JP2004247595A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP2004247595A
JP2004247595A JP2003037067A JP2003037067A JP2004247595A JP 2004247595 A JP2004247595 A JP 2004247595A JP 2003037067 A JP2003037067 A JP 2003037067A JP 2003037067 A JP2003037067 A JP 2003037067A JP 2004247595 A JP2004247595 A JP 2004247595A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
diffusion layer
fine
surface electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003037067A
Other languages
Japanese (ja)
Other versions
JP4325912B2 (en
Inventor
Kenji Fuseya
健司 伏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003037067A priority Critical patent/JP4325912B2/en
Publication of JP2004247595A publication Critical patent/JP2004247595A/en
Application granted granted Critical
Publication of JP4325912B2 publication Critical patent/JP4325912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form high-concentration diffusion layers of a solar cell under its front-surface electrodes without any additional heat treatment process. <P>SOLUTION: On the side of one principal surface of an one conductive semiconductor substrate 1, the solar cell has many fine protrusions 2, the other conductive impurity diffusion layer 4, and front-surface electrodes 6. Also, on the side of the other principal surface, the solar cell has rear-surface electrodes 7, 8. Fine protrusions 3 present under the front-surface electrodes 6 of the side of the one principal surface have larger aspect ratios, higher heights, and shorter distances between the summits of the adjacent protrusions 3 to each other than the fine protrusions 2 present in the region wherefrom the regions present under the electrodes 6 are excluded. Thereby, high-concentration diffusion layers are formed under the front-surface electrodes 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池素子に関し、特に一主面側に多数の微細な突起を有する太陽電池素子に関する。
【0002】
【従来の技術】
従来の太陽電池素子を図3に示す。図3において、1は半導体基板、2は微細な突起、4は拡散層、5は反射防止膜、6は表面電極、7は裏面電極(銀電極)、8は裏面電極(アルミニウム電極)を示す。
【0003】
例えばP型半導体基板1の一主面側に反射防止のための多数の微細な突起2を形成し、表面近傍の全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層4を設け、半導体基板1の一主面側に窒化シリコン膜などから成る反射防止膜5を設け、一主面側に表面電極6を設けるとともに、他の主面側にアルミニウム電極8と銀電極7とで構成される裏面電極7、8を設けている。また、半導体基板1の他の主面側には高濃度のP型拡散層(図不示)が形成される。
【0004】
これらの太陽電池素子を形成するには反応性イオンエッチング法を用いて一主面側に多数の微細な突起2を形成して反射防止膜5を成膜した後、この反射防止膜5の上に表面電極材料を塗布して焼成することによって、電極材料の下の反射防止膜5を溶融させて半導体基板1と直接接触させる方法が一般的である(例えば特許文献1参照)。
【0005】
図3に示すような太陽電池は、一導電型の半導体基板1の一主面側に逆の導電型不純物を均一に拡散することにより拡散層2が形成されている。太陽光の照射により半導体基板1内部で発生した電子−正孔対はP型半導体基板1とN型拡散層4の界面である接合の電界により、N型及びP型領域に分離される。これを両面の電極から取り出すことで電力を得ることができる。しかし、光照射により半導体基板1の内部で発生した電子と正孔は不純物拡散層2の表面で一部が再結合してしまう。したがって太陽電池の変換効率を向上させるためにはこの表面再結合を低減することが重要である。表面再結合を低減するためには表面の不純物濃度が低い方がよい。
【0006】
