JPS60257807A - Gas separating molded body - Google Patents

Gas separating molded body

Info

Publication number
JPS60257807A
JPS60257807A JP59115808A JP11580884A JPS60257807A JP S60257807 A JPS60257807 A JP S60257807A JP 59115808 A JP59115808 A JP 59115808A JP 11580884 A JP11580884 A JP 11580884A JP S60257807 A JPS60257807 A JP S60257807A
Authority
JP
Japan
Prior art keywords
oxygen
polymer
unsubstituted
hydrocarbon group
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59115808A
Other languages
Japanese (ja)
Other versions
JPH0387B2 (en
Inventor
Hirokazu Nomura
野村 洋和
Susumu Ueno
進 上野
Hajime Kitamura
肇 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59115808A priority Critical patent/JPS60257807A/en
Publication of JPS60257807A publication Critical patent/JPS60257807A/en
Publication of JPH0387B2 publication Critical patent/JPH0387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a gas separating molded body having excellent gas selective separation function, by applying irradiation treatment to the surface of a polymer prepared by polymerizing a silylacetylene compound represented by a specific formula by using ultraviolet rays in a specific wavelength region. CONSTITUTION:A silylacethylene compound, which is reprsented by general formula (wherein R<1> is a hydrogen atom or a 1-8C unsubstituted or substituted monovalent hydrocarbon group and R<2>, R<3> and R<4> are independently a hydrogen atom, a halogen atom, a 1-8C unsubstituted or substituted monovalent hydrocarbon group or a 1-8C alkoxy group), for example, 1-trimethylsilyl-1-propine is dissolved in a solvent and the resulting solution is cast to prepare a molded article. Next, irradiation treatment is applied to the surface of the molded polymer article by using ultraviolet rays in a wavelength region of 105-200nm. By this method, an oxygen enriched membrane high in coefficient of oxygen transmission and the separation factor of oxygen and nitrogen is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は良好な気体透過性を有すると共に気体の選択的
分離機能にすぐれた気体分離用成形体に関し、特には空
気から高濃度の酸素含有混合ガスを得るのに好適とされ
る気体分離用成形体の提供を目的とする。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a molded article for gas separation that has good gas permeability and has an excellent selective gas separation function, and in particular, it relates to a molded article for gas separation that has good gas permeability and has an excellent selective gas separation function. The object of the present invention is to provide a molded article for gas separation that is suitable for obtaining a mixed gas.

(従来の技術) 現在、省エネルギー、公害防止の観点から高分子薄膜を
利用した選択的ガス分離技術が、従来の深冷液化分離法
、吸着分離法にかわる技術として注目されている。なか
でも空気から高濃度の酸素含有混合ガスを得ることがで
きるいわゆる酸素富化膜は、医療用、燃焼関連用等多く
の応用用途が期待されており、その開発・製品化が待た
れている。酸素富化膜に要求される特性としては、酸素
/窒素の高分離能を有しかつ高透過速度(高処理能)を
有することであるが、現在試作されているある種の均質
高分子材料の応用では比較的高分離能が期待できるが、
ガス透過速度が著しく小さいため実用化されるには至っ
ていない。また多孔質物等の利用では比較的高透過速度
を得ることができるが、酸素/窒素の高分離能を達成す
ることは困難である。
(Prior Art) Currently, selective gas separation technology using polymer thin films is attracting attention as an alternative to the conventional cryogenic liquefaction separation method and adsorption separation method from the viewpoint of energy saving and pollution prevention. Among these, so-called oxygen enrichment membranes, which can obtain a highly concentrated oxygen-containing mixed gas from air, are expected to have many applications such as medical and combustion-related uses, and their development and commercialization are awaited. . The characteristics required for an oxygen enrichment membrane are that it has a high oxygen/nitrogen separation ability and a high permeation rate (high throughput), but certain homogeneous polymer materials that are currently being prototyped are Relatively high resolution can be expected in applications such as
It has not been put into practical use because the gas permeation rate is extremely low. Furthermore, although a relatively high permeation rate can be obtained by using porous materials, it is difficult to achieve a high oxygen/nitrogen separation ability.

