994-03-18 1996-07-23 Regents Of The University Of California Three dimensional amorphous silicon/microcrystalline silicon solar cells
JP2004511106A (en) * 2000-10-03 2004-04-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor device and method of manufacturing the same
WO2007105593A1 (en) * 2006-03-13 2007-09-20 Nec Corporation Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165578A (en) * 1989-11-24 1991-07-17 Hitachi Ltd Solar cell and manufacture thereof
US5538564A (en) * 1994-03-18 1996-07-23 Regents Of The University Of California Three dimensional amorphous silicon/microcrystalline silicon solar cells
JP2004511106A (en) * 2000-10-03 2004-04-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor device and method of manufacturing the same
WO2007105593A1 (en) * 2006-03-13 2007-09-20 Nec Corporation Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module
US7800193B2 (en) 2006-03-13 2010-09-21 Nec Corporation Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module

Also Published As

Publication number Publication date
JPH0563030B2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
JP4278515B2 (en) Solar cell and solar cell manufacturing method
US7476598B2 (en) Photodiode and method of manufacturing the same
AU600573B2 (en) Solar cell
JP2867983B2 (en) Photodetector and method of manufacturing the same
KR20110118135A (en) Back contact sliver cells
JPS63287077A (en) Photoelectric conversion device
JPH02135786A (en) Solar battery cell
JPH0797653B2 (en) Photoelectric conversion element
CN117423762A (en) Solar cell, preparation method thereof, photovoltaic module and photovoltaic system
JP2006294802A (en) Photoelectric conversion element
JPS62205667A (en) Photoelectric conversion element
JP2004071763A (en) Photovoltaic element
JP3193287B2 (en) Solar cell
JP2866982B2 (en) Solar cell element
JP2004247595A (en) Solar cell
JP4121603B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, AND ITS CONNECTING METHOD
JPH11312814A (en) Solar cell device
JP3448098B2 (en) Crystalline silicon solar cells
JPH0492481A (en) Photosensor
JPH0415963A (en) Solar cell
JP2004047825A (en) Solar cell
JP3157948B2 (en) Solar cell and method of manufacturing the same
JP3294005B2 (en) Solar cell
JPH02377A (en) Photoelectric converting device
JPH0230190B2 (en)