しかし、表面電極6と拡散層4の接触部分では不純物濃度が低い場合、接触抵抗が増大して太陽電池の変換効率が低下してしまう。また、電極の突抜けによるリーク電流増大を防ぐためにも電極6下部の拡散層4は深い、即ち高濃度の方が好ましい。これらの相反する条件を満足する方法として、一主面側の電極下部に当たる部分に高濃度拡散層を形成し、それ以外の受光領域を低濃度とする選択的不純物拡散法が考案されている(例えば、非特許文献1参照)。
【0007】
図4はこのような太陽電池素子を示す図である。図4において1は半導体基板、4は拡散層、5は反射防止膜、6は表面電極、7は銀電極、8はアルミニウム電極、9は高濃度拡散層を示す。
【0008】
例えばP型半導体基板1の表面近傍の全面にN型不純物を拡散させてN型を呈する拡散層4を設け、半導体基板1の一主面側に窒化シリコン膜などから成る反射防止膜5を設け、一主面側に表面電極6を設けるとともに、表面電極6下の半導体基板1には高濃度拡散層9が形成されている。さらに、他の主面側にはアルミニウム電極8と銀電極7とで構成される裏面電極7、8を設けている。また、半導体基板1の他の主面側には高濃度のP型拡散層(図不示)が形成される。
【0009】
従来、この方法を実現するには拡散を二度行う方法が行われてきた。すなわち、まず高濃度拡散層9を形成した後、電極のパターンにマスキングを施し、マスク部以外の高濃度拡散層をエッチングして除去する。その後、エッチングされた部分に拡散層4を形成する方法である。
【0010】
【特許文献1】
特開平11−307792号公報
【非特許文献1】
Jianhua Zhao,etc.”22.3% EFFICIENT SILICON SOLAR CELL MODULE” 25th Photovoltaic Specialists Conf.(1996) P.1203−1206
【0011】
【発明が解決しようとする課題】
しかし、この方法によると拡散の高温熱処理工程を二回行うため、熱衝撃により基板が割れやすいという問題があった。
【0012】
また、図2に示すような一主面側に凹凸を有する太陽電池素子で、高濃度拡散層9を形成した後、電極のパターンにマスキングを施し、マスク部以外の高濃度拡散層をエッチングして除去するという方法を行うと、先に形成した半導体基板1の一主面側の微細な凹凸2の形状が崩れてしまい、充分に反射防止の効果を得られなくなるという問題も発生する。
【0013】
本発明は、このような従来技術の問題に鑑みてなされたものであり、半導体基板の一主面側に多数の微細な突起を有する太陽電池素子において、熱処理工程を追加せずに表面電極6下に高濃度拡散層を形成した太陽電池素子を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る太陽電池素子では一導電型半導体基板の一主面側に多数の微細な突起と他の導電型不純物の拡散層と表面電極を有するとともに、他の主面側に裏面電極を有する太陽電池素子において、上記一主面側の表面電極下の微細な突起はそれ以外の領域の微細な突起よりもアスペクト比が大きいことを特徴とする。
【0015】
また、本発明に係る太陽電池素子においては、上記一主面側の表面電極下の微細な突起はそれ以外の領域の微細な突起よりも高さが高いほうがよい。
【0016】
また、本発明に係る太陽電池素子においては、上記一主面側の表面電極下の互いに隣り合う微細な突起の頂点の距離はそれ以外の領域の互いに隣り合う微細な突起の頂点の距離よりも短くてもよい。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づき詳細に説明する。図1に本発明に係る太陽電池素子を示す。図1において1は半導体基板、2は微細な突起、3は電極下の微細な突起、4は拡散層、5は反射防止膜、6は表面電極、7は裏面電極(銀電極)、8は裏面電極(アルミニウム電極)を示す。
【0018】
本発明に係る太陽電池素子も従来の太陽電池素子と略同様である。すなわち、例えばP型半導体基板1の一主面側に反射防止のための多数の微細な突起2を形成し、表面近傍の全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層4を設け、半導体基板1の一主面側に窒化シリコン膜などから成る反射防止膜5を設け、一主面側に表面電極6を設けるとともに、他の主面側にアルミニウム電極8と銀電極7とで構成される裏面電極7、8を設けている。また、半導体基板1の他の主面側には高濃度のP型拡散層(図不示)が形成される。
【0019】
本発明においては、表面電極6下の微細な突起3は、それ以外の領域の微細な突起2よりもアスペクト比(突起の高さ/突起の幅)が大きくなるように形成する。このようにすることにより、アスペクト比の大きい表面電極6下の微細な突起3のほうが、表面電極6下以外のアスペクト比の小さい微細な突起2よりも高濃度に拡散されることになり、一回の熱拡散で表面電極6下に高濃度拡散層9を形成することができる。
【0020】
これについて図を用いてさらに詳しく説明する。図2はアスペクト比の異なる突起への拡散状態を説明するための模式図であり、(a)はアスペクト比の大きい突起、(b)はアスペクト比の小さい突起を示す図である。図において、2は微細な突起、4は拡散層を示す。拡散層4の濃度と深さはたとえばシリコン基板1中に不純物としてリンを拡散させる場合、シリコンに対するリンの拡散係数、シリコン中のリンの最大溶解度、拡散温度および拡散時間などによって決まる。このことから、同時に拡散を行えば(a)のようにアスペクト比の大きい突起はその左右から拡散が進み、やがて突起の全てがリンの拡散層となり、それがさらに進めば徐々に高濃度になる。一方(b)のようにアスペクト比の小さい突起は、その表面に均一に拡散層4が形成されていくことになる。
【0021】
また、本発明においては、表面電極6下の微細な突起3はそれ以外の領域の微細な突起2よりも高さが高いほうがよい。このようにすることにより、一回の熱拡散でより有効に表面電極6下に高濃度拡散層9を形成することができる。また、表面電極6を形成するために銀粉末を主成分とする電極材料を塗布しても、銀粉末の粒径以下の隙間に電極材料が入り込むことはないので、表面電極6は微細な突起3の頂上部の特に高濃度の拡散層を有する部分のみと接触し、拡散層4は微細な突起2の高さ分さらに深いものとなる。
【0022】