他方、酸素富化膜を得る一手段として最近プラズマ重合
法の技術が検討されている。すなわち、この方法は比較
的高透過速度をもつ適当な支持体たとえば均質薄膜支持
体あるいは多孔質膜支持体上にブラズ゛マ重合法の技術
により、酸素/窒素高分離能をもつ超薄膜を形成させる
という内容のものである。
On the other hand, plasma polymerization technology has recently been studied as a means of obtaining an oxygen-enriched film. In other words, this method involves forming an ultra-thin film with high oxygen/nitrogen separation ability on a suitable support with a relatively high permeation rate, such as a homogeneous thin film support or a porous film support, using plasma polymerization technology. The content is to let people know.

本発明者らはプラズマ重合膜の支持体としての観点から
検討を重ね、先に、式R−0二Cj 1.)1 (R)
a(式中のRは一価の有機基)で示されるシリルアセチ
レン化合物を重合して得られるポリマーのフィルム面に
有機化合物ゾjスたとえばジビニルテトラメチルジシロ
キサンガスの低温プラズマ重合膜を形成させることによ
り、きわめて良好な酸素富化膜(酸素/窒素高分離能と
酸素高透過速度を併せもつ膜)が得られることを確認し
たのであるが(特願昭58−227996)、実用化に
当って次のような問題が存在することが判明した。すな
わち、良好なガス分離能を得るためには該ポリマーのフ
ィルム面に形成する低温プラズマ重合膜が均一均質であ
ることが要求されるが、一般にプラズマ重合においては
重合条件を決定するパラメーターの制御が困難であり、
特に広範囲の均一処理(大面積支持体の処理)が難しく
、たとえばモノマーガスや活性種の反応系内での流動状
態に影響され、場所による重合速度に大きな差を生じ膜
厚のバラツキが大きくなる。均質なプラズマ重合膜を得
ることも同様に困難であり、これは長時間プラズマ重合
を行っていく際に特C二問題となる現象である。この原
因としてはプラズマを発生させている印加電力の質的変
化や活性種の濃度変化、系内の汚染物のプラズマ内への
混入などが考えられ、こうしたことが長尺物の支持体ポ
リマーを連続的にプラズマ内を通過させプラズマ重合膜
を付着させていくことを難しくし、またプラズマ重合膜
特性を再現性よく一定して得ることすなわち工業的生産
を困難ならしめている。
The present inventors have repeatedly studied from the viewpoint of a support for a plasma polymerized membrane, and first developed the formula R-02Cj 1. )1 (R)
Forming a low-temperature plasma polymerized film of an organic compound, such as divinyltetramethyldisiloxane gas, on the film surface of a polymer obtained by polymerizing a silylacetylene compound represented by a (in the formula, R is a monovalent organic group). It was confirmed that an extremely good oxygen-enriching membrane (membrane with both high oxygen/nitrogen separation ability and high oxygen permeation rate) could be obtained by this method (Japanese Patent Application No. 58-227996), but it was difficult to put it into practical use. It was discovered that the following problems existed. In other words, in order to obtain good gas separation ability, it is required that the low-temperature plasma polymerized film formed on the film surface of the polymer be uniform and homogeneous, but in general, in plasma polymerization, it is difficult to control the parameters that determine the polymerization conditions. difficult,
In particular, uniform treatment over a wide area (treatment of large-area supports) is difficult; for example, it is affected by the flow state of monomer gas and active species within the reaction system, resulting in large differences in polymerization rate depending on location and large variations in film thickness. . It is similarly difficult to obtain a homogeneous plasma polymerized film, and this is a phenomenon that becomes a special problem when plasma polymerization is carried out for a long time. Possible causes of this include qualitative changes in the applied power that generates the plasma, changes in the concentration of active species, and incorporation of contaminants within the system into the plasma. This makes it difficult to pass through the plasma continuously to deposit a plasma polymerized film, and also makes it difficult to obtain constant, reproducible properties of the plasma polymerized film, ie, industrial production.

