JPS62204827A - Gas separating membrane - Google Patents

Gas separating membrane

Info

Publication number
JPS62204827A
JPS62204827A JP4720086A JP4720086A JPS62204827A JP S62204827 A JPS62204827 A JP S62204827A JP 4720086 A JP4720086 A JP 4720086A JP 4720086 A JP4720086 A JP 4720086A JP S62204827 A JPS62204827 A JP S62204827A
Authority
JP
Japan
Prior art keywords
membrane
gas
helium
plasma
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4720086A
Other languages
Japanese (ja)
Other versions
JPH0423573B2 (en
Inventor
Shunichi Samejima
鮫島 俊一
Hide Nakamura
秀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4720086A priority Critical patent/JPS62204827A/en
Publication of JPS62204827A publication Critical patent/JPS62204827A/en
Publication of JPH0423573B2 publication Critical patent/JPH0423573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To balance helium transmission coefficient ratio and helium transmission velocity at a high level and separate a gas separating membrane with stabilized performance by forming a plasma polymerized film on a specific perfluoro compound membrane. CONSTITUTION:Thin film type hexafluorothioaceton produced by reaction shown in the formula is plasma polymerized on a porous substrate membrane. A porous membrane having solid state properties of 10-2,000Angstrom average pore diameter and an air transmission velocity of 4X10<-4>-4X10<-1>cm<3>/cm<2>.sec.cmHg such as polysulfone is appropriate. The thickness of polymerized thin film prepared on the porous membrane by plasma polymerization is 0.01-5mu, preferably around 0.03-3mu. A gas separating membrane thus prepared has a high selective separation permeability to helium and a practical selective permeability to the gas such as oxygen, carbon dioxide gas or the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気体の分離膜に関し、特に膜分離法により天
然ガス中からヘリウムを選択性よく効率的に分離取得し
得る分離膜に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas separation membrane, and particularly to a separation membrane that can efficiently separate and obtain helium from natural gas with good selectivity by a membrane separation method. be.

[従来の技術] ヘリウムガスは例えば核融合反応、リニアモーター等の
超電導用の極低温媒体として有用であり、今後かなりの
量の使用が見込まれる。
[Prior Art] Helium gas is useful as a cryogenic medium for superconducting devices such as nuclear fusion reactions and linear motors, and is expected to be used in considerable amounts in the future.

かかるヘリウムは天然ガスや空気中に含まれ、特に天然
ガス中にはかなり多量に含まれている。従来ヘリウムは
このような天然ガスから深冷分離等の手段により分離取
得されてきたが、これは設備的にかなり大規模となり、
操作的にも保守管理的にもかなり煩雑なものであった。
Such helium is contained in natural gas and air, and particularly in natural gas in a fairly large amount. Conventionally, helium has been separated and obtained from such natural gas by means such as cryogenic separation, but this requires a fairly large scale of equipment.
It was quite complicated in terms of operation and maintenance.

更に、前記の如き超電導に用いたヘリウムガスの回収に
当っては従来それ程有効な手段は提案されていない。
Furthermore, no particularly effective means for recovering the helium gas used in superconductivity as described above has been proposed so far.

他方、混合ガス中からヘリウムを得る方法として膜分離
法が提案されている。この方法は直接ヘリウムガスが得
られ、操作的に筒車であり、又経済的にも有利である。
On the other hand, a membrane separation method has been proposed as a method for obtaining helium from a mixed gas. This method provides direct access to helium gas, is operationally simple, and is economically advantageous.

このような分離膜として代表されるものにオルガノポリ
シロキサン系の膜が種々提案されている。この膜は一般
に酸素に対する透過速度や酸素透過係数比(PO2/P
N2)については比較的満足し得るものの、ヘリウムガ
スについては透過係数比が小さく、実用性についてあま
り期待し得るものでない。
Various organopolysiloxane membranes have been proposed as representative separation membranes. This membrane generally has a permeation rate for oxygen and an oxygen permeability coefficient ratio (PO2/P
Although it is relatively satisfactory for N2), the permeability coefficient ratio for helium gas is small, and it is not very promising for practical use.