また、本発明においては、表面電極6下の互いに隣り合う微細な突起3の頂点の距離はそれ以外の領域の互いに隣り合う微細な突起2の頂点の距離より短くてもよい。このようにすることにより、一回の熱拡散でより有効に表面電極6下に高濃度拡散層9を形成することができる。また、微細な突起3の間で電極材料が入り込む深さが浅くなり、表面電極6は微細な突起3の頂上部の特に高濃度の拡散層を有する部分のみと接触し、拡散層4は微細な突起2の高さ分深いものとなる。
【0023】
本発明に係る太陽電池素子の製造方法の一例を説明する。まず、半導体基板1としてP型を呈する板状のシリコン基板1の一主面側に、反応性イオンエッチング法などを用いて全面に微細な突起2を多数形成する。微細な突起2は入射光を閉じこめて反射率を低減させ、太陽電池素子の短絡電流を増大させる。なお、前記微細な突起2の幅は2μm以下が望ましい。2μm以上であるとエッチングの処理時間が長くなる反面、シリコン基板1の一主面側での反射率はさほど低減されない。
【0024】
次に、電極形成予定領域以外の受光予定領域の部分に耐プラズマ性レジストをプリントし、再び反応性イオンエッチング法などで電極形成予定領域に表面電極6下の微細な突起3を形成する。このとき、形成する微細な突起3の幅は1μm以下が望ましい。なぜなら、この後に行う不純物拡散で形成される拡散層4の深さはおよそ0.5μm以下であるため、突起の幅が1μm以上であると不純物の集中が起こらず、高濃度に拡散された突起が形成し難いからである。
【0025】
また、突起のアスペクト比は0.5以上であることが望ましい。アスペクト比が0.5未満であると、表面電極6下の微細な突起3の根元部分が太くなり、高濃度に拡散されない部分が出来る。この部分に表面電極6が形成されると接合の突抜けが起こり易く、リーク電流が増大して太陽電池素子の出力特性が低下する。
【0026】
また、微細な突起2、3の形成は反応性イオンエッチング法で行うことが望ましい。反応性イオンエッチング法は、ガスの成分比やエッチング時間を調整することで突起の形状を任意に変えることが可能であり、本発明に係る太陽電池素子の微細な突起2、3の形状を比較的容易に形成出来る。微細な突起2を形成する際の3〜5倍の流量の塩素を流すことにより、微細な突起3を形成することができる。
【0027】
その後、例えばPOClなど不純物元素を含むガス中で熱処理を行ったり、不純物元素を含む薬液を基板表面に塗布した後、熱処理を行うなどにより拡散処理を行う。これにより一回の拡散で、表面電極6下以外の領域の微細な突起2の下には拡散層4が形成され、表面電極6下の微細な突起3の下には局部的に高濃度拡散層9が形成される。
【0028】
次に、半導体基板1の一主面側にCVD装置などで反射防止膜6を形成し、拡散層4を分離する。
【0029】
その後、表面電極6下の微細な突起3の上に銀などからなる電極材料を塗布するとともに、他の主面側にはアルミニウムを主成分とする電極材料と、銀を主成分とする電極材料を塗布して焼き付けることにより、表面電極6および裏面電極7、8を形成して図1に示す太陽電池素子を得ることができる。
【0030】
なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。例えば本発明に係る太陽電池素子の製造方法はこれに限定されるものではなく、例えば微細な突起を形成する順番や形成方法はその一例である。
【0031】
【発明の効果】
以上詳細に説明したように、本発明に係る太陽電池素子においては、一導電型半導体基板の一主面側に多数の微細な突起と他の導電型不純物の拡散層と表面電極を有するとともに、他の主面側に裏面電極を有する太陽電池素子において、上記一主面側の表面電極下の微細な突起はそれ以外の領域の微細な突起よりもアスペクト比を大きくする。このようにすることにより、アスペクト比の大きい表面電極下の微細な突起のほうがそれ以外の領域のアスペクト比の小さい微細な突起よりも高濃度に拡散されることになり、一回の熱拡散で表面電極下に高濃度拡散層を形成することができる。つまり、表面再結合を低減するために表面の不純物濃度を下げると同時に、接触抵抗を低減し、電極の突抜けによるリーク電流の増大抑制するための、高濃度拡散層を表面電極下に有する太陽電池素子を一回の熱拡散によって得ることができる。
【0032】
また、表面電極下の微細な突起の高さをそれ以外の領域の微細な突起の高さよりも高くする。このようにすることにより、一回の熱拡散でより有効に表面電極下に高濃度拡散層を形成することができるとともに、表面電極を形成するために銀粉末を主成分とする電極材料を塗布しても、銀粉末の粒径以下の隙間に電極材料が入り込むことはないので、表面電極は微細な突起の頂上部の特に高濃度の拡散層を有する部分のみと接触し、拡散層は微細な突起の高さ分さらに深いものとなる。
【0033】
さらに、表面電極下の互いに隣り合う微細な突起の頂点の距離はそれ以外の領域の互いに隣り合う微細な突起の頂点の距離よりも短くしてもよい。このようにすることにより、一回の熱拡散でより有効に表面電極下に高濃度拡散層を形成することができる。また、微細な突起の間で電極材料が入り込む深さが浅くなり、表面電極は微細な突起の頂上部の特に高濃度の拡散層を有する部分のみと接触し、拡散層は微細な突起の高さ分深いものとなる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池素子の一実施例を示した図である。
【図2】本発明に係る太陽電池素子のアスペクト比の異なる突起への拡散状態を説明するための模式図であり、(a)はアスペクト比の大きい突起、(b)はアスペクト比の小さい突起を示す図である
【図3】従来の太陽電池素子の一実施例を示した図である。
【図4】従来の太陽電池素子の他の実施例を示した図である。
1・・・半導体基板、2・・・微細な突起、3・・・表面電極下の微細な突起、4・・・拡散層、5・・・反射防止膜、6・・・表面電極、7・・・裏面電極(銀電極)、8・・・裏面電極(アルミニウム電極)、9・・・高濃度拡散層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell element, and more particularly to a solar cell element having a large number of fine protrusions on one principal surface side.