ζ本発明の構成) 本発明者らは上記した従来の不利欠点を解決すべく鋭意
検討した結果、前記した有機化合物ガスの低温プラズマ
に代えて特定の波長域をもつ紫外光で照射処理すること
によりきわめて有利な結果が得られることを見出し本発
明を完成した。すなわち、本発明は一般式 R2 R1cミC−8iB3 ・・・・・m 4 (式中のR1は水素原子または炭素数1〜8の非置換も
しくは置換−偏成化水素基、R2,R3およびR4は個
々に水素原子、ハロゲン原子、炭素数1〜8の非置換も
しくは置換−偏成化水素基または炭素数1〜8のアルコ
キシ基)で示されるシリルアセチレン化合物の1種また
は2種以上を重合して得られるホモポリマーもしくはコ
ポリマーまたはこれらの混合ポリマーを原料とする成形
物の表面を105〜200nmの波長域をもつ紫外光で
照射処理してなる気体分離用成形体に関するものである
ζStructure of the Present Invention) As a result of intensive studies to solve the above-mentioned disadvantages of the conventional technology, the inventors of the present invention have decided to perform irradiation treatment with ultraviolet light having a specific wavelength range instead of the low-temperature plasma of the organic compound gas described above. The present invention was completed based on the discovery that very advantageous results could be obtained by using the method. That is, the present invention has the general formula: R4 individually represents one or more silylacetylene compounds represented by a hydrogen atom, a halogen atom, an unsubstituted or substituted polarized hydrogen group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms; The present invention relates to a molded article for gas separation, which is obtained by irradiating the surface of a molded article made from a homopolymer or copolymer obtained by polymerization, or a mixed polymer thereof, with ultraviolet light having a wavelength range of 105 to 200 nm.

上記シリルアセチレン化合物の重合体(フィルム)は通
常耐光性特に耐紫外光性が悪く日光や高圧水鉗ランプに
よる紫外光(近紫外光)の少量照射で機械的強度の劣化
、ガス分離特性の低下が著しくおこる性質を有している
ので、この重合体に対し短波長のエネルギーの高い紫外
光を照射し改質するということは通常者えられないとこ
ろである。しかるに、かかる重合体に対し前記波長域を
もつ紫外光で照射処理すると、意外にも機械的強度の劣
化などの不利をともなわずに下記データg二示す如くき
わめて気体(ガス)分離機能にすぐれた変性ポリマー 7 酸素透過係数(PO2)=2〜4×10ctl (s 
T P) −an /a/l−s e c ・cmHg
酸素と窒素の分離係数(PO2/PN2)=2.5〜3
.5 が再現性よく得られること、工業的実用化のうえできわ
めて有利であることが確匠忍された。
Polymers (films) of the above-mentioned silylacetylene compounds usually have poor light resistance, especially resistance to ultraviolet light, and deterioration of mechanical strength and gas separation properties when exposed to sunlight or a small amount of ultraviolet light (near ultraviolet light) from a high-pressure water hook lamp. Because of this property, it is usually impossible to modify this polymer by irradiating it with short-wavelength, high-energy ultraviolet light. However, when such a polymer is irradiated with ultraviolet light having the wavelength range mentioned above, it unexpectedly exhibits an extremely excellent gas separation function as shown in data g2 below, without any disadvantages such as deterioration of mechanical strength. Modified polymer 7 Oxygen permeability coefficient (PO2) = 2 to 4 x 10ctl (s
T P) -an /a/l-sec ・cmHg
Separation coefficient of oxygen and nitrogen (PO2/PN2) = 2.5 to 3
.. It has been established that 5 can be obtained with good reproducibility and that it is extremely advantageous for industrial practical application.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

前記一般式(1)で示したシリルアセチレン化合物にお
いて、R1は水素原子、または炭素数1〜8の一価炭化
水素基たとえばメチル基、エチル基。
In the silylacetylene compound represented by the general formula (1), R1 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms, such as a methyl group or an ethyl group.