[発明の解決しようとする問題点] 本発明者はかかる点に鑑み、ヘリウム透過係数比(P+
+e/PNz )とヘリウムの透過速度が高いレベルで
バランスし、しかもその性能が安定して持続し得る分#
、膜を得ることを目的として種々研究、検討した結果、
特定のパーフルオロ化合物を膜累材として用いることに
より前記目的を達成し得ることを見出した。
[Problems to be Solved by the Invention] In view of the above, the present inventor has determined the helium permeability coefficient ratio (P+
+e/PNz) and helium permeation rate are balanced at a high level, and the performance can be maintained stably #
As a result of various studies and examinations aimed at obtaining a membrane,
It has been found that the above object can be achieved by using a specific perfluorinated compound as a membrane material.

[問題点を解決するための手段] かくして、本発明は、多孔質膜上にヘキサフルオロチオ
アセトンのプラズマ重合N膜を形成せしめてなることを
特徴とする気体の分離膜を新規に提供するものである。
[Means for Solving the Problems] Thus, the present invention provides a novel gas separation membrane characterized by forming a plasma-polymerized N membrane of hexafluorothioacetone on a porous membrane. It is.

本発明に用いられる多孔質膜としては、その物性が平均
細孔径10〜2000Å、空気の透過速度が4 X 1
0−4〜4 X 10−1cm3/cm2・sec−c
raHgを有するものが適当である。
The porous membrane used in the present invention has physical properties such as an average pore diameter of 10 to 2000 Å and an air permeation rate of 4×1.
0-4~4 X 10-1cm3/cm2・sec-c
Those with raHg are suitable.

これら物性が前記範囲を逸脱する場合には、充分なガス
透過速度が得難く、又超薄膜を積層する際欠陥を生じ易
くなる虞れがあるので好ましくない。
When these physical properties deviate from the above ranges, it is not preferable because it is difficult to obtain a sufficient gas permeation rate and there is a possibility that defects are likely to occur when laminating ultra-thin films.

かかる膜の材質としては、例えばポリスルホン、ポリア
ミド、ポリアクリロニトリル、ポリエチレン、ポリビニ
ルアルコール、ポリテトラフルオロエチレン等が挙げら
れる。
Examples of the material for such a membrane include polysulfone, polyamide, polyacrylonitrile, polyethylene, polyvinyl alcohol, and polytetrafluoroethylene.

そして、本発明においては、前述の多孔質支持膜上にヘ
キサフルオロチオアセトンを薄膜状にプラズマ重合せし
める。
In the present invention, hexafluorothioacetone is plasma-polymerized into a thin film on the above-mentioned porous support membrane.

プラズマ重合に供せられるヘキサフルオロチオアセトン
は1例えば、次に示す一連の反応でヘキサフルオロプロ
ペンより製造され得る。
Hexafluorothioacetone to be subjected to plasma polymerization can be produced from hexafluoropropene, for example, by the following series of reactions.

又、プラズマ重合手段としては、モノマー供給弁、電極
、アース電極、アース電極冷却部、高周波電源、ガラス
製へルジャー排気系より構成される通常よく知られてい
るペルジャー型プラズマ重合装置を用いることができる
Further, as the plasma polymerization means, a well-known Pelger type plasma polymerization apparatus, which is composed of a monomer supply valve, an electrode, a ground electrode, a ground electrode cooling section, a high frequency power source, and a glass Herger exhaust system, can be used. can.

プラズマ重合条件としては前記ペルジャー型プラズマ重
合装置を用いれば圧力0.01〜5t’orr、ヘキサ
フルオロチオアセトン流量1〜1000CII3/11
111 、高周波出力1〜200Wを採用するのが適当
である。前記以外の重合装置を用いても、これらの条件
を最適化してプラズマ重合を行なうのはこの技術に習熟
している者にとって比較的容易である。
When using the Pelger type plasma polymerization apparatus, the plasma polymerization conditions are a pressure of 0.01 to 5 t'orr and a flow rate of hexafluorothioacetone of 1 to 1000 CII3/11.
111, it is appropriate to adopt a high frequency output of 1 to 200W. Even if a polymerization apparatus other than those described above is used, it is relatively easy for a person skilled in this technology to optimize these conditions and perform plasma polymerization.

プラズマ重合により多孔質膜上に設けられるヘキサフル
オロチオアセトン重合体薄膜の厚さは0.01〜5ル、
好ましくは0.03〜3ル程度を採用するのが適当であ
る。
The thickness of the hexafluorothioacetone polymer thin film provided on the porous membrane by plasma polymerization is 0.01 to 5 μl,
Preferably, it is appropriate to employ about 0.03 to 3 liters.

