JPS60206403A - Gas separation membrane - Google Patents

Gas separation membrane

Info

Publication number
JPS60206403A
JPS60206403A JP59062354A JP6235484A JPS60206403A JP S60206403 A JPS60206403 A JP S60206403A JP 59062354 A JP59062354 A JP 59062354A JP 6235484 A JP6235484 A JP 6235484A JP S60206403 A JPS60206403 A JP S60206403A
Authority
JP
Japan
Prior art keywords
polymer
membrane
polymers
gas separation
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59062354A
Other languages
Japanese (ja)
Inventor
Koichi Takada
耕一 高田
Jiro Nagarego
流郷 治朗
Hidehiko Matsuka
松家 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP59062354A priority Critical patent/JPS60206403A/en
Publication of JPS60206403A publication Critical patent/JPS60206403A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Abstract

PURPOSE:To obtain a gas separation membrane having excellent selectivity while holding good gas permeability, by irradiating an 1-monoalkyldimethylsilylpropine polymer membrane with ultraviolet rays. CONSTITUTION:The polymer used in a membrance comprises 1-monoalkyldimethylsilylpropine. The alkyl group contains 1-12 carbon atoms and, concretely, is selected from methyl, ethyl, propyl, iso-butyl, and tertiary-butyl. This polymer is used alone or along with the other polymer to perform the formation of the membrane according to a known method. At this time, the above-mentioned polymer is required in an amount of 50wt% or more. This membrane is irradiated with ultraviolet rays having a wavelength of 40-400nm for about 0.1- 10sec at intensity of 10-1,000mW/cm<2>. Irradiation is applied to the membrane from above at a room temp. in an arbitrary gas.

Description

【発明の詳細な説明】 本発明は気体分離膜に関するものである。さらに詳しく
は高選択性を有する気体分離膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas separation membrane. More specifically, the present invention relates to a gas separation membrane having high selectivity.

近年混合気体から特定の気体を分離1濃縮する手段とし
て高分子分離膜を用いる方法が注目されつつある。
In recent years, a method using a polymer separation membrane as a means for separating and concentrating a specific gas from a gas mixture has been attracting attention.

本発明者らはさきに1−モノアルキルジメチルシリルプ
ロピン重合体が卓越した気体透過性を有するすぐれた飼
料であることを見い出しているが、さらに検討を重ねた
結果、上記重合体より主として形成される気体分離膜に
紫外線を照射すると良好な透過性を保持しつつすぐれた
高選択性が発現することを発見し、本発明に至った。
The present inventors previously discovered that 1-monoalkyldimethylsilylpropyne polymers are excellent feeds with excellent gas permeability, but as a result of further studies, it was found that 1-monoalkyldimethylsilylpropyne polymers are mainly The present inventors have discovered that when a gas separation membrane is irradiated with ultraviolet rays, it exhibits excellent selectivity while maintaining good permeability, leading to the present invention.

すなわち本殉明は鏝苓− 一 、 −−1J−−1−モノアルキ 7 紫外線照射体からなるこ 基としては直鎖アルキル基たとえばメチル、エチル、プ
ロピル、ブチル基など;分岐状のアルキル基たとえばイ
ソブチル基、ターシャリ−ブチル基などがあげられる。
In other words, the group consisting of the ultraviolet irradiator includes a straight chain alkyl group such as methyl, ethyl, propyl, butyl group, etc.; a branched alkyl group such as isobutyl group. group, tert-butyl group, etc.

一般式(1)で示される繰返し単位を有する重合体を得
るのに用いられる1−モノアルキルジメチルシリルプロ
ピンとしては1−トリメチルシリルプロピン、1〜モノ
エチルジメチルシリルプロピン、1−モノ−n−プロピ
ルジメチルシリルプロピン、1−モノ−ローブチルジメ
チルシリルプロピンなどがあげられる。これらのうちで
好ましいものは1−トリメチルシリルプロピンである。
Examples of the 1-monoalkyldimethylsilylpropyne used to obtain the polymer having a repeating unit represented by the general formula (1) include 1-trimethylsilylpropyne, 1-monoethyldimethylsilylpropyne, 1-mono-n -propyldimethylsilylpropyne, 1-monolobyldimethylsilylpropyne, and the like. Among these, preferred is 1-trimethylsilylpropyne.