プロピル基、ブチル基およびこれらの一価炭化水素基の
水素原子が部分的にノ)ロゲン原子等で置換した基であ
り、またR2 、 R3およびR4は個々シ二水素原子
、ハロゲン原子、炭素数1〜8の一価炭化水素基たとえ
ばメチル基、エチル基、プロピル基、ブチル基、ビニル
基、アリル基およびこれらの一価炭化水素基の水素原子
が部分的にハロゲン原子等で置換した基、炭素数1〜8
のアルコキシ基たとえばメトキシ基、エトキシ基、プロ
ポキシ基、ブトキシ基などである。このようなシリルア
セチレン化合物の具体的例示をあげれば次のとおりであ
る。ただし以下の記載(−おいてMeはメチル基、gt
はエチル基をそれぞれ示す。
A propyl group, a butyl group, and a group in which the hydrogen atom of these monovalent hydrocarbon groups is partially substituted with a halogen atom, etc., and R2, R3, and R4 each represent a dihydrogen atom, a halogen atom, or a carbon number. 1 to 8 monovalent hydrocarbon groups such as methyl group, ethyl group, propyl group, butyl group, vinyl group, allyl group, and groups in which the hydrogen atoms of these monovalent hydrocarbon groups are partially substituted with halogen atoms, etc. Carbon number 1-8
Examples of alkoxy groups include methoxy, ethoxy, propoxy, and butoxy groups. Specific examples of such silylacetylene compounds are as follows. However, in the following description (-, Me is a methyl group, gt
each represents an ethyl group.

Me−0==C−8i (Me)3 、 Et−c=C
−81(Me)。
Me-0==C-8i (Me)3, Et-c=C
-81 (Me).

Me C5081(Et)s、 Me−0ミC−S i
 (OMe 13HC=C−8i (Me)3.Me−
CミC−8i (Me) az2Me−CミC8i (
Me) H2 上記したシリルアセチレン化合物(単量体)の1種また
は2種以上の混合物を重合もしくは共重合する方法とし
ては、トルエン、シクロヘキサン(1 などの有機溶媒中で、wat6、NbCtll % h
Tag/−、などの重合触媒の存在下に温度30〜13
0℃で重合反応させる方法によればよく、生成した重合
体(共重合体)すなわちポリシリルアセチレンは過剰の
メタノール中で沈でんさせ精製して回収される。
Me C5081(Et)s, Me-0 MiC-S i
(OMe 13HC=C-8i (Me)3.Me-
C Mi C-8i (Me) az2Me-C Mi C8i (
Me) H2 As a method for polymerizing or copolymerizing one type or a mixture of two or more of the above-mentioned silylacetylene compounds (monomers), in an organic solvent such as toluene or cyclohexane (1), wat6, NbCtll% h
In the presence of a polymerization catalyst such as Tag/-, at a temperature of 30 to 13
A method may be used in which a polymerization reaction is carried out at 0° C., and the produced polymer (copolymer), ie, polysilylacetylene, is purified and recovered by precipitation in excess methanol.