[0002]
[Prior art]
FIG. 3 shows a conventional solar cell element. In FIG. 3, 1 is a semiconductor substrate, 2 is a fine projection, 4 is a diffusion layer, 5 is an antireflection film, 6 is a front electrode, 7 is a back electrode (silver electrode), and 8 is a back electrode (aluminum electrode). .
[0003]
For example, a large number of fine protrusions 2 for preventing reflection are formed on one main surface side of a P-type semiconductor substrate 1, and an N-type impurity is diffused to a certain depth over the entire surface near the surface to form an N-type diffusion layer 4. And an anti-reflection film 5 made of a silicon nitride film or the like is provided on one main surface of the semiconductor substrate 1, a surface electrode 6 is provided on one main surface, and an aluminum electrode 8 and a silver electrode 7 are provided on the other main surface. Are provided. A high-concentration P-type diffusion layer (not shown) is formed on the other main surface of the semiconductor substrate 1.
[0004]
In order to form these solar cell elements, a large number of fine projections 2 are formed on one main surface side by using a reactive ion etching method, and an antireflection film 5 is formed. In general, a surface electrode material is applied and baked to melt the antireflection film 5 under the electrode material and directly contact the semiconductor substrate 1 (for example, see Patent Document 1).
[0005]
In a solar cell as shown in FIG. 3, a diffusion layer 2 is formed by uniformly diffusing an impurity of the opposite conductivity type on one main surface side of a semiconductor substrate 1 of one conductivity type. Electron-hole pairs generated inside the semiconductor substrate 1 by the irradiation of sunlight are separated into N-type and P-type regions by a junction electric field at the interface between the P-type semiconductor substrate 1 and the N-type diffusion layer 4. Electric power can be obtained by extracting this from the electrodes on both sides. However, electrons and holes generated inside the semiconductor substrate 1 by light irradiation are partially recombined on the surface of the impurity diffusion layer 2. Therefore, it is important to reduce this surface recombination in order to improve the conversion efficiency of the solar cell. In order to reduce surface recombination, it is preferable that the impurity concentration on the surface is low.
[0006]
However, when the impurity concentration is low at the contact portion between the surface electrode 6 and the diffusion layer 4, the contact resistance increases and the conversion efficiency of the solar cell decreases. In order to prevent an increase in leakage current due to penetration of the electrode, the diffusion layer 4 below the electrode 6 is preferably deep, that is, has a high concentration. As a method of satisfying these contradictory conditions, a selective impurity diffusion method has been devised in which a high concentration diffusion layer is formed in a portion corresponding to the lower part of the electrode on one main surface side, and the other light receiving region is made low concentration ( For example, see Non-Patent Document 1).
[0007]
FIG. 4 is a diagram showing such a solar cell element. In FIG. 4, 1 is a semiconductor substrate, 4 is a diffusion layer, 5 is an antireflection film, 6 is a surface electrode, 7 is a silver electrode, 8 is an aluminum electrode, and 9 is a high concentration diffusion layer.
[0008]
For example, an N-type diffusion layer 4 is provided on the entire surface near the surface of the P-type semiconductor substrate 1 by diffusing N-type impurities, and an antireflection film 5 made of a silicon nitride film or the like is provided on one main surface side of the semiconductor substrate 1. A surface electrode 6 is provided on one main surface side, and a high concentration diffusion layer 9 is formed on the semiconductor substrate 1 below the surface electrode 6. Further, on the other main surface side, there are provided back electrodes 7 and 8 composed of an aluminum electrode 8 and a silver electrode 7. A high-concentration P-type diffusion layer (not shown) is formed on the other main surface of the semiconductor substrate 1.