1−トリメチルシリルプロピンは市販のモノマー(米国
のペトラーク社製品、チッソ社SP開発部製品T172
8)を使用することができる。この重合体を得る方法と
しては上記をV族遷移金属であるニオブ(Nb)、タン
タル(Ta)に基ずく触媒(たとえばNbCl5、Nb
Br3、TaBr3 )の存在下、また溶媒(ベンゼン
、トルエン、キシレンなどの芳香族炭化水素、シクロヘ
キセンなどの脂環式炭化水素、1,2−ジクロロエタン
、4塩化炭素などの塩素系溶剤など)の存在下、通常3
0b100゛Cで12〜36 時間重合することにより
得ることができる。また、特願昭58−84626号明
細書に記載の方法によっても得ることができる。
1-Trimethylsilylpropyne is a commercially available monomer (a product of Petrarch in the United States, a product of Chisso's SP Development Department, T172).
8) can be used. As a method for obtaining this polymer, the above-mentioned catalyst is based on group V transition metals such as niobium (Nb) and tantalum (Ta) (for example, NbCl5, Nb
Br3, TaBr3), and in the presence of solvents (aromatic hydrocarbons such as benzene, toluene, xylene, alicyclic hydrocarbons such as cyclohexene, chlorinated solvents such as 1,2-dichloroethane, carbon tetrachloride, etc.) Bottom, usually 3
It can be obtained by polymerizing at 100°C for 12 to 36 hours. It can also be obtained by the method described in Japanese Patent Application No. 58-84626.

得られた重合体は白色繊維状あるいは粉末状のポリマー
である。その数平均分子量は光散乱法で通常10000
以上、好ましくは10万以上である。
The obtained polymer is a white fibrous or powdery polymer. Its number average molecular weight is usually 10,000 by light scattering method.
or more, preferably 100,000 or more.

本発明において1−モノアルキルジメチルシリルプロピ
ン重合体は必要により他の重合体を併用することができ
る。他の重合体としては1−アルキン重合体(ターンシ
ャリ−ブチルアセチレン、ネオペンチルアセチレン、タ
ーンシャリ−ペンチド ルアセチレンなどの重合体、好ましくはター シ゛ヤリ
ーブチルアセチレン重合体)、ビニルオルガノシラン重
合体(ビニルトリメチルシラン、ビニルトリエチルシラ
ン、ビニルトリプロピルシランなどの重合体、好ましく
はビニルトリメチルシラン重合体)、ポリオルガノシロ
キサン(ジメチルシロキサン、ポリメチルフェニルシロ
キサン、ポリジフェニルシロキサンなど)、セルロース
系重合体(エチルセルロース、ヒドロキシエチルセルロ
ース、トリアセチルセルロースなど、好ましくはエチル
セルロース)、α−オレフィン系重合体(4−メチルペ
ンテン−1の重合体など)、アルキルスルホン重合体(
α−オレフィンとSO□の共重合体、好ましくはアルキ
ル基が炭素数として10〜20の長鎖アルキルスルホン
の重合体など)、第3級アミン含有重合体(ビニルピリ
ジン重合体、N1N−ジエチルアミノエチルアクリレー
ト重合体、N、N〜ジメチルアミノスチレン重合体など
、好ましくはビニルピリジン重合体)などがあげられる
In the present invention, the 1-monoalkyldimethylsilylpropyne polymer may be used in combination with other polymers, if necessary. Other polymers include 1-alkyne polymers (polymers such as tertiary butylacetylene, neopentylacetylene, ternary pentidolacetylene, etc., preferably tertiary butylacetylene polymers), vinylorganosilane polymers ( Polymers such as vinyltrimethylsilane, vinyltriethylsilane, vinyltripropylsilane, preferably vinyltrimethylsilane polymers), polyorganosiloxanes (dimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, etc.), cellulose polymers (ethylcellulose, etc.) , hydroxyethyl cellulose, triacetyl cellulose, etc., preferably ethyl cellulose), α-olefin polymers (4-methylpentene-1 polymer, etc.), alkyl sulfone polymers (
copolymers of α-olefin and SO□, preferably long-chain alkyl sulfone polymers with alkyl groups having 10 to 20 carbon atoms), tertiary amine-containing polymers (vinylpyridine polymers, N1N-diethylaminoethyl Examples include acrylate polymers, N,N-dimethylaminostyrene polymers, and preferably vinylpyridine polymers.

モノアルキルジメチルシリルプロピン重合体と第2成分
(他の重合体)を併用する場合、モノアルキルジメチル
シリルプロピン重合体の含量は通常50重量%以上好ま
しくは70重量%以上である。
When the monoalkyldimethylsilylpropyne polymer and the second component (another polymer) are used together, the content of the monoalkyldimethylsilylpropyne polymer is usually 50% by weight or more, preferably 70% by weight or more.