本発明は上記した重合体、共重合体あるいはこれらの2
種以上の混合重合体をトルエン、シクロヘキサンなどの
有機溶媒に溶解し、これを適当な型にキャスティングす
ることにより成形物(たとえば種々の厚みを有するフィ
ルム)をつくる。薄膜の形成を容易とするために適当な
不織布、基布、多孔質膜あるいは他の薄膜フィルム上に
上記重合体フィルムを形成せしめてもよい。なお、該多
孔質膜としては多孔質ポリプロピレンフィルム、多孔質
ポリエチレンフィルム、多孔質ポリサルホンフィルム、
多孔質酢酸セルロースフィルム、多孔質膜フッ化エチレ
ンフィルム、多孔質ポリイミドフィルムなどが例示され
る。
The present invention uses the above-mentioned polymers, copolymers, or two of these.
A molded article (for example, a film having various thicknesses) is prepared by dissolving a mixed polymer of more than one species in an organic solvent such as toluene or cyclohexane, and casting the mixture into an appropriate mold. The polymer film may be formed on a suitable nonwoven fabric, base fabric, porous membrane, or other thin film to facilitate thin film formation. In addition, the porous membrane includes porous polypropylene film, porous polyethylene film, porous polysulfone film,
Examples include porous cellulose acetate film, porous fluorinated ethylene film, and porous polyimide film.

つぎに重合体成形物の表面を紫外光で照射処理する。光
源としては105〜200nm以下の単色光、輝線また
は連続光を発生するものであれば特l:制限はなく、た
とえば低圧水銀ランプ(輝線スペクトル: 185nm
、254nm、313im、355nm)のように波長
200nm以下の輝線スペクトルを発するものが使用さ
れる。また、放電管を備えた装置や低湿プラズマ発生装
置内に処理しようとする重合体成形物をセットし、放電
プラズマと該成形物との間にL i F +Oa 2 
F −サファイヤ等のフィルターや窓材でプラズマ粒子
および望ましくない短波長の光をカットし、105〜2
00nmの波長域をもつ紫外光で照射処理してもよく、
あるいは紫外光レーザー等の利用も可能である。
Next, the surface of the polymer molded article is irradiated with ultraviolet light. The light source is not particularly limited as long as it emits monochromatic light, bright line, or continuous light of 105 to 200 nm or less, such as a low-pressure mercury lamp (bright line spectrum: 185 nm).
, 254 nm, 313 im, 355 nm) that emit a bright line spectrum with a wavelength of 200 nm or less is used. In addition, a polymer molded product to be treated is set in a device equipped with a discharge tube or a low-humidity plasma generator, and L i F +Oa 2 is generated between the discharge plasma and the molded product.
F - Cut plasma particles and undesirable short wavelength light with filters and window materials such as sapphire, and
It may be irradiated with ultraviolet light having a wavelength range of 00 nm,
Alternatively, it is also possible to use an ultraviolet laser or the like.

なお、105〜200nm波長域の紫外光とともに20
0imを越える波長域の光が同時に重合体成形物を照射
していても短時間ならばそれほど悪影響を受けないが、
しかし照射時間が長くなると劣化反応も当然進行するの
で、紫外光源からの光強度によっても異なるが好ましく
は30分間以下の照射処理で行うのがよい。
In addition, along with ultraviolet light in the wavelength range of 105 to 200 nm,
Even if a polymer molded product is simultaneously irradiated with light in the wavelength range exceeding 0 im, it will not have much of an adverse effect for a short period of time, but
However, as the irradiation time becomes longer, the deterioration reaction naturally progresses, so it is preferable to carry out the irradiation treatment for 30 minutes or less, although it varies depending on the light intensity from the ultraviolet light source.

紫外光処理を行う際の雰囲気としては空気その他の無機
ガスあるいは有機シランガスなどが使用されるが、これ
らに限定されるものではない。
The atmosphere used in the ultraviolet light treatment is air, other inorganic gas, organic silane gas, or the like, but is not limited thereto.

つぎに具体的実施例をあげ、る。Next, specific examples will be given.

実施例1 トルエン200?に重合触媒T a OI−sを1ノ溶
解し、ついで1−トリメチルシリル−1−プロピンMe
−C!ミa−si(Me)3 を20.fi’添加し、
80℃の温度で5時間重合を行った。生成した重合体を
過剰のメタノール中に注ぎ沈でん・精製した。
Example 1 Toluene 200? One portion of the polymerization catalyst T a OI-s was dissolved in the solution, and then 1-trimethylsilyl-1-propyne Me
-C! Mia-si(Me)3 20. fi' added,
Polymerization was carried out at a temperature of 80° C. for 5 hours. The produced polymer was poured into excess methanol to precipitate and purify it.