[0009]
Conventionally, a method of performing diffusion twice has been used to realize this method. That is, first, after the high concentration diffusion layer 9 is formed, the electrode pattern is masked, and the high concentration diffusion layer other than the mask portion is removed by etching. Thereafter, a diffusion layer 4 is formed in the etched portion.
[0010]
[Patent Document 1]
JP-A-11-307792 [Non-Patent Document 1]
Jianhua Zhao, etc. "22.3% EFFICIENT SILICON SOLAR CELL MODULE" 25th Photovoltaic Specialists Conf. (1996) P.A. 1203-1206
[0011]
[Problems to be solved by the invention]
However, according to this method, since the high-temperature heat treatment step of diffusion is performed twice, there is a problem that the substrate is easily broken by thermal shock.
[0012]
Further, after forming the high concentration diffusion layer 9 in a solar cell element having irregularities on one principal surface side as shown in FIG. 2, the electrode pattern is masked, and the high concentration diffusion layer other than the mask portion is etched. If the method of removing by removing is performed, the shape of the fine unevenness 2 formed on the one main surface side of the semiconductor substrate 1 previously formed is broken, and a problem that a sufficient anti-reflection effect cannot be obtained occurs.
[0013]
The present invention has been made in view of such a problem of the related art. In a solar cell element having a large number of fine protrusions on one main surface side of a semiconductor substrate, the surface electrode 6 can be formed without adding a heat treatment step. An object is to provide a solar cell element having a high concentration diffusion layer formed below.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the solar cell element according to claim 1 has a large number of fine protrusions, a diffusion layer of another conductivity type impurity and a surface electrode on one main surface side of the one conductivity type semiconductor substrate, and In the solar cell element having the back surface electrode on the main surface side, the fine projections under the surface electrode on the one main surface side have a larger aspect ratio than the fine protrusions in other regions.
[0015]
Further, in the solar cell element according to the present invention, it is preferable that the fine projections under the surface electrode on the one main surface side have a higher height than the fine projections in other areas.
[0016]
Further, in the solar cell element according to the present invention, the distance between the vertices of adjacent fine projections under the surface electrode on the one main surface side is greater than the distance between the vertices of adjacent fine projections in other regions. It may be short.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a solar cell element according to the present invention. In FIG. 1, 1 is a semiconductor substrate, 2 is fine protrusions, 3 is fine protrusions below the electrodes, 4 is a diffusion layer, 5 is an antireflection film, 6 is a front electrode, 7 is a back electrode (silver electrode), 8 is The back electrode (aluminum electrode) is shown.
[0018]
The solar cell element according to the present invention is substantially the same as the conventional solar cell element. That is, for example, a large number of fine protrusions 2 for preventing reflection are formed on one main surface side of a P-type semiconductor substrate 1, and an N-type impurity is diffused to a certain depth over the entire surface near the surface to provide N-type diffusion. A layer 4 is provided, an antireflection film 5 made of a silicon nitride film or the like is provided on one main surface of the semiconductor substrate 1, a surface electrode 6 is provided on one main surface, and an aluminum electrode 8 and silver are provided on the other main surface. Back electrodes 7, 8 composed of the electrodes 7 are provided. A high-concentration P-type diffusion layer (not shown) is formed on the other main surface of the semiconductor substrate 1.
[0019]
In the present invention, the fine projections 3 below the surface electrode 6 are formed so that the aspect ratio (height of the projections / width of the projections) is larger than that of the fine projections 2 in other regions. By doing so, the fine protrusions 3 under the surface electrode 6 having a large aspect ratio are diffused at a higher concentration than the fine protrusions 2 having a small aspect ratio other than under the surface electrode 6. The high-concentration diffusion layer 9 can be formed under the surface electrode 6 by performing thermal diffusion twice.
[0020]
This will be described in more detail with reference to the drawings. 2A and 2B are schematic diagrams for explaining a diffusion state to protrusions having different aspect ratios. FIG. 2A is a diagram illustrating a protrusion having a large aspect ratio, and FIG. 2B is a diagram illustrating a protrusion having a small aspect ratio. In the figure, 2 indicates fine projections, and 4 indicates a diffusion layer. For example, when phosphorus is diffused as an impurity into the silicon substrate 1, the concentration and depth of the diffusion layer 4 are determined by the diffusion coefficient of phosphorus with respect to silicon, the maximum solubility of phosphorus in silicon, the diffusion temperature, the diffusion time, and the like. From this, if the diffusion is performed simultaneously, the protrusions having a large aspect ratio as shown in FIG. 3A will be diffused from the left and right, and eventually all of the protrusions will become a phosphorus diffusion layer. . On the other hand, in the projections having a small aspect ratio as shown in (b), the diffusion layer 4 is formed uniformly on the surface.
