JPS62205267A - Production of aluminum oxide film - Google Patents

Production of aluminum oxide film

Info

Publication number
JPS62205267A
JPS62205267A JP4724886A JP4724886A JPS62205267A JP S62205267 A JPS62205267 A JP S62205267A JP 4724886 A JP4724886 A JP 4724886A JP 4724886 A JP4724886 A JP 4724886A JP S62205267 A JPS62205267 A JP S62205267A
Authority
JP
Japan
Prior art keywords
aluminum oxide
oxide film
film
base plate
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4724886A
Other languages
Japanese (ja)
Inventor
Masahiko Hiugaji
雅彦 日向寺
Taketoshi Kato
加藤 健敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4724886A priority Critical patent/JPS62205267A/en
Publication of JPS62205267A publication Critical patent/JPS62205267A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a high-quality aluminum oxide film without exposing a base plate to high temp. for a long time by irradiating light energy having intensity peak in specified wavelength and performing light annealing in a forming process of the aluminum oxide film. CONSTITUTION:An aluminum oxide film is formed on a base plate such as silicon by an electron beam vapor deposition method. During the formation of this film or after the formation thereof, light energy having intensity peak in 11-17mum wavelength i.e. laser beam is irradiated on the aluminum oxide film to perform light annealing of the aluminum oxide film. In such a way, only the aluminum oxide film is effectively annealed without exposing the base plate part to high temp. for a long time and the high-quality film can be formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は酸化アルミニウム膜の製造方法、特に高品質な
酸化アルミニウム膜の製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an aluminum oxide film, and particularly to a method for manufacturing a high quality aluminum oxide film.

〔発明の技術的背景〕[Technical background of the invention]

近年、半導体デバイスを始めとする種々の電子部品や光
学素子の分野において酸化アルミニウム膜は広く用いら
れている。その機能も電気的絶縁。
In recent years, aluminum oxide films have been widely used in the fields of various electronic components and optical elements including semiconductor devices. Its function is also electrical insulation.

表面保護(腐食防止、耐摩耗など)、光学的機能など幅
広い分野にわたっている。これらの用途のための酸化ア
ルミニウム膜の形成方法は、真空蒸若、スパッタリング
、CVD法等の減圧下での薄膜形成法の他、スプレィ法
、ディップ法、塗布法。
It covers a wide range of fields such as surface protection (corrosion prevention, wear resistance, etc.) and optical functions. Methods for forming aluminum oxide films for these uses include thin film forming methods under reduced pressure such as vacuum evaporation, sputtering, and CVD methods, as well as spray methods, dipping methods, and coating methods.

陽極酸化法等、多岐にわたる。A wide variety of methods including anodizing.

ところで、物理的、x学的あるいは光学的に安定な酸化
アルミニウム膜を得るためには、上記の形成方法を用い
た薄膜形成工程において成膜温度を高温にするか、もし
くは薄膜形成工程後に形成された酸化アルミニウt1膜
を高温度で熱処理する工程が必要である。例えばCVD
法の場合は750℃以上、また高周波スパッタリング法
の場合は450℃以上の温度で形成された酸化アルミニ
ウム膜は、多結晶体で、膜中に含まれる水分も少なく、
股の物理的、屏学的諧特性も安定である。しかし、これ
らの温度以下で形成された場合、得られる酸化アルミニ
ウム1摸は非晶質状であり、膜中に水分を多く含んでお
り、弗酸に容易におかされる等。
By the way, in order to obtain a physically, chemically or optically stable aluminum oxide film, the film formation temperature must be raised to a high temperature in the thin film formation process using the above-mentioned formation method, or the film must be formed after the thin film formation process. It is necessary to heat-treat the aluminum oxide T1 film at high temperature. For example, CVD
The aluminum oxide film formed at a temperature of 750°C or higher in the case of the method and 450°C or higher in the case of the high-frequency sputtering method is polycrystalline and contains little moisture in the film.
The physical and mechanical characteristics of the crotch are also stable. However, when formed at temperatures below these temperatures, the resulting aluminum oxide sample is amorphous, contains a large amount of water in the film, and is easily affected by hydrofluoric acid.

物理的、化学的に不安定である。これらの不安定性は実
際の応用面では膜のはがれ、耐候性の劣化し、耐摩耗性
の不足、電気特性あるいは光学特性の劣化などにつなが
る。
Physically and chemically unstable. In actual applications, these instabilities lead to film peeling, deterioration of weather resistance, lack of wear resistance, and deterioration of electrical or optical properties.