このようi二して得た重合体をトルエンに溶解して溶液
となし、キャスティング法により厚さ2μmの薄膜をつ
くった。これを試料aとする。この試料aをスブラジー
ルガラス管中に水銀とアルゴンとの蒸気を封じ込んだ5
0W低圧水銀ランプ(輝線スペクト/l/: 185n
、m、254nm。
The polymer thus obtained was dissolved in toluene to form a solution, and a thin film with a thickness of 2 μm was formed by a casting method. This is designated as sample a. This sample a was placed in a Sbrazier glass tube with mercury and argon vapor sealed in it.
0W low pressure mercury lamp (emission line spectrum/l/: 185n
, m, 254 nm.

313nm、365nm)により1トル真空下で5分間
紫外光処理を行なった。これを試料A1とする。試料a
および試料A1について酸素、窒素の透過速度を測定し
、酸素透過係数(PO2)と酸素−窒素の分離係数(P
O2/PN2)をめた。
313 nm, 365 nm) for 5 minutes under 1 Torr vacuum. This is designated as sample A1. sample a
The permeation rates of oxygen and nitrogen were measured for sample A1, and the oxygen permeability coefficient (PO2) and the oxygen-nitrogen separation coefficient (P
O2/PN2) was charged.

結果を第1表に示す。The results are shown in Table 1.

実施例2 前例でつくった試料aを同じ低圧水銀ランプを使用し、
窒素ガス1気圧雰囲気下で3分間紫外光処理を行なった
。これを試料A2とし、前例と同様に酸素透過係数(P
O2)と酸素−窒素の分離係数(PO2/PN2)をめ
た。結果を第1表に示す。
Example 2 Sample a made in the previous example was treated using the same low pressure mercury lamp.
Ultraviolet light treatment was performed for 3 minutes in a nitrogen gas atmosphere of 1 atm. This is sample A2, and the oxygen permeability coefficient (P
O2) and oxygen-nitrogen separation coefficient (PO2/PN2) were calculated. The results are shown in Table 1.

実施例3 前記試料aを200W低圧水銀ランプを使用1−1大気
圧下で20分間紫外光処理を行なった。これを試料A3
とし、前例と同様に酸素透過係数(PO2)と酸素−窒
素の分離係数(PO2/PN2J2)をめた。結果を第
1表に示す。
Example 3 The sample a was subjected to ultraviolet light treatment for 20 minutes under 1-1 atmospheric pressure using a 200W low-pressure mercury lamp. This is sample A3
As in the previous example, the oxygen permeability coefficient (PO2) and the oxygen-nitrogen separation coefficient (PO2/PN2J2) were determined. The results are shown in Table 1.

比較例 実施例1において、低圧水銀ランプと試料aとの間に、
200nm以下の光に対して非透過性のバイコール製フ
ィルターを設けて185nmの光が試料aに到達しない
ようにしたほかは同様に照射処理を行った。これを試料
A4とし、前例と同様に酸素透過係数(PO□)と酸素
−窒素の分離係数(PO2/PN2)をめた。結果を第
1表に示す。
Comparative Example In Example 1, between the low-pressure mercury lamp and sample a,
Irradiation treatment was carried out in the same manner, except that a Vycor filter that did not transmit light of 200 nm or less was provided to prevent light of 185 nm from reaching sample a. This was designated as sample A4, and the oxygen permeability coefficient (PO□) and oxygen-nitrogen separation coefficient (PO2/PN2) were determined in the same manner as in the previous example. The results are shown in Table 1.