[0021]
In the present invention, the fine projections 3 under the surface electrode 6 are preferably higher in height than the fine projections 2 in the other areas. By doing so, the high concentration diffusion layer 9 can be formed under the surface electrode 6 more effectively by a single thermal diffusion. In addition, even if an electrode material containing silver powder as a main component is applied to form the surface electrode 6, the electrode material does not enter gaps smaller than the particle diameter of the silver powder. The diffusion layer 4 is further deeper by the height of the fine projections 2 because it contacts only the portion having the particularly high concentration diffusion layer at the top of 3.
[0022]
Further, in the present invention, the distance between the vertices of the adjacent fine projections 3 below the surface electrode 6 may be shorter than the distance between the vertices of the adjacent fine projections 2 in other regions. By doing so, the high concentration diffusion layer 9 can be formed under the surface electrode 6 more effectively by a single thermal diffusion. Further, the depth of the electrode material entering between the fine projections 3 becomes shallower, and the surface electrode 6 contacts only a portion having a particularly high concentration diffusion layer at the top of the fine projections 3, and the diffusion layer 4 becomes finer. The projection 2 is deeper by the height of the projection 2.
[0023]
An example of a method for manufacturing a solar cell element according to the present invention will be described. First, a large number of fine protrusions 2 are formed on the entire main surface of a P-type silicon substrate 1 having a P-type as a semiconductor substrate 1 by using a reactive ion etching method or the like. The fine projections 2 confine incident light, reduce the reflectance, and increase the short-circuit current of the solar cell element. The width of the fine projections 2 is desirably 2 μm or less. When the thickness is 2 μm or more, the etching processing time is prolonged, but the reflectance on the one main surface side of the silicon substrate 1 is not reduced so much.
[0024]
Next, a plasma-resistant resist is printed on a portion of the light-receiving area other than the electrode forming area, and fine projections 3 below the surface electrode 6 are formed in the electrode forming area again by a reactive ion etching method or the like. At this time, the width of the fine projections 3 to be formed is desirably 1 μm or less. The reason is that the depth of the diffusion layer 4 formed by the impurity diffusion to be performed later is about 0.5 μm or less. Therefore, when the width of the projection is 1 μm or more, the concentration of the impurity does not occur, and the projection diffused at a high concentration. Is difficult to form.
[0025]
Further, the aspect ratio of the projection is desirably 0.5 or more. If the aspect ratio is less than 0.5, the root portion of the fine projection 3 under the surface electrode 6 becomes thick, and a portion that is not diffused at a high concentration is formed. If the surface electrode 6 is formed in this portion, the junction is likely to break through, the leak current increases, and the output characteristics of the solar cell element deteriorate.
[0026]
The formation of the fine projections 2 and 3 is preferably performed by a reactive ion etching method. In the reactive ion etching method, the shape of the projections can be arbitrarily changed by adjusting the gas component ratio and the etching time, and the shapes of the fine projections 2 and 3 of the solar cell element according to the present invention are compared. It can be easily formed. The fine projections 3 can be formed by flowing chlorine at a flow rate 3 to 5 times that of forming the fine projections 2.
[0027]
Thereafter, diffusion treatment is performed by performing a heat treatment in a gas containing an impurity element such as POCl 3, or by applying a chemical solution containing the impurity element to the substrate surface and then performing a heat treatment. Thus, in one diffusion, a diffusion layer 4 is formed under the fine protrusions 2 in a region other than below the surface electrode 6, and locally under the fine protrusions 3 under the surface electrode 6, a high concentration diffusion is performed. Layer 9 is formed.
[0028]
Next, an antireflection film 6 is formed on one main surface side of the semiconductor substrate 1 by a CVD device or the like, and the diffusion layer 4 is separated.
[0029]
Thereafter, an electrode material made of silver or the like is applied on the fine projections 3 below the surface electrode 6, and an electrode material mainly containing aluminum and an electrode material mainly containing silver are applied to the other main surface side. Is applied and baked to form the front surface electrode 6 and the back surface electrodes 7 and 8, thereby obtaining the solar cell element shown in FIG.
[0030]
The present invention is not limited to the above embodiment, and many modifications and changes can be made within the scope of the present invention. For example, the method for manufacturing a solar cell element according to the present invention is not limited to this, and the order and method of forming fine projections are one example.
[0031]
【The invention's effect】
As described in detail above, the solar cell element according to the present invention has a large number of fine protrusions and a diffusion layer of another conductive type impurity and a surface electrode on one main surface side of the one conductive type semiconductor substrate, In the solar cell element having the back electrode on the other main surface side, the fine projections under the surface electrode on the one main surface have an aspect ratio larger than those of the other regions. By doing so, the fine protrusions under the surface electrode having a large aspect ratio are diffused at a higher concentration than the fine protrusions having a small aspect ratio in the other regions, and a single thermal diffusion A high concentration diffusion layer can be formed under the surface electrode. That is, a solar cell having a high-concentration diffusion layer below the surface electrode for reducing the surface impurity concentration at the same time as reducing the surface recombination and at the same time reducing the contact resistance and suppressing the increase in the leak current due to the electrode penetration. The battery element can be obtained by one heat diffusion.