従って、高品質の酸化アルミニウム膜が必要とされる場
合には、膜の形成工程において成膜温度を高温にするか
、あるいは形成工程後に電気炉等を用いて基板とともに
得られた酸化アルミニウム膜を高温にさらす熱処理工程
が必要となる。
Therefore, if a high-quality aluminum oxide film is required, the film formation temperature should be raised to a high temperature during the film formation process, or the aluminum oxide film obtained together with the substrate should be removed using an electric furnace or the like after the formation process. A heat treatment process involving exposure to high temperatures is required.

〔背景技術の問題点〕[Problems with background technology]

上述の高温度を必要とする工程は、エネルギ。 The processes mentioned above that require high temperatures require energy.

時間の点から製造上不利となるばかりでなく、熱による
基板の損傷の点でも問題となる1例えば半導体素子上に
酸化アルミニウム薄膜層を形成する場合、通常の電気炉
等による熱処理では半導体基板全体が加熱されるために
拡散深さが深くなる欠点があり、浅い拡散を必要とする
半導体素子の場合、熱処理は困難であった。また有機材
料や融点の低い金属等の熱損傷を受けやすい材料を有す
る基板上に酸化アルミニウム薄膜層を形成しようとする
場合も同様の問題点があった。
Not only is it disadvantageous in terms of manufacturing time, but it also poses a problem in terms of damage to the substrate due to heat.1 For example, when forming an aluminum oxide thin film layer on a semiconductor element, heat treatment using a normal electric furnace, etc. This has the disadvantage that the diffusion depth becomes deep because of the heating, and heat treatment has been difficult for semiconductor devices that require shallow diffusion. Similar problems also occur when attempting to form an aluminum oxide thin film layer on a substrate having a material susceptible to thermal damage, such as an organic material or a metal with a low melting point.

〔発明の目的〕[Purpose of the invention]

本発明の目的は6、従来の酸化アルミニウム膜の製造方
法の有する」−記問題を解決し、基板を高温にさらすこ
となく高品質な酸化アルミニウムlI’Jを形成するこ
とのできる製造方法を提供することである。
The object of the present invention is to provide a manufacturing method that solves the above problems of conventional aluminum oxide film manufacturing methods and can form high-quality aluminum oxide lI'J without exposing the substrate to high temperatures. It is to be.

〔発明の概要〕[Summary of the invention]

本発明は、基板上に酸化アルミニウム薄膜層を形成する
工程において、酸化アルミニウム膜の形成中もしくは形
成後に、11〜17趨の波長に強度ピークを有する光エ
ネルギを酸化アルミニウム膜に照射することにより、酸
化アルミニウム膜の光アニールを行なうことを特徴とす
る。これにより基板部分を長時間高温にさらすことなく
、酸化アルミニウム膜のみを効果的にアニールして高品
質の酸化アルミニウム膜が得られる。
In the process of forming an aluminum oxide thin film layer on a substrate, the present invention irradiates the aluminum oxide film with light energy having an intensity peak at a wavelength of 11 to 17 during or after the formation of the aluminum oxide film. It is characterized by photo-annealing the aluminum oxide film. As a result, a high quality aluminum oxide film can be obtained by effectively annealing only the aluminum oxide film without exposing the substrate portion to high temperatures for a long period of time.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using Examples.

面方位(100)比抵抗50Ω・備のP型シリコン基板
上に電子ビーム蒸着法により約1−の酸化アルミニウム
膜を形成した。膜形成時の基板温度は150℃である。
An approximately 1- aluminum oxide film was formed by electron beam evaporation on a P-type silicon substrate with a plane orientation (100) and a specific resistance of 50 Ω. The substrate temperature during film formation was 150°C.

第2図はこの酸化アルミニウム膜の赤外光領域における
吸収スペクトルを示したものであり、2.9− を中心
とした幅広い吸収帯と13−を中心とした吸収帯がある
ことが分かる。 13tm付近;の吸収帯は酸化アルミ
ニウム固有のものであり。
FIG. 2 shows the absorption spectrum of this aluminum oxide film in the infrared light region, and it can be seen that there is a broad absorption band centered at 2.9- and an absorption band centered at 13-. The absorption band around 13 tm is unique to aluminum oxide.

また2、9IJJn を中心とした吸収帯は酸化アルミ
ニウム膜に含まれる水分を反映したものである。なお、
2.9−を中心とした吸収帯からすそを引く幅広い吸収
帯は非晶質の酸化アルミニウム膜においてしばしば1m
?Jされるものである。
Furthermore, the absorption band centered around 2,9IJJn reflects the moisture contained in the aluminum oxide film. In addition,
In amorphous aluminum oxide films, the broad absorption band extending from the absorption band centered at 2.9- is often 1 m.
? It is something that is subject to J.