膜の厚さが前記範囲を逸脱する場合には、膜に欠陥を生
じ易くなるか、又は充分なガス透過速度が得難くなる等
の虞れがあるので好ましくない。
If the thickness of the membrane deviates from the above range, it is not preferable because there is a risk that the membrane will be more likely to be defective or that it will be difficult to obtain a sufficient gas permeation rate.

かくして得られた気体の分子!a膜は、特にヘリウムに
対する選択分離透過性が優れているが、その他酸素や炭
酸ガス等のガスに対する選択透過性も実用的であり、こ
れらガスの濃縮或は分離等にも有用である。
The gas molecules thus obtained! The a-membrane has particularly excellent selective separation permeability for helium, but also has practical selective permeability for other gases such as oxygen and carbon dioxide, and is also useful for concentrating or separating these gases.

[実施例] 次に本発明を実施例により説明する。[Example] Next, the present invention will be explained by examples.

実施例 ペルジャー型プラズマ重合装置を用い、空気の透過速度
が4 X 101ca+3/cm2 ・sec−cra
Hg、平均細孔径が30Å、直径80+amのポリスル
ホン多孔質nりをアース電極上に固定した。
Example Using a Pelger type plasma polymerization apparatus, the air permeation rate was 4 x 101ca+3/cm2 sec-cra
A polysulfone porous substrate containing Hg, average pore size of 30 Å, and diameter of 80 am was fixed on a ground electrode.

真空ポンプによりペルジャー内を脱気し、排気を続けな
がら七ツマー供給バルブを通してヘキサフルオロチオア
セトンを100CIl13/l1inで供給した。ペル
ジャー内の圧力は0.4 torrとなった。電極間に
13.56N)Iz、20Wの高周波出力を印加してヘ
キサフルオロチオアセトンを多孔質119Eへ3分間プ
ラズマ重合した。
The inside of the Pel jar was degassed using a vacuum pump, and while continuing the evacuation, hexafluorothioacetone was supplied at 100 Cl13/11 inch through a 7-mer supply valve. The pressure inside the Pelger was 0.4 torr. A high frequency power of 13.56 N) Iz and 20 W was applied between the electrodes to plasma polymerize hexafluorothioacetone onto the porous 119E for 3 minutes.

得られたプラズマ重合膜の膜厚は0.9川であった・ He、 GO2,02,82の各ガスの透過性能を測定
した結果を以下に示す。
The thickness of the obtained plasma polymerized membrane was 0.9 mm. The results of measuring the permeability of He, GO2, 02, and 82 gases are shown below.

Heの透過速度 8.4 X 1(1’cm3/cm2
−sec−crsHgHeの透過係数5.8 X 1O
−8CJI3 ・cra/cta2・sec−craH
gC02)透過速度1.3X 1O−4ca3/am2
−sec−crrrHgC02の透過係数1.2X 1
0−8cm3・cm/cm2 ・sec−craHg0
2の透過速度 5.2X 1O−5c+a3/cm2−
sec−craHg02の透過係数 4.7X 10−
9 cl13・cm/cm2 ・sec−crmHgN
2の透過速度 2.OX 10−5cm3/cm2 ・
sec−armHgN2の透過係数  1.8X 1O
−9c+a3 ・co/cm2 ・seC−craHg
He/N2の透過係数比 32 CCh /N2の透過係数比 6.7 02/N2の透過係数比 2.8 [発明の効果] 本発明の特定パーフルオロ化合物のプラズマ重合薄膜を
有する気体分離膜は、特にヘリウム透過係数比とヘリウ
ム透過速度が高いレベルでバランスするという優れた効
果を有する。しかも、本発明の気体分amは、この優れ
た性能を安定して持続し得るという効果も認められる。
He permeation rate 8.4 x 1 (1'cm3/cm2
-sec-crsHgHe permeability coefficient 5.8 x 1O
-8CJI3 ・cra/cta2・sec-craH
gC02) Permeation rate 1.3X 1O-4ca3/am2
-sec-crrrHgC02 transmission coefficient 1.2X 1
0-8cm3・cm/cm2・sec-craHg0
Transmission rate of 2 5.2X 1O-5c+a3/cm2-
Permeability coefficient of sec-craHg02 4.7X 10-
9 cl13・cm/cm2・sec-crmHgN
2 permeation rate 2. OX 10-5cm3/cm2 ・
Permeability coefficient of sec-armHgN2 1.8X 1O
-9c+a3 ・co/cm2 ・seC-craHg
He/N2 permeability coefficient ratio: 32 CCh/N2 permeability coefficient ratio: 6.7 02/N2 permeability coefficient ratio: 2.8 [Effects of the invention] The gas separation membrane having a plasma-polymerized thin film of a specific perfluoro compound of the present invention has the following properties: In particular, it has an excellent effect in that the helium permeability coefficient ratio and the helium permeation rate are balanced at a high level. Furthermore, the gas component am of the present invention is also recognized to be effective in stably maintaining this excellent performance.