本発明におけるモノアルキルジメチルシリ、ルプロピン
重合体より主として形成される気体分離膜の作成方法と
しては(1)上記重合体を溶剤に溶解した溶液を多孔質
基体上にコーティングして複合膜を作成する方法、(2
)上記重合体を溶剤に溶解し、多孔質基体上に塗布後、
当該重合体に対して非溶剤である凝固浴に投入し、いわ
ゆる非対称膜を作成する方法、および(3)上記重合体
を溶剤に溶解後水面上に延展せしめいわゆる水面薄膜を
作成し、それを多孔質基材上に重ねて複合膜にする方法
が ′あげられる。これらの具体的方法については特願
昭58−186222号、特願昭58−186834号
、特願昭58−2005〜′59号、特願昭58−24
2775号各明細書に記載されている。
In the present invention, the method for producing a gas separation membrane mainly formed from monoalkyldimethylsilicate and lupropine polymers is as follows: (1) A composite membrane is produced by coating a porous substrate with a solution in which the above polymer is dissolved in a solvent. Method, (2
) After dissolving the above polymer in a solvent and applying it on a porous substrate,
(3) The polymer is dissolved in a solvent and then spread on the water surface to form a so-called water surface thin film. One method is to layer it on a porous substrate to form a composite membrane. Regarding these specific methods, see Japanese Patent Application No. 58-186222, Japanese Patent Application No. 58-186834, Japanese Patent Application No. 1987-2005~'59, Japanese Patent Application No. 1987-24.
It is described in each specification of No. 2775.

本発明の特徴である気体分離膜の紫外線照射体を得るに
使用される紫外線としては、波長40nm−400nm
の任意の紫外線を利用することができる。
The ultraviolet light used to obtain the ultraviolet irradiator of the gas separation membrane, which is a feature of the present invention, has a wavelength of 40 nm to 400 nm.
Any UV light can be used.

具体的には感光性樹脂のUV硬化装置(たとえばウシオ
電気UV−2(!、01)、光化学反応装置用光源(た
とえば■英光社製、高圧水銀灯、および低圧水銀灯)、
薄層クロマトグラフィーのスポット検出用のUVランプ
および自然光(太陽光)などを用いることができる。
Specifically, UV curing equipment for photosensitive resins (for example, Ushio Electric UV-2 (!, 01), light sources for photochemical reaction devices (for example, Eikosha, high pressure mercury lamp, and low pressure mercury lamp),
A UV lamp for spot detection in thin layer chromatography, natural light (sunlight), etc. can be used.

照射の強度としては、1mW/ari”またはそれ以上
任意の強度の照射を用いることができるが、好ましくは
10〜1000mWA−If照射強度である。
As for the intensity of the irradiation, irradiation with an arbitrary intensity of 1 mW/ari" or higher can be used, but the irradiation intensity is preferably 10 to 1000 mWA-If.

照射時間は照射強度により変るがたとえば50〜200
 mW/cm2を用いると0.1秒より10秒以内が望
ましい。
The irradiation time varies depending on the irradiation intensity, but for example, 50 to 200
When mW/cm2 is used, it is desirable that the time be within 10 seconds rather than 0.1 seconds.

照射の方法は通常、気体分離膜の上方から照射し、温度
は室温、雰囲気は空気中又は任意の気体中で行うことが
できる。
The irradiation is usually carried out from above the gas separation membrane, and can be carried out at room temperature and in air or any gas.

なお1−モノアルキルジメチルシリルプロピン重合体に
は紫外線照射の池数射線(γ線、中性子線、電子線)照
射、コロナ放電処理などの表面処理も可能である。
Note that the 1-monoalkyldimethylsilylpropyne polymer can also be subjected to surface treatments such as ultraviolet ray irradiation (gamma rays, neutron beams, electron beams) irradiation, corona discharge treatment, and the like.

本発明の気体分離膜は、1−モノアルキルジメチルシリ
ルプロピン重合体より主として形成される気体分離膜の
気体透過選択性をあげ、しかも良好な気体透過性を保持
している。
The gas separation membrane of the present invention is mainly formed from a 1-monoalkyldimethylsilylpropyne polymer, and has improved gas permeation selectivity while maintaining good gas permeability.

上記効果を有することから各種気体分離膜の応用を可能
とするものである。その応用例としては酸素富化膜(燃
焼用、医療用)、水系分離膜(H2/COの分離、アン
モニア合成パージガスからのH2回収)、CH4/CO
2分離膜(メタン発酵用、石油の3次回収用)および、
人工肺、人工鯉材料、空気電極用膜などがあり、巾広く
用いることができる。
Since it has the above effects, it can be applied to various gas separation membranes. Application examples include oxygen enrichment membranes (combustion, medical), aqueous separation membranes (H2/CO separation, H2 recovery from ammonia synthesis purge gas), CH4/CO
2 separation membranes (for methane fermentation, tertiary oil recovery) and
It can be used in a wide range of applications, including artificial lungs, artificial carp materials, and membranes for air electrodes.

以下実施例により本発明を更に説明するが、本発明はこ
れに限定されるものではない。
The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

実施例1 1−トリメチルシリルプロピン重合体(以下、PMSP
という、PMS Pの極限粘度はトルエン、30°Cに
おいて6.9である)をトルエンに溶解(1%重量濃度
)させた。その溶液をガラス板上に流延し、キャスティ
ングして、厚膜フィルムを成形させた。80℃で10時
間減圧乾燥後にフィルムの厚さを測定すると40μであ
った。その後ウシオ電機(製)のUv硬化装置(ユニキ
ュアシステムUV−2001)にて紫外線照射を3秒間
行った。照射強度は170mWA−IrL2であった。
Example 1 1-trimethylsilylpropyne polymer (hereinafter referred to as PMSP)
The intrinsic viscosity of PMS P is 6.9 in toluene at 30° C.) was dissolved in toluene (1% weight concentration). The solution was cast onto a glass plate and cast to form a thick film. After drying under reduced pressure at 80° C. for 10 hours, the thickness of the film was measured to be 40 μm. Thereafter, ultraviolet rays were irradiated for 3 seconds using a UV curing device (Unicure System UV-2001, manufactured by Ushio Inc.). The irradiation intensity was 170 mWA-IrL2.

この後、未照射フィルムと照射フィルムを理科精機工業
(製)の気体透過評価装置で酸素と窒素の透過係数を測
定した。結果を表1に示す。
Thereafter, the permeability coefficients of oxygen and nitrogen were measured for the unirradiated film and the irradiated film using a gas permeation evaluation device manufactured by Rika Seiki Kogyo (manufactured by Rika Seiki Kogyo Co., Ltd.). The results are shown in Table 1.

表 1 実施例2 PMSPとポリビニルトリメチルシラン(以下PVMS
と略記)を0.8:0.2重量割合でトルエンに溶解さ
せた。実施例1と同様に実施し厚膜フィルム(膜厚81
μ)を得、紫外線も同じ条件で照射した。気体透過性(
透過係数、分離係数)の評価結果を表2に示す。
Table 1 Example 2 PMSP and polyvinyltrimethylsilane (hereinafter referred to as PVMS)
) was dissolved in toluene at a weight ratio of 0.8:0.2. A thick film (thickness 81 mm) was prepared in the same manner as in Example 1.
μ) was obtained, and ultraviolet rays were also irradiated under the same conditions. Gas permeability (
Table 2 shows the evaluation results of permeability coefficient and separation coefficient.

表 2 実施例3 ′ 実施例1p用いたPMSPをテトラヒドロフランに1%
重量で溶解させた。その溶液を850μのアプリケータ
ーを用いて、ガラス板上に流延しそのまま室温で溶剤の
一部を10秒間蒸発させ、氷水中に投入させ、凝固させ
た。さらに−昼夜流水中に浸漬し、完全に溶剤を除去し
た後、風乾して、乾燥非対称膜を作成した。その後実施
例1と同じW装置で0.5秒間UVを照射した。名体透
過性を評価した結果を表3に示す。
Table 2 Example 3 ' PMSP used in Example 1p was added to tetrahydrofuran at 1%.
Dissolved by weight. The solution was cast onto a glass plate using an 850μ applicator, a portion of the solvent was evaporated for 10 seconds at room temperature, and the solution was poured into ice water to solidify. Furthermore, after completely removing the solvent by immersing it in running water day and night, it was air-dried to prepare a dry asymmetric membrane. Thereafter, UV was irradiated for 0.5 seconds using the same W device as in Example 1. Table 3 shows the results of evaluating the body permeability.

[ − 「 [ 実施例4 P′MSPをn−ヘキサンに1.5重量%で溶解させた
。さらにこの溶液にHLB 4.8のソルビタンオレイ
ン酸モノエステルの活性剤を溶液に対しO,OO5重量
%になるように添加した。その溶液0.4gを1辺が3
0CTL四方のステンレス製水浴(15’C)中の水面
(水道水使用)上に静かに添加すると重合体薄膜が形成
した。得られた極薄膜の膜面積から平均膜厚を計算する
と約01μであった。この薄膜を多孔層支持層として1
−フェニル−2−クロロアセチレン重合体の半透膜(特
公昭58−84164号公報)を用いて複合膜を作成し
た。実施例1と同様に匪照射した。照射時間は0.2秒
とした。気体透過性を評価した結果を辰4に示す。
[ - " [ Example 4 P'MSP was dissolved in n-hexane at a concentration of 1.5% by weight. Furthermore, an activator of sorbitan oleate monoester having an HLB of 4.8 was added to the solution in an amount of 5% by weight of O, OO. % of the solution. 0.4 g of the solution was added to a side of 3
A thin polymer film was formed when gently added onto the water surface (tap water was used) in a 0 CTL square stainless steel water bath (15'C). The average film thickness was calculated from the film area of the obtained ultra-thin film to be about 0.01 μm. This thin film was used as a porous layer support layer.
- A composite membrane was prepared using a semipermeable membrane of phenyl-2-chloroacetylene polymer (Japanese Patent Publication No. 84164/1983). Irradiation was carried out in the same manner as in Example 1. The irradiation time was 0.2 seconds. The results of evaluating gas permeability are shown in Figure 4.

Claims (1)

【特許請求の範囲】[Claims] 1.1−モノアルキルジメチルシリルプロピン重合体膜
の紫外線照射体からなることを特徴とする〜1選択性気
体分離膜。 21−モノアルキルジメチルシリルプロピン重合体が一
般式 る繰り返し単位を有する重合体である4・、1j許請求
の範囲第1項記載の膜。 3、紫外線照射体が紫外線強度10〜10100O/7
で照射したものである特許請求の範囲第1項まだは第2
項記載の膜。
1. A ~1-selective gas separation membrane comprising an ultraviolet irradiated body of a 1-monoalkyldimethylsilylpropyne polymer membrane. 4. The membrane according to claim 1, wherein the 21-monoalkyldimethylsilylpropyne polymer is a polymer having repeating units of the general formula. 3. The ultraviolet irradiator has an ultraviolet intensity of 10 to 10100O/7
Claim 1, which is irradiated with
Membrane described in section.
JP59062354A 1984-03-29 1984-03-29 Gas separation membrane Pending JPS60206403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062354A JPS60206403A (en) 1984-03-29 1984-03-29 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062354A JPS60206403A (en) 1984-03-29 1984-03-29 Gas separation membrane

Publications (1)

Publication Number Publication Date
JPS60206403A true JPS60206403A (en) 1985-10-18

Family

ID=13197693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062354A Pending JPS60206403A (en) 1984-03-29 1984-03-29 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPS60206403A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257807A (en) * 1984-06-06 1985-12-19 Shin Etsu Chem Co Ltd Gas separating molded body
EP0296519A2 (en) * 1987-06-24 1988-12-28 Air Products And Chemicals, Inc. Method of treating membranes with ultraviolet radiation
US5409524A (en) * 1992-12-01 1995-04-25 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257807A (en) * 1984-06-06 1985-12-19 Shin Etsu Chem Co Ltd Gas separating molded body
JPH0387B2 (en) * 1984-06-06 1991-01-07 Shinetsu Chem Ind Co
EP0296519A2 (en) * 1987-06-24 1988-12-28 Air Products And Chemicals, Inc. Method of treating membranes with ultraviolet radiation
US5409524A (en) * 1992-12-01 1995-04-25 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same

Similar Documents

Publication Publication Date Title
Liu et al. Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone
Abednejad et al. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization
Kou et al. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allyl glucoside
Kull et al. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes
Xi et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly (DOPA) and poly (dopamine)
Hu et al. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators
KR910005718B1 (en) Fluorinated pollmeric membranes for separation process
Yong et al. Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid
Song et al. Surface modification of polysulfone membranes by low‐temperature plasma–graft poly (ethylene glycol) onto polysulfone membranes
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
JPH069810A (en) Hydrophobic composite polymer membrane
JPH09505104A (en) Hydrocyclosiloxane membrane produced by plasma polymerization method
KR880007581A (en) Polytrialkyl Germanyl Propine Polymer and Membrane
JPH0323208B2 (en)
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPS60206403A (en) Gas separation membrane
Le Roux et al. Gas transport properties of surface fluorinated poly (vinyltrimethylsilane) films and composite membranes
WO2017038284A1 (en) Gas separation composite membrane, gas separation module, gas separation device, gas separation method, and gas separation composite membrane production method
JP3647852B2 (en) Material surface modification method
JPH0387B2 (en)
KR20200041838A (en) Method of preparing gas separation membrane and the gas separation membrane thereby
JPS59120207A (en) Crosslinked composite membrane
JPS586207A (en) Production of gas permselective composite membrane
JPH0446172B2 (en)
JPS59169507A (en) Gas separation membrane