この後、酸化アルミニウム膜に 13co、を発振源と
したレーザー光を間欠的に照射することにより、光アニ
ールを施した。1ffcQ、レーザー光は11.4μ謂
付近に強いピークを持ち、第2図に示した酸化アルミニ
ウムの固有吸収帯内にその波長が位置するため、照射さ
れたレーザー光は酸化アルミニウム膜中でそのエネルギ
のほぼすべてが吸収され、熱に変換される。本実施例で
は、エネルギ密度2J/cdにて12回の13CO□レ
ーザー光パルス照射を行った。なお、゛基板であるシリ
コンウェハの温度上昇は認められなかった。
Thereafter, the aluminum oxide film was optically annealed by intermittently irradiating the aluminum oxide film with laser light using 13co as an oscillation source. 1ffcQ, the laser beam has a strong peak around 11.4μ, and its wavelength is located within the unique absorption band of aluminum oxide shown in Figure 2, so the energy of the irradiated laser beam is absorbed in the aluminum oxide film. Almost all of it is absorbed and converted into heat. In this example, 13 CO□ laser light pulse irradiation was performed 12 times at an energy density of 2 J/cd. Note that no increase in temperature of the silicon wafer, which is the substrate, was observed.

第1図は光アニール後の赤外吸収スペクトルを示す、同
図において、2.9−を中心とした水分を示すピークお
よびその両側の幅広い吸収帯が消失し、13μ層を中心
とした酸化アルミニウム固有の吸収帯のみが現れている
ことが分かる。
Figure 1 shows the infrared absorption spectrum after photoannealing. In the same figure, the peak indicating moisture centered at 2.9- and the broad absorption bands on both sides thereof disappear, and the aluminum oxide centered at the 13μ layer disappears. It can be seen that only the unique absorption band appears.

第3図は上記レーザー光照射を施した酸化アルミニウム
膜と同様の条件で蒸着を行った酸化アルミニウム膜を、
通常の電気炉を用いて大気中800℃で1時間熱処理し
た後の赤外吸収スペクトルを示したものである。第3図
においても第1図と同様に、 2.9.を中心としたピ
ークおよびその両側の幅広い吸収帯が消失していること
が分かる。
Figure 3 shows an aluminum oxide film deposited under the same conditions as the aluminum oxide film irradiated with the laser beam described above.
This figure shows an infrared absorption spectrum after heat treatment at 800° C. for 1 hour in the air using an ordinary electric furnace. In Fig. 3, as in Fig. 1, 2.9. It can be seen that the peak centered on and the broad absorption bands on both sides have disappeared.

従って、第1図および第3図から酸化アルミニウム膜に
13co、レーザー光を2J/fflのエネルギ密度で
12回のパルス照射することにより、基板を高温にさら
すことなく、高品質な酸化アルミニウム膜が得られるこ
とが分かる。また、そのアニール効果は800℃で1時
間の熱処理と同等のものであることが分かった。
Therefore, as shown in Figures 1 and 3, by irradiating the aluminum oxide film with 12 pulses of 13CO laser light at an energy density of 2J/ffl, a high quality aluminum oxide film can be produced without exposing the substrate to high temperatures. You can see what you can get. Further, it was found that the annealing effect was equivalent to that of heat treatment at 800° C. for 1 hour.

本発明によれば、光源として13co□ レーザー光以
外にも酸化アルミニウム固有の吸収帯に対応する11〜
17−の間に強度ピークを持つ強光エネルギを用いるこ
とによっても同様の効果が期待できる。
According to the present invention, as a light source, in addition to 13co□ laser light, 11~
A similar effect can be expected by using strong optical energy having an intensity peak between 17 and 17.

また1、これらレーザー光あるいは強光エネルギは、酸
化アルミニウム膜の形成後のみならず、膜形成中に照射
しても同様の効果が期待できる。
Further, 1. Similar effects can be expected when these laser beams or intense light energy are irradiated not only after the aluminum oxide film is formed but also during the film formation.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、基板を高温にさらすことな
く基板上に高品質の酸化アルミニウム膜を成形すること
が可能となり、基板の熱損傷の低減、熱処理工程の短縮
等の効果が得られる。
As described above, according to the present invention, it is possible to form a high-quality aluminum oxide film on a substrate without exposing the substrate to high temperatures, resulting in effects such as reducing thermal damage to the substrate and shortening the heat treatment process. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例により得られた酸化アルミニ
ウム膜の赤外吸収スペクトルを示す図。 第2図は本発明において光アニールを施す前の酸化アル
ミニウム膜の赤外吸収スペクトルを示す図、第3図は電
気炉による熱処理後の酸化アルミニウム膜の赤外吸収ス
ペクトルを示す図である。 闘λ乏収モ警シ”<’inン     。 シフi−収申(・ん)
FIG. 1 is a diagram showing an infrared absorption spectrum of an aluminum oxide film obtained according to an example of the present invention. FIG. 2 is a diagram showing an infrared absorption spectrum of an aluminum oxide film before photoannealing in the present invention, and FIG. 3 is a diagram showing an infrared absorption spectrum of an aluminum oxide film after heat treatment in an electric furnace. Fight λ Poor income police shi”<'inn.

Claims (1)

【特許請求の範囲】[Claims] 基板上への酸化アルミニウム膜の形成中もしくは形成後
に、11μmから17μmの間の波長に強度ピークを有
する光エネルギを前記酸化アルミニウム膜に照射するこ
とにより、前記酸化アルミニウム膜の光アニールを行な
うことを特徴とする酸化アルミニウム膜の製造方法。
During or after the formation of the aluminum oxide film on the substrate, the aluminum oxide film is photoannealed by irradiating the aluminum oxide film with light energy having an intensity peak at a wavelength between 11 μm and 17 μm. Characteristic method for producing aluminum oxide film.
JP4724886A 1986-03-06 1986-03-06 Production of aluminum oxide film Pending JPS62205267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4724886A JPS62205267A (en) 1986-03-06 1986-03-06 Production of aluminum oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4724886A JPS62205267A (en) 1986-03-06 1986-03-06 Production of aluminum oxide film

Publications (1)

Publication Number Publication Date
JPS62205267A true JPS62205267A (en) 1987-09-09

Family

ID=12769945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4724886A Pending JPS62205267A (en) 1986-03-06 1986-03-06 Production of aluminum oxide film

Country Status (1)

Country Link
JP (1) JPS62205267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120803A (en) * 1988-10-31 1990-05-08 Nippon Electric Glass Co Ltd Treatment of multilayered interference filter film
CN100362420C (en) * 2005-07-27 2008-01-16 大连理工大学 Method for improving optical characteristics of rare earth mixed aluminum oxide thin film utilizing laser annealing
JP2010045752A (en) * 2008-08-12 2010-02-25 Tatung Univ High frequency surface acoustic wave device and substrate thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120803A (en) * 1988-10-31 1990-05-08 Nippon Electric Glass Co Ltd Treatment of multilayered interference filter film
CN100362420C (en) * 2005-07-27 2008-01-16 大连理工大学 Method for improving optical characteristics of rare earth mixed aluminum oxide thin film utilizing laser annealing
JP2010045752A (en) * 2008-08-12 2010-02-25 Tatung Univ High frequency surface acoustic wave device and substrate thereof

Similar Documents

Publication Publication Date Title
EP0037685B1 (en) Method of producing a semiconductor device
JP4962837B2 (en) Infrared sensor manufacturing method
JPH0263293B2 (en)
EP0045593B1 (en) Process for producing semiconductor device
JPS61274314A (en) Boosting of evaporation from laser heating target
JPS62205267A (en) Production of aluminum oxide film
JPS59124136A (en) Process of semiconductor wafer
JPH0682752B2 (en) Device manufacturing method
US3434896A (en) Process for etching silicon monoxide and etchant solutions therefor
US3436285A (en) Coatings on germanium bodies
US6406637B1 (en) Thin film-planar structure and method for producing the same
JPS621220A (en) Manufacture of defect localized orientation silicon monocrystalline film on insulation support
JPH023539B2 (en)
JP4158926B2 (en) Method for producing β-FeSi2 using laser annealing
US20160238453A1 (en) Infrared sensor manufactured by method suitable for mass production
JPH08139331A (en) Method of manufacturing thin film transistor
JPS6151432B2 (en)
JPS61145818A (en) Heat processing method for semiconductor thin film
JPS6457615A (en) Manufacture of thin film type semiconductor device
RU897058C (en) Method of manufacturing silicon structures with dielectric insulation
JPS6098679A (en) Manufacture of semiconductor device
SU1019965A1 (en) Method of enhancing adhesion of thin metallic films to substrates
JPS566434A (en) Manufacture of semiconductor device
JPS63119220A (en) Manufacture of thin-film
KR970063794A (en) Solution growth method CdTe / CdS solar cell fabrication method using CdS thin film