実施例4 ) ルエy 300 j’l:重合触媒TaCl5をl
’溶解し、ついで1−トリメチルシリル−1−ブチンE
 t OミO−3x (M e ) sを10?添加し
、100℃の温度で4時間重合を行った。生成した重合
体を過剰のメタノール中に注ぎ沈でん・精製した。
Example 4) Luey 300 j'l: Polymerization catalyst TaCl5
'Dissolve and then 1-trimethylsilyl-1-butyne E
t Omi O-3x (M e ) s to 10? and polymerization was carried out at a temperature of 100° C. for 4 hours. The produced polymer was poured into excess methanol to precipitate and purify it.

このようにして得た重合体をトルエンに溶解して溶液と
なし、キャスティング法□により厚さ2μmの薄膜を作
成した。これを試料すとする。この試料すを低温プラズ
マ発生装置内にセットし、装置内を10−’ )ルまで
真空にした後テトラメチルシランガスを導入し、ガス流
通上系内を0.4トルに調整保持した。ついで13.5
6MH11kWの電力を印加し低温プラズマを発生させ
たが、その際試料すの表面をLiFのフィルターでおお
い、プラズマ粒子や本発明の紫外光波長より短かい波長
域の紫外光が試料すの表面イニ到達するのを防いだ。
The polymer thus obtained was dissolved in toluene to form a solution, and a thin film with a thickness of 2 μm was prepared by casting method □. Let's use this as a sample. This sample was set in a low-temperature plasma generator, and after the inside of the apparatus was evacuated to 10 torr, tetramethylsilane gas was introduced and the inside of the system was adjusted and maintained at 0.4 torr on gas flow. Then 13.5
A low-temperature plasma was generated by applying a power of 6 MH 11 kW. At this time, the surface of the sample was covered with a LiF filter, and plasma particles and ultraviolet light in a wavelength range shorter than the ultraviolet wavelength of the present invention were applied to the surface of the sample. prevented from reaching.

このようにして処理した試料を試料Bとする。これら試
料すおよびBについて前例と同様に酸素透過係数(PO
2)と酸素−窒素の分離係数(PO2/PN2)をめた
。結果を第1表に示す。
The sample treated in this manner is referred to as sample B. For these samples S and B, the oxygen permeability coefficient (PO
2) and the oxygen-nitrogen separation coefficient (PO2/PN2). The results are shown in Table 1.

Claims (1)

【特許請求の範囲】 1、一般式 R2 R’−C4aO−Si−R” ふ (式中のR1は水素原子または炭素数1〜8の非置換も
しくは置換−価炭化水素基、R2、R3およびR4は個
々f二水素原子、ハロゲン原子、炭素数1〜8の非置換
もしくは置換−価炭化水素基または炭素数1〜8のアル
コキシ基)で示されるシリルアセチレン化合物の1種ま
たは2種以上を重合して得られるホモポリマーもしくは
コポリマーまたはこれらの混合ポリマーを原料とする成
形物の表面を105〜200nmの波長域をもつ紫外光
で照射処理してなる気体分離用成形体
[Claims] 1. General formula R2 R'-C4aO-Si-R'' (wherein R1 is a hydrogen atom or an unsubstituted or substituted hydrocarbon group having 1 to 8 carbon atoms, R4 represents one or more silylacetylene compounds represented by dihydrogen atom, halogen atom, unsubstituted or substituted-valent hydrocarbon group having 1 to 8 carbon atoms, or alkoxy group having 1 to 8 carbon atoms) A molded article for gas separation obtained by irradiating the surface of a molded article made from a homopolymer or copolymer obtained by polymerization, or a mixed polymer thereof with ultraviolet light having a wavelength range of 105 to 200 nm.
JP59115808A 1984-06-06 1984-06-06 Gas separating molded body Granted JPS60257807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115808A JPS60257807A (en) 1984-06-06 1984-06-06 Gas separating molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115808A JPS60257807A (en) 1984-06-06 1984-06-06 Gas separating molded body

Publications (2)

Publication Number Publication Date
JPS60257807A true JPS60257807A (en) 1985-12-19
JPH0387B2 JPH0387B2 (en) 1991-01-07