[0032]
Further, the height of the fine projections under the surface electrode is set higher than the height of the fine projections in the other regions. By doing so, a high concentration diffusion layer can be formed under the surface electrode more effectively by one heat diffusion, and an electrode material mainly composed of silver powder is applied to form the surface electrode. However, since the electrode material does not enter gaps smaller than the particle size of the silver powder, the surface electrode contacts only the portion having the particularly high-concentration diffusion layer at the top of the fine projection, and the diffusion layer It becomes deeper by the height of the projection.
[0033]
Further, the distance between the vertices of the adjacent fine projections under the surface electrode may be shorter than the distance between the vertices of the adjacent fine projections in the other region. By doing so, a high concentration diffusion layer can be formed under the surface electrode more effectively by one heat diffusion. In addition, the depth of the electrode material entering between the fine protrusions becomes shallower, and the surface electrode contacts only the top of the fine protrusions, particularly the portion having the high-concentration diffusion layer. It will be deep.
[Brief description of the drawings]
FIG. 1 is a view showing one embodiment of a solar cell element according to the present invention.
FIGS. 2A and 2B are schematic diagrams for explaining a diffusion state of a solar cell element according to the present invention into projections having different aspect ratios, wherein FIG. 2A is a projection having a large aspect ratio and FIG. 2B is a projection having a small aspect ratio. FIG. 3 is a view showing one example of a conventional solar cell element.
FIG. 4 is a view showing another embodiment of a conventional solar cell element.
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Fine protrusion, 3 ... Fine protrusion under surface electrode, 4 ... Diffusion layer, 5 ... Antireflection film, 6 ... Surface electrode, 7 ... back electrode (silver electrode), 8 ... back electrode (aluminum electrode), 9 ... high concentration diffusion layer

Claims (3)

一導電型半導体基板の一主面側に多数の微細な突起と他の導電型不純物の拡散層と表面電極を有するとともに、他の主面側に裏面電極を有する太陽電池素子において、前記一主面側の表面電極下の微細な突起はそれ以外の領域の微細な突起よりもアスペクト比が大きいことを特徴とする太陽電池素子。A solar cell element having a large number of fine protrusions, a diffusion layer of another conductivity type impurity and a surface electrode on one main surface side of one conductivity type semiconductor substrate, and having a back surface electrode on the other main surface side. A solar cell element wherein fine projections below a surface electrode on the surface side have a larger aspect ratio than fine projections in other regions. 一導電型半導体基板の一主面側に多数の微細な突起と他の導電型不純物の拡散層と表面電極を有するとともに、他の主面側に裏面電極を有する太陽電池素子において、前記一主面側の表面電極下の微細な突起はそれ以外の領域の微細な突起よりも高さが高いことを特徴とする請求項1に記載の太陽電池素子。A solar cell element having a large number of fine protrusions, a diffusion layer of another conductivity type impurity and a surface electrode on one main surface side of one conductivity type semiconductor substrate, and having a back surface electrode on the other main surface side. 2. The solar cell element according to claim 1, wherein the fine projections below the surface-side surface electrode are higher than the fine projections in other areas. 一導電型半導体基板の一主面側に多数の微細な突起と他の導電型不純物の拡散層と表面電極を有するとともに、他の主面側に裏面電極を有する太陽電池素子において、前記一主面側の表面電極下の互いに隣り合う微細な突起の頂点の距離はそれ以外の領域の互いに隣り合う微細な突起の頂点の距離よりも短いことを特徴とする請求項1に記載の太陽電池素子。A solar cell element having a large number of fine protrusions, a diffusion layer of another conductivity type impurity and a surface electrode on one main surface side of one conductivity type semiconductor substrate, and having a back surface electrode on the other main surface side. 2. The solar cell element according to claim 1, wherein the distance between the vertices of the fine projections adjacent to each other under the surface-side surface electrode is shorter than the distance between the vertices of the fine projections adjacent to each other in the other region. .