Claims (1)

【特許請求の範囲】 1、多孔質膜上にヘキサフルオロチオアセトンのプラズ
マ重合薄膜を形成せしめてなることを特徴とする気体の
分離膜。 2、多孔質膜は平均細孔径10〜2000Å、空気の透
過速度が4×10^−4〜4×10^−^1cm^3/
cm^2・sec・cmHgである特許請求の範囲第1
項記載の分離膜。 3、多孔質膜はポリスルホン、ポリアミド、ポリアクリ
ロニトリル、ポリエチレン、ポリビニルアルコール、ポ
リテトラフルオロエチレンである特許請求の範囲第1項
又は第2項のいずれかに記載の分離膜。 4、ヘキサフルオロチオアセトン重合体の膜厚は0.0
1〜5μである特許請求の範囲第1項記載の分離膜。
[Scope of Claims] 1. A gas separation membrane characterized by forming a plasma-polymerized thin film of hexafluorothioacetone on a porous membrane. 2. The porous membrane has an average pore diameter of 10 to 2000 Å and an air permeation rate of 4 x 10^-4 to 4 x 10^-^1 cm^3/
Claim 1 which is cm^2・sec・cmHg
Separation membrane described in section. 3. The separation membrane according to claim 1 or 2, wherein the porous membrane is made of polysulfone, polyamide, polyacrylonitrile, polyethylene, polyvinyl alcohol, or polytetrafluoroethylene. 4. The film thickness of hexafluorothioacetone polymer is 0.0
The separation membrane according to claim 1, which has a particle diameter of 1 to 5μ.
JP4720086A 1986-03-06 1986-03-06 Gas separating membrane Granted JPS62204827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4720086A JPS62204827A (en) 1986-03-06 1986-03-06 Gas separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4720086A JPS62204827A (en) 1986-03-06 1986-03-06 Gas separating membrane

Publications (2)

Publication Number Publication Date
JPS62204827A true JPS62204827A (en) 1987-09-09
JPH0423573B2 JPH0423573B2 (en) 1992-04-22

Family

ID=12768489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4720086A Granted JPS62204827A (en) 1986-03-06 1986-03-06 Gas separating membrane

Country Status (1)

Country Link
JP (1) JPS62204827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246743A (en) * 1991-11-26 1993-09-21 Ube Industries, Ltd. Method of enhancing gas separation performance of an aromatic polyimide membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246743A (en) * 1991-11-26 1993-09-21 Ube Industries, Ltd. Method of enhancing gas separation performance of an aromatic polyimide membrane

Also Published As

Publication number Publication date
JPH0423573B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
CA2055446C (en) Perfluorodioxole membranes
Robeson et al. High performance polymers for membrane separation
US4685940A (en) Separation device
JP3038053B2 (en) Air intake system for mobile engines
US5288304A (en) Composite carbon fluid separation membranes
Iarikov et al. Review of CO2/CH4 separation membranes
CA1326116C (en) Fluoro-oxidized polymeric membranes for gas separation and process for preparing them
JPH04227036A (en) Air take-in system for furnace of residence
JPS61153122A (en) Oxygen separating member and its manufacture
JPS62204827A (en) Gas separating membrane
JPH0252527B2 (en)
JPS62204826A (en) Gas separating membrane
JPS63264101A (en) Permselective membrane
JPH0236291B2 (en) KITAIBUNRIMAKU
JPS62204825A (en) Gas separating membrane
JPH0236292B2 (en) KITAIOBUNRISURUMAKU
JPH0236293B2 (en) GASUNOBUNRIMAKU
JPH0236290B2 (en) GASUBUNRIMAKU
JPS62183837A (en) Gas permeable membrane
JPS60257807A (en) Gas separating molded body
JPH0559775B2 (en)
JPH01123618A (en) Composite gas separation membrane
JPS63185428A (en) Gas permselective composite membrane
JPH04322716A (en) Gas dehymidifing method
Li et al. Effect of pressure on oxygen enrichment of liquid crystalline cellulose ether membranes at elevated temperature

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term