Family

ID=14671598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115808A Granted JPS60257807A (en) 1984-06-06 1984-06-06 Gas separating molded body

Country Status (1)

Country Link
JP (1) JPS60257807A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296519A2 (en) * 1987-06-24 1988-12-28 Air Products And Chemicals, Inc. Method of treating membranes with ultraviolet radiation
US5011518A (en) * 1989-03-09 1991-04-30 Matsushita Electric Industrial Co., Ltd. Permselective membrane and process for producing the same
US5013338A (en) * 1989-09-01 1991-05-07 Air Products And Chemicals, Inc. Plasma-assisted polymerization of monomers onto polymers and gas separation membranes produced thereby
WO1994012269A1 (en) * 1992-12-01 1994-06-09 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same
US5409524A (en) * 1992-12-01 1995-04-25 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same
CN1056097C (en) * 1995-04-20 2000-09-06 中国科学院长春应用化学研究所 Ultraviolet grafting modification method for substituted polyacetylene gas separation membrane
CN111467970A (en) * 2020-04-30 2020-07-31 郑州轻工业大学 Preparation method based on novel charged loose nanofiltration membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206403A (en) * 1984-03-29 1985-10-18 Sanyo Chem Ind Ltd Gas separation membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206403A (en) * 1984-03-29 1985-10-18 Sanyo Chem Ind Ltd Gas separation membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296519A2 (en) * 1987-06-24 1988-12-28 Air Products And Chemicals, Inc. Method of treating membranes with ultraviolet radiation
US4837386A (en) * 1987-06-24 1989-06-06 Air Products And Chemicals, Inc. Method of treating membranes with ultraviolet radiation
US5011518A (en) * 1989-03-09 1991-04-30 Matsushita Electric Industrial Co., Ltd. Permselective membrane and process for producing the same
US5013338A (en) * 1989-09-01 1991-05-07 Air Products And Chemicals, Inc. Plasma-assisted polymerization of monomers onto polymers and gas separation membranes produced thereby
WO1994012269A1 (en) * 1992-12-01 1994-06-09 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same
US5409524A (en) * 1992-12-01 1995-04-25 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same
CN1056097C (en) * 1995-04-20 2000-09-06 中国科学院长春应用化学研究所 Ultraviolet grafting modification method for substituted polyacetylene gas separation membrane
CN111467970A (en) * 2020-04-30 2020-07-31 郑州轻工业大学 Preparation method based on novel charged loose nanofiltration membrane

Also Published As

Publication number Publication date
JPH0387B2 (en) 1991-01-07

Similar Documents

Publication Publication Date Title
US4657564A (en) Fluorinated polymeric membranes for gas separation processes
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
US4410338A (en) Gas separating members and a method of making the same
US5013338A (en) Plasma-assisted polymerization of monomers onto polymers and gas separation membranes produced thereby
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS60257807A (en) Gas separating molded body
JPS60232205A (en) Gas separating molded body
JP2003053125A (en) Oxygen permeable polymer membrane
JPS6250174B2 (en)
JPS59169507A (en) Gas separation membrane
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS6075320A (en) Permeselective composite membrane for gas and its preparation
JPH0356775B2 (en)
JPH0357811B2 (en)
Yamagishi et al. Comparison of simultaneous and preirradiation grafting of methyl methacrylate onto a porous membrane
JPH0398629A (en) Highly permselective gas separation membrane
JPS61149210A (en) Preparation of gas permselective composite membrane
JP3137877B2 (en) Method for producing gas separation membrane with excellent permselectivity
JPH0534048B2 (en)
JPH0777602B2 (en) Gas separation membrane manufacturing method
JPH0559775B2 (en)
JPS5942004A (en) Gas separating membrane having high permeability
JPH04305236A (en) Production of gas permeable composite film
JPS61192323A (en) Gas separation membrane
JPS6388019A (en) Gas permselective composite membrane