JP2003037067A 2003-02-14 2003-02-14 Solar cell element and manufacturing method thereof Expired - Fee Related JP4325912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037067A JP4325912B2 (en) 2003-02-14 2003-02-14 Solar cell element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037067A JP4325912B2 (en) 2003-02-14 2003-02-14 Solar cell element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004247595A true JP2004247595A (en) 2004-09-02
JP4325912B2 JP4325912B2 (en) 2009-09-02

Family

ID=33021989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037067A Expired - Fee Related JP4325912B2 (en) 2003-02-14 2003-02-14 Solar cell element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4325912B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205398A (en) * 2007-02-22 2008-09-04 Sharp Corp Photoelectric conversion device and its manufacturing method
JP2008282912A (en) * 2007-05-09 2008-11-20 Mitsubishi Electric Corp Manufacturing method for solar battery element
WO2009107955A3 (en) * 2008-02-25 2009-11-26 Lg Electronics Inc. Solar cell and method for manufacturing the same
WO2010024522A1 (en) * 2008-08-29 2010-03-04 Lg Electronics Inc. Solar cell and method for manufacturing the same
WO2011161813A1 (en) * 2010-06-25 2011-12-29 三菱電機株式会社 Solar cell and method for manufacturing same
KR20120041341A (en) * 2010-10-21 2012-05-02 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR101181820B1 (en) 2005-12-29 2012-09-11 삼성에스디아이 주식회사 Manufacturing method of solar cell
KR101680384B1 (en) * 2010-10-21 2016-11-28 엘지전자 주식회사 Method for manufacturing solar cell
JP2017050402A (en) * 2015-09-02 2017-03-09 信越化学工業株式会社 Solar battery cell and manufacturing method of solar battery cell
WO2022222953A1 (en) * 2021-04-21 2022-10-27 华为技术有限公司 Solar cell and electronic device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181820B1 (en) 2005-12-29 2012-09-11 삼성에스디아이 주식회사 Manufacturing method of solar cell
JP2008205398A (en) * 2007-02-22 2008-09-04 Sharp Corp Photoelectric conversion device and its manufacturing method
JP2008282912A (en) * 2007-05-09 2008-11-20 Mitsubishi Electric Corp Manufacturing method for solar battery element
WO2009107955A3 (en) * 2008-02-25 2009-11-26 Lg Electronics Inc. Solar cell and method for manufacturing the same
WO2010024522A1 (en) * 2008-08-29 2010-03-04 Lg Electronics Inc. Solar cell and method for manufacturing the same
US9343599B2 (en) 2008-08-29 2016-05-17 Lg Electronics Inc. Solar cell and method for manufacturing the same
US8642372B2 (en) 2008-08-29 2014-02-04 Lg Electronics Inc. Solar cell and method for manufacturing the same
CN102959717A (en) * 2010-06-25 2013-03-06 三菱电机株式会社 Solar cell and method for manufacturing same
JP4980494B2 (en) * 2010-06-25 2012-07-18 三菱電機株式会社 Solar cell and manufacturing method thereof
US8981210B2 (en) 2010-06-25 2015-03-17 Mitsubishi Electric Corporation Solar battery cell and method of manufacturing the solar battery cell
WO2011161813A1 (en) * 2010-06-25 2011-12-29 三菱電機株式会社 Solar cell and method for manufacturing same
KR20120041341A (en) * 2010-10-21 2012-05-02 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR101642153B1 (en) * 2010-10-21 2016-07-29 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR101680384B1 (en) * 2010-10-21 2016-11-28 엘지전자 주식회사 Method for manufacturing solar cell
JP2017050402A (en) * 2015-09-02 2017-03-09 信越化学工業株式会社 Solar battery cell and manufacturing method of solar battery cell
WO2022222953A1 (en) * 2021-04-21 2022-10-27 华为技术有限公司 Solar cell and electronic device
US11961923B2 (en) 2021-04-21 2024-04-16 Huawei Technologies Co., Ltd. Solar cell and electronic device

Also Published As

Publication number Publication date
JP4325912B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP7235917B2 (en) Solar cells and their passivated contact structures, battery modules and photovoltaic systems
KR101139458B1 (en) Sollar Cell And Fabrication Method Thereof
US9214593B2 (en) Solar cell and method for manufacturing the same
KR101225978B1 (en) Sollar Cell And Fabrication Method Thereof
JP2005310830A (en) Solar cell and manufacturing method thereof
TW201415650A (en) Solar cell and fabrication method thereof
JPH0661515A (en) Solar cell and its manufacture
JP2002329880A (en) Solar battery and method for manufacturing the same
KR101651302B1 (en) Bi-facial solar cell and method for fabricating the same
JP2015130527A (en) Solar battery and manufacturing method of the same
US20120094421A1 (en) Method of manufacturing solar cell
JP2013187287A (en) Photoelectric conversion element
JP4325912B2 (en) Solar cell element and manufacturing method thereof
JP2010251343A (en) Solar cell and method of manufacturing the same
KR101160116B1 (en) Method of manufacturing Back junction solar cell
KR101054985B1 (en) Method for fabricating solar cell
JP2007019259A (en) Solar cell and its manufacturing method
KR100420030B1 (en) Method for manufacturing solar cell
KR100366348B1 (en) manufacturing method of silicon solar cell
KR101198438B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR101198430B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR100403803B1 (en) NPRIL(n-p and rear inversion layer) bifacial solar cell and method for manufacturing the same
KR101181625B1 (en) Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR101382047B1 (en) Method for fabricating selective emitter structure of solar cell
KR101172614B1 (en) Back contact solar cell and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees