JPS6220443B2 - - Google Patents

Info

Publication number
JPS6220443B2
JPS6220443B2 JP7522879A JP7522879A JPS6220443B2 JP S6220443 B2 JPS6220443 B2 JP S6220443B2 JP 7522879 A JP7522879 A JP 7522879A JP 7522879 A JP7522879 A JP 7522879A JP S6220443 B2 JPS6220443 B2 JP S6220443B2
Authority
JP
Japan
Prior art keywords
kerosene
liquid fuel
porous
catalyst
wicking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7522879A
Other languages
Japanese (ja)
Other versions
JPS56908A (en
Inventor
Kazunori Sonedaka
Atsushi Nishino
Yasuhiro Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7522879A priority Critical patent/JPS56908A/en
Publication of JPS56908A publication Critical patent/JPS56908A/en
Publication of JPS6220443B2 publication Critical patent/JPS6220443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Wick-Type Burners And Burners With Porous Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は灯油、軜油等の液䜓燃料を蒞発させ、
ガス化するずずもに所望の空気を混合しお燃焌さ
せる液䜓燃料燃焌装眮に関し、ケむ酞石灰を結合
剀ずした非焌結倚孔質䜓により液䜓燃料の吞䞊䜓
を構成しお、液䜓燃料の吞䞊、気化蒞散を行な
い、この様にしお埗られた混合ガスをバヌナ郚に
䟛絊するこずにより、簡䟿で、長時間安定な液䜓
燃料燃焌装眮を提䟛するものである。 埓来の加熱匏灯油ガス化装眮の䞻なものは静止
型ずロヌタリヌ型ずに倧別されるが、いずれも原
理的には熱容量の比范的倧きな熱媒䜓を電熱等に
より加熱しお灯油の沞点に比范し充分に高い枩床
で保持し、該熱媒䜓の衚面で灯油を気化させるよ
うにな぀おいる。たた近幎セラミツク焌結䜓等の
倚孔質䜓で液䜓燃料の吞䞊䜓を構成し、この吞䞊
䜓により灯油を吞䞊げおその気化郚で気化させ、
これを空気ず混合させお燃焌させるものが補品化
され、脚光を济びおいるがこのような埓来のもの
ではその気化郚に゜フトカヌボン、ハヌドカヌボ
ン、タヌル等の未燃焌生成物が生成され、この結
果ずしお燃焌に悪圱響を及がしおいた。本発明は
このように液䜓燃料を吞䞊げお気化させるものに
関するもので、䞊蚘埓来の問題点を解消するため
にアルカリ性でか぀非焌結䜓で構成できるケむ酞
石灰を結合剀ずしたもので液䜓燃料の吞䞊䜓を構
成するこずにより、この吞䞊䜓の気化郚に圢成さ
れやすい゜フトカヌボン、タヌル等の未燃焌生成
物を抑制あるいは分解させるものである。さらに
前蚘ケむ酞石灰ず骚材、あるいはケむ酞石灰ず骚
材ず金属酞化物觊媒ずを均䞀混合しお結合した倚
孔質䜓で吞䞊䜓を構成するこずにより、未燃焌生
成物を抑制したり、分解したりでき、長時間安定
した液䜓燃料燃焌装眮を提䟛するこずができる。 なお、この倚孔質䜓の必芁条件は次の通りであ
る。 (1) 倚孔質䜓は優れた毛现管珟象を有するこず。 (2) 倚孔質䜓は優れた耐熱性、耐食性を有するこ
ず。 (3) 倚孔質䜓は觊媒の担䜓ずしおの圹割を果すず
ずもに、觊媒を担持させる補造工皋に充分耐え
るこず。 (4) 倚孔質䜓はその内郚に装備された発熱䜓の発
熱量を効率よく液䜓燃料灯油の気化熱に倉
換できる構造を有しおいるこず。 (5) 倚孔質䜓は発熱䜓の発熱量に応じお灯油の気
化量が可倉できるこず倚孔質䜓の呚囲の条件
に応じお灯油の気化量が可倉できるこず。 (6) 倚孔質䜓はその気化郚でタヌル等の未燃焌生
成物が生成されにくいこず。 などである。次に本発明の䞀実斜䟋を添付図面に
もずずいお説明する。 第図に瀺す劂く、密閉容噚には液䜓
燃料の䟛絊口、空気䟛絊口、および混合ガス
流出口ずが蚭けられ、たたこの密閉容噚の内
郚には液䜓燃料の吞䞊䜓が蚭けられおいる。 たた、発熱䜓の衚面に耐熱材を被芆圢成した耇
合発熱䜓が吞䞊䜓内に装着されおおり、した
が぀お耇合発熱䜓の発熱量の倧郚分を効率よく
吞䞊䜓に䌝導䌝熱され、この結果ずしお吞䞊䜓
が吞䞊げた液䜓燃料、䟋えば効果的に気化され
る。たた、この時気化した灯油は吞䞊䜓の優れ
た毛现管珟象により、䞊蚘気化量に盞圓する量の
灯油が自動的に吞䞊げられお定垞状態を維持す
る。すなわち、䞊蚘吞䞊䜓の灯油吞䞊胜力、耇
合発熱䜓の発熱量、灯油気化郚の衚面積等の関
係を適圓に遞定するこずにより耇合発熱䜓の䟛
絊熱量に察しお極めお効率的な、たた応答性に優
れた灯油気化ガス発生源を埗るこずができる。 なお、この際灯油の気化は䞻ずしお耇合発熱䜓
の接觊面およびその呚蟺郚で発生するので空気
䟛絊口は、これより流入する空気によ぀お灯油
の気化が促進されるずずもに気化した灯油ず完党
に混合されお混合ガス流出口より流出するよう
に配眮するのが奜たしい。そしお、このようにし
お埗られた混合ガスを䜿甚目的に応じお各皮バヌ
ナ郚に導くこずにより、経枈的な液䜓燃料燃焌装
眮を構成するこずができるのである。 䞊蚘吞䞊䜓はケむ酞石灰を結合剀ずし、基骚
材ず金属酞化物觊媒ず補助材を含む倚孔質䜓より
なり、次に各成分に぀いお詳现に説明する。  ケむ酞石灰 ケむ酞石灰は通垞ポルトランドセメントずし
お垂販されおいるものを䜿甚するこずができ
る。 本発明で甚いる吞䞊䜓の䞻成分結合剀
はポルトランドセメントで、アルミナセメント
ず区別される。ポルトランドセメントすなわち
ケむ酞石灰は䞀般的にmSiO2・nCaOで衚わさ
れ、アルミナセメントすなわちアルミン酞石灰
は、mAl2O3・nCaOで衚わされる。アルミナセ
メントは耐熱性も高く、硬化速床も速く、倚孔
質䜓の補造の芳点から奜たしいセメントであ
る。しかしながらアルミナセメントは、ポルト
ランドセメントに比范し、高䟡であるずずも
に、機械的匷床が䜎い。䞀方、本発明のポルト
ランドセメントは、耐熱性は300℃前埌ず蚀わ
れおいるように耐熱性は䜎いが、灯油、軜油な
どの沞点は䞀般的には150〜250℃皋床であり、
灯油等の液䜓燃料の気化甚構造䜓ずしおは充分
な耐熱性を有し、それ自䜓が結合剀であるずず
もに極めお優れた灯油分解觊媒でもある。 次にケむ酞石灰を含む吞䞊䜓の特城を述べ
る。  匷アルカリ性であるため、灯油の分解を促
進させるこずができる。  毛现管珟象を向䞊させる良奜な倚孔質が埗
られるこず。  さらにケむ酞石灰からなる吞䞊䜓を担䜓
ずしお甚いるず、たずえば塩化癜金酞を担持
する堎合、担䜓自身の衚面積が倧きく比衚
面積10〜50m2/、觊媒の付着効率付着匷
床も倧きく、觊媒塩の溶媒氎、アルコヌ
ル等ずのぬれ珟象が倧きく、觊媒を効果的
に均質分散させお担持させるこずができる。
たたこれずずもに、担䜓が匷アルカリである
ため觊媒が担䜓衚面に担持アルカリ性のた
め、觊媒塩が、担䜓衚面で氎酞化物ずなり、
深く浞透しないするこずができるため、觊
媒量が少なくお、か぀觊媒胜力を倧きくする
こずができ、さらに摩耗匷床も倧きい。  吞䞊䜓は埓来のセラミツク焌結䜓ずは異
なり焌結する必芁がなく、垞枩で成型固化で
きる。さらに重芁なこずは焌結䜓は元型に比
べ玄10〜30の熱収瞮が起り、吞䞊䜓の型
粟床を均䞀に保぀こずが困難であるが、本発
明のごずくケむ酞石灰を甚いた堎合には非焌
結䜓であるため、型粟床ずしお以䞋にす
るこずができる。  ケむ酞石灰を含む吞䞊䜓を250℃以䞊で
熱凊理するず、ケむ酞石灰の結合氎が脱氎
し、倚孔床が向䞊する。  基骚材 基骚材は吞䞊䜓の倚孔性を改善させるこず
ができ、耐スポヌリング性気化甚構造䜓のク
ラツク、割れ防止の改善ができ、さらに重芁
なこずは炭化氎玠などの分解胜にすぐれた觊媒
を基骚材ずしお共甚させるこずができる。 奜たしい基骚材ずしお、シリカ系基骚材、シ
リカアルミナ系基骚材、アルミナ系基骚材があ
り、鉱物盞ずしおケむ酞塩鉱物、ムラむト、コ
ランダム、シリマナむト、β―アルミナさらに
はマグネシア、クロム、ドロマむト、マグク
ロ、クロマグ系のものを甚いるこずができる。
さらに詳述するず、シリカ系基骚材ずしお、ケ
む砂、ケむ砂等がある。これらの基骚材は
SiO2を䞻成分ずしたものである。シリカアル
ミナ系基骚材ずしお、シダモツト、ロり石、高
アルミナ等があり、SiO2―Al2O3が䞻成分であ
る。アルミナ系基骚材ずしおα―Al2O3、β―
Al2O3、γ―Al2O3等がある。なおアルミナ等
を甚いる代わりに氎酞化アルミニりムを出発物
質ずしお䜿甚するこずも可胜である。さらに䞀
般的にはこれらの基骚材をある皋床に粗砕した
もの、あるいは垂販のケむ砂、アルミナ、シダ
モツト等を甚いる。 さらに基骚材ず觊媒を共甚するものずしお
は、倩然れオラむト、合成れオラむト、酞性癜
土、掻性癜土及びその誘導䜓、前述のようなシ
リカアルミナ、シリカマグネシア、アルミナボ
リアなどがあり、本発明には最も奜たしい基骚
材である。 その他ベントナむト、カオリン等も䜿甚可胜
である。  金属酞化物觊媒 金属酞化物ずは、二酞化マンガンのようなも
のず、プラむトのような耇合酞化物も含み、
特にFe、Mn、Co、Ni、Cr、Cuからなる遷移
金属酞化物が奜たしく、これらの酞化物䞭、比
范的安䟡な金属酞化物は、酞化マンガンず酞化
鉄であり、特に酞化マンガンずしお、電解二酞
化マンガン、倩然二酞化マンガンおよび化孊凊
理二酞化マンガンがよいが、觊媒の均質性等の
面から電解二酞化マンガンを甚いるのが材料的
にも富み奜たしい。 䞊蚘金属酞化物は熱凊理等により、前蚘酞化
物ずなりうる、たずえば炭酞塩、塩基性炭酞
塩、氎酞化物、硝酞塩などの熱分解性塩を混
合、混入させお䜿甚するこずもできる。 耇合酞化物を圢成する金属むオンは
Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+などが
あり、Mo・Fe2O3で衚わされるもので、䞀矀
の鉄酞化物であり、ずしおZn2+を含有しおい
るものである。通垞はは皮たたはそれ以䞊
の䟡むオンを混入し、固容䜓を䜜るこずが可
胜である。その他の金属むオンずしおはMn2+
が有効である。奜たしい組成はMn―Fe―Znç³»
であり、化合物圢態ずしおMnFe2O4ZnFe2O4
で瀺される固容䜓である。特に明確ではないが
酞化亜鉛を含んだ耇合酞化物は結合力が匷く熱
的にも安定であるこずに垰因するものず思われ
る。固容䜓自身の奜たしい組成は以䞋に瀺した
組成比である。 Fe2O3 mol 40〜80 MnO mol 10〜40 ZnO mol 〜25 固容䜓の組成は䞊述したものに限定されるも
のではないが、䟡栌の点、性胜の点からもFe
―Mn―Zn系が最も良奜である。なお、MnOの
代わりにCuO、CrO、CoO、NiOを甚いるこず
も可胜である。 このような金属酞化物觊媒を含有した吞䞊䜓
の特城を述べる。  吞䞊䜓に圢成されやすい゜フトカヌボ
ン、ハヌドカヌボン、タヌル等の未燃焌生成
物を抑制あるいは酞化分解するこずができ
る。  灯油、軜油のガス化枩床分解を䜎くす
るこずにより、タヌル等の未燃焌生成物を抑
制するこずができる。  金属酞化物を含有するこずにより倚孔質化
され、毛现管珟象すなわち灯油吞䞊胜が
向䞊する。  タヌル等の未燃焌生成物を空焌きする堎
合、䜎枩で酞化分解するこずができる。 などがある。  補助材 補助材ずしお添加するものずしおは次のもの
がある。む 倚孔質性毛现管珟象を改善さ
せるものずしお、前述の基骚材の他に、ケむ酞
カルシりム、掻性炭、炭酞カルシりム、炭玠、
発泡剀熱分解性有機化合物等を添加させ
る。ロ 補匷機械的匷床するものずしお、
ガラス繊維、石綿、金属繊維等を添加するこず
も可胜である。 以䞊吞䞊䜓の奜たしい組成比を芁玄するず、  ケむ酞石灰 20〜100重量  基骚材 〜80重量  金属酞化物觊媒 〜80重量  補助材 〜50重量 である。 次に吞䞊䜓の補造方法に぀いお述べる。 ケむ酞石灰を含むポルトランドセメントず必芁
に応じ、基骚材、金属酞化物觊媒および補助材を
先ず也匏混合し、その埌成型に足るだけの氎を加
えお湿匏混合し、必芁な圢状に成型し、逊生しお
倚孔質䜓を埗る。前蚘補造方法により、巟70mm長
さ150mm、厚み10mmの倚孔質䜓を䞋蚘第衚に瀺
す組成で䜜成し、次の灯油の油面に浞挬し、毛现
管珟象により灯油が吞䞊る高さを怜蚎し、第図
の結果を埗た。第図むは粘土の玠焌を倚孔質基
䜓ずしお甚いたもの、ロは粘土䞭に埮粒子の黒鉛
粉を混合し、成型し、也燥埌焌結し、倚孔質䜓を
埗たもので、粘土補の倚孔質発泡玠焌䜓である。
むからヘは䞋蚘第衚に瀺す組成のものである。
第図から理解される劂く、吞䞊䜓の䞭でも、
材質、補法、組成により毛现管珟象が著しく異な
るこずが理解できる。
The present invention evaporates liquid fuel such as kerosene and light oil,
Regarding a liquid fuel combustion device that gasifies and burns the desired air by mixing it with air, the liquid fuel wicking body is made of a non-sintered porous material using silicate lime as a binder, and the liquid fuel is wicked up. By performing vaporization and transpiration and supplying the thus obtained mixed gas to the burner section, a simple and long-term stable liquid fuel combustion device is provided. The main types of conventional heated kerosene gasifiers are broadly divided into stationary types and rotary types, but in principle both use electric heat to heat a heat medium with a relatively large heat capacity to the boiling point of kerosene. In comparison, the heating medium is maintained at a sufficiently high temperature to vaporize the kerosene on the surface of the heating medium. In addition, in recent years, porous bodies such as ceramic sintered bodies have been used to construct liquid fuel wicking bodies, and kerosene is sucked up by this wicking body and vaporized in its vaporization section.
Products that mix this with air and burn it have been commercialized and are attracting attention, but these conventional products produce unburned products such as soft carbon, hard carbon, and tar in the vaporization part. As a result, combustion was adversely affected. The present invention relates to a device that sucks up and vaporizes liquid fuel, and in order to solve the above-mentioned conventional problems, the present invention uses lime silicate, which is alkaline and can be composed of a non-sintered body, as a binder. By configuring the fuel absorption body, unburned products such as soft carbon and tar that are likely to be formed in the vaporization part of the absorption body are suppressed or decomposed. Furthermore, by configuring the wicking body with a porous body in which the silicate lime and aggregate, or silicate lime and aggregate, and a metal oxide catalyst are uniformly mixed and bonded, unburned products can be suppressed. It is possible to provide a liquid fuel combustion device that is stable for a long time and can be disassembled. Note that the necessary conditions for this porous body are as follows. (1) The porous material must have excellent capillary action. (2) The porous material must have excellent heat resistance and corrosion resistance. (3) The porous material must not only serve as a catalyst carrier, but also be able to sufficiently withstand the manufacturing process in which the catalyst is supported. (4) The porous body must have a structure that can efficiently convert the calorific value of the heating element installed inside the porous body into heat of vaporization of liquid fuel (kerosene). (5) The porous body must be able to vary the amount of kerosene vaporized depending on the calorific value of the heating element (the amount of kerosene vaporized can be varied depending on the surrounding conditions of the porous body). (6) Porous materials are less likely to generate unburned products such as tar in their vaporization parts. etc. Next, one embodiment of the present invention will be described based on the accompanying drawings. As shown in FIGS. 1A and 1B, a closed container 1 is provided with a liquid fuel supply port 2, an air supply port 3, and a mixed gas outlet 4, and inside this closed container 1, a liquid fuel supply port 2, an air supply port 3, and a mixed gas outlet 4 are provided. A suction body 5 is provided. In addition, a composite heating element 6 whose surface is coated with a heat-resistant material is mounted inside the absorbent body 5, and therefore most of the calorific value of the composite heating element 6 is efficiently transferred to the absorbent body 5. Heat is transferred by conduction, and as a result, the liquid fuel sucked up by the wicking body 5, for example, is effectively vaporized. Moreover, the kerosene vaporized at this time is automatically sucked up in an amount corresponding to the above vaporized amount due to the excellent capillary action of the wicking body 5, and a steady state is maintained. That is, by appropriately selecting the relationship among the kerosene suction capacity of the wicking body 5, the calorific value of the composite heating element 6, the surface area of the kerosene vaporizing section, etc., it is possible to achieve extremely efficient heating for the amount of heat supplied by the composite heating element 6. Moreover, a kerosene vaporized gas generation source with excellent responsiveness can be obtained. At this time, since the vaporization of kerosene mainly occurs on the contact surface of the composite heating element 6 and the surrounding area, the air supply port 3 is designed to promote the vaporization of kerosene by the air flowing in from the air supply port 3, and to separate the vaporized kerosene from the air supply port 3. It is preferable to arrange the mixed gas so that it is completely mixed and flows out from the mixed gas outlet 4. By guiding the mixed gas thus obtained to various burner sections depending on the purpose of use, an economical liquid fuel combustion apparatus can be constructed. The wicking body 5 is made of a porous body containing lime silicate as a binder, a base aggregate, a metal oxide catalyst, and an auxiliary material. Each component will be explained in detail below. A. Lime silicate As the silicate lime, one commercially available as Portland cement can be used. Main component (binder) of absorbent body 5 used in the present invention
is Portland cement, which is distinguished from alumina cement. Portland cement, or lime silicate, is generally represented by mSiO 2 .nCaO, and alumina cement, or lime aluminate, is represented by mAl 2 O 3 .nCaO. Alumina cement has high heat resistance and fast hardening speed, and is a preferable cement from the viewpoint of producing porous bodies. However, alumina cement is more expensive and has lower mechanical strength than Portland cement. On the other hand, the Portland cement of the present invention has low heat resistance, as it is said to have a heat resistance of around 300°C, but the boiling point of kerosene, light oil, etc. is generally around 150 to 250°C.
It has sufficient heat resistance as a structure for vaporizing liquid fuels such as kerosene, is itself a binder, and is also an extremely excellent kerosene decomposition catalyst. Next, the characteristics of the absorbent body 5 containing silicate lime will be described. 1. Because it is strongly alkaline, it can accelerate the decomposition of kerosene. 2. Good porosity that improves capillarity can be obtained. 3 Furthermore, when the absorbent body 5 made of lime silicate is used as a carrier, for example when supporting chloroplatinic acid, the surface area of the carrier itself is large (specific surface area 10 to 50 m 2 /g), and the adhesion efficiency (adhesion strength) of the catalyst is increased. ) is also large, and the wetting phenomenon of the catalyst salt with the solvent (water, alcohol, etc.) is large, and the catalyst can be effectively homogeneously dispersed and supported.
In addition, since the carrier is a strong alkali, the catalyst is supported on the carrier surface (due to the alkaline nature, the catalyst salt becomes hydroxide on the carrier surface,
(does not penetrate deeply), the amount of catalyst is small, the catalytic ability can be increased, and the wear strength is also high. 4. Unlike conventional ceramic sintered bodies, the wicking body 5 does not need to be sintered and can be molded and solidified at room temperature. More importantly, the sintered body undergoes thermal shrinkage of about 10 to 30% compared to the original mold, making it difficult to maintain uniform mold precision of the wicking body 5. However, as in the present invention, silicate lime When used, since it is a non-sintered body, the mold accuracy can be kept at 2% or less. 5 When the absorbent body 5 containing silicate lime is heat-treated at 250° C. or higher, the bound water of the silicate lime is dehydrated and the porosity is improved. B. Base aggregate The base aggregate can improve the porosity of the wicking body 5, improve the spalling resistance (preventing cracks and cracks in the vaporization structure), and more importantly, it can improve the porosity of the wicking body 5, and more importantly, it can improve the porosity of the wicking body 5. A catalyst with excellent resolution can also be used as the base aggregate. Preferred base aggregates include silica base aggregate, silica alumina base aggregate, and alumina base aggregate, and mineral phases include silicate minerals, mullite, corundum, sillimanite, β-alumina, and magnesia, chromium, Dolomite, maguro, and chromag type materials can be used.
More specifically, examples of the silica base aggregate include silica sand and silica sand. These base aggregates are
The main component is SiO 2 . Silica-alumina base aggregates include siyamoto, waxite, high alumina, etc., and the main component is SiO 2 - Al 2 O 3 . α-Al 2 O 3 , β- as alumina base aggregate
Examples include Al 2 O 3 and γ-Al 2 O 3 . Note that it is also possible to use aluminum hydroxide as a starting material instead of using alumina or the like. More generally, these base aggregates are crushed to a certain extent, or commercially available silica sand, alumina, siyamoto, etc. are used. Furthermore, materials that share the base aggregate and catalyst include natural zeolite, synthetic zeolite, acid clay, activated clay and derivatives thereof, and the aforementioned silica alumina, silica magnesia, alumina boria, etc., which are most preferred for the present invention. It is the base aggregate. Other materials such as bentonite and kaolin can also be used. C Metal oxide catalyst Metal oxides include things like manganese dioxide and complex oxides like ferrite.
Particularly preferred are transition metal oxides consisting of Fe, Mn, Co, Ni, Cr, and Cu. Among these oxides, relatively inexpensive metal oxides are manganese oxide and iron oxide. Although manganese dioxide, natural manganese dioxide, and chemically treated manganese dioxide are good, it is preferable to use electrolytic manganese dioxide from the viewpoint of catalyst homogeneity because it is rich in material. The above-mentioned metal oxide may be used by mixing or mixing with it a thermally decomposable salt such as a carbonate, a basic carbonate, a hydroxide, or a nitrate, which can become the above-mentioned oxide by heat treatment or the like. The metal ion M forming the composite oxide is
There are Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , etc., and it is represented by Mo・Fe 2 O 3 and is a group of iron oxides. It contains 2+ . Usually, M can be mixed with two or more divalent ions to form a solid body. Other metal ions include Mn 2+
is valid. The preferred composition is Mn-Fe-Zn system, and the compound form is MnFe 2 O 4 + ZnFe 2 O 4
It is a solid body represented by . Although it is not particularly clear, this is thought to be due to the fact that composite oxides containing zinc oxide have strong bonding strength and are thermally stable. The preferred composition of the solid body itself is the composition ratio shown below. Fe 2 O 3 (mol%) 40-80% MnO (mol%) 10-40% ZnO (mol%) 1-25% Although the composition of the solid is not limited to the above, price considerations , Fe from the performance point of view
-Mn-Zn system is the best. Note that it is also possible to use CuO, CrO, CoO, or NiO instead of MnO. The characteristics of the absorbent body 5 containing such a metal oxide catalyst will be described. 1. Unburnt products such as soft carbon, hard carbon, and tar that are likely to be formed on the absorbent body 5 can be suppressed or oxidized and decomposed. 2. By lowering the gasification temperature (decomposition) of kerosene and light oil, unburned products such as tar can be suppressed. 3. Containing metal oxides makes it porous and improves capillary action (i.e. kerosene wicking ability). 4. When unburned products such as tar are fired, they can be oxidized and decomposed at low temperatures. and so on. D Auxiliary materials The following can be added as auxiliary materials. In addition to the above-mentioned base aggregate, calcium silicate, activated carbon, calcium carbonate, carbon,
Add a blowing agent (thermally decomposable organic compound, etc.). (b) As reinforcement (mechanical strength),
It is also possible to add glass fibers, asbestos, metal fibers, etc. To summarize the preferable composition ratios of the wicking body 5, a) lime silicate 20-100% by weight b) base aggregate 0-80% by weight c) metal oxide catalyst 0-80% by weight d auxiliary material 0-50% by weight be. Next, a method for manufacturing the absorbent body 5 will be described. Portland cement containing silicate lime, base aggregate, metal oxide catalyst and auxiliary materials as required are first dry-mixed, then enough water is added for molding, wet-mixed, and molded into the required shape. A porous body is obtained by curing. Using the above manufacturing method, a porous body with a width of 70 mm, a length of 150 mm, and a thickness of 10 mm was created with the composition shown in Table 1 below, and it was immersed in the oil level of the following kerosene to examine the height at which the kerosene would be sucked up by capillary action. The results shown in Figure 2 were obtained. Figure 2 A shows a porous body using unglazed clay as a porous substrate. It is a porous foamed bisque body.
A to F have the compositions shown in Table 1 below.
As understood from FIG. 2, in the wicking body 5,
It can be seen that capillarity varies significantly depending on the material, manufacturing method, and composition.

【衚】 次に第図に瀺した本発明の基本原理を生かし
た具䜓的な実斜䟋を第図に瀺す。 この第図は第図に瀺す液䜓燃料燃焌装眮を
具䜓化したものであり、この第図に瀺すごずく
混合ガス流出口の䞊郚に逆火防止網を介しお
焜炉甚バヌナを接続し、その炎口で混
合ガスの燃焌炎を圢成する様にしたものである。
なお、はゎトク、は密閉容噚の保枩
材、およびは耇合発熱䜓の入力耐子を
瀺す。たた、この実斜䟋では空気の䟛絊は送颚機
によ぀お行い、灯油はレベラヌにより液
䜍を䞀定に保持しお䟛絊される。もちろん、燃焌
量の調節は耇合発熱䜓の入力および空気の䟛絊
量を調節するこずにより広範囲に可倉できる。 次に吞䞊䜓に耇合発熱䜓を装眮する方法に
぀いお述べる。第図に瀺すごずく吞䞊䜓
には䞊郚に耇合発熱䜓を装眮するための貫通
孔が蚭けられおいる。前蚘吞䞊䜓は灯油の
吞䞊が可胜な様に倚孔質になるように構成する。 次に第図に瀺した焜炉を甚い、耇合発熱䜓
ずしお15Ωの電熱線の衚面にプラズマ溶射法によ
りアルミナ粉䜓を30〜50ミクロン均䞀に溶射被芆
したものを甚い、吞䞊䜓ずしおは䞊蚘第衚に
瀺す皮類の倚孔質䜓を甚い、燃焌を行な぀た。 耇合発熱䜓の熱量は40Wずし、発熱量ず、吞
䞊䜓にタヌルが発生するたでの時間を調べ、䞋
蚘の第衚に瀺した。
[Table] Next, FIG. 3 shows a specific embodiment that takes advantage of the basic principle of the present invention shown in FIG. This FIG. 3 is a concrete example of the liquid fuel combustion apparatus shown in FIG. 1, and as shown in FIG. The combustion flame of the mixed gas is formed at the flame ports 9 and 10.
In addition, 11 is a trivet, 12 is a heat insulating material of the closed container 1, and 13 and 14 are input resistors of the composite heating element 6. Further, in this embodiment, air is supplied by a blower 15, and kerosene is supplied with the liquid level kept constant by a leveler 16. Of course, the amount of combustion can be varied over a wide range by adjusting the input to the composite heating element 6 and the amount of air supplied. Next, a method for installing the composite heating element 6 on the absorbent body 5 will be described. As shown in FIGS. 4a and 4b, the suction body 5 is provided with a through hole 20 in the upper part thereof for installing a composite heating element 6 therein. The absorbent body 5 is configured to be porous so that it can absorb kerosene. Next, using the furnace shown in Fig. 3, the composite heating element 6
The surface of a 15Ω heating wire was coated with alumina powder of 30 to 50 microns uniformly by plasma spraying method, and the wicking body 5 was made of six types of porous bodies shown in Table 1 above. carried out combustion. The heat value of the composite heating element 6 was set to 40 W, and the heat value and the time until tar was generated on the wicking body 5 were investigated, and the results are shown in Table 2 below.

【衚】 䞋蚘の第衚は第衚に瀺した䞀郚の倚孔質䜓
に貎金属觊媒を担持したもので、灯油䞭に0.5
のサラダオむルを添加した異状灯油で、第衚同
様タヌルの発生するたでの時間を調べたものであ
る。
[Table] Table 3 below shows some of the porous bodies shown in Table 2 with noble metal catalysts supported, and 0.5% in kerosene.
As in Table 2, the time required for tar to form was investigated using abnormal kerosene to which salad oil was added.

【衚】【table】

【衚】 第衚の吞䞊䜓の倚孔質局に觊媒を担持する方
法に぀いお簡単に述べる。本発明の実斜䟋に瀺し
た觊媒は貎金属觊媒で、癜金、ロゞりム、パラゞ
りムがあり、特に塩化癜金酞を溶媒氎アルコ
ヌル5050に/の濃床になる様に溶解
調敎埌、倚孔質䜓の重量に換算し、0.01になる
ように塩化癜金酞溶液をスプレヌ法により塗垃
し、也燥埌300℃で熱凊理したもの。 以䞋、これらの結果を比范する。 第、第衚のむ、ロはいずれも粘土を䞻成分
ずする倚孔質䜓であるが、ロの方が倚孔質床が倧
で、灯油吞䞊げ胜も優れ、発熱量、タヌル化たで
の時間も改善されおいるが、特に第衚のような
異状灯油に察しおは貎金属觊媒を担持しおもタヌ
ル化たでの時間は改善されおいない。 ハからヘは、いずれもケむ酞石灰を含む倚孔質
䜓であるが、組成、組成比により灯油吞䞊げ高さ
は異な぀おいる。その䞭で特にホ、ヘが優れ、発
熱量、タヌル発生正垞油、異状油共にたでの
時間に぀いおも優れた結果を瀺した。 これらの䞭で、第衚に詳述の劂く、異状油を
甚いた堎合、タヌル化たでの時間は、正垞油に比
べ、いちじるしく短かい。しかしながら第衚の
ニず第衚のニの違う点は、正垞油ず異状油であ
るが、タヌル化たでの時間のほずんど差がない。
これは、倚孔質䜓を構成する物質自䜓が前蚘の劂
く、灯油、タヌル等を分解するクラツキング觊媒
であるこず。さらに癜金担持は、より䜎分子量の
物質を酞化する酞化觊媒ずを兌ね備えおいるため
ず考える。 さらに、これらの結果から灯油吞䞊げ胜力ずし
お、10mm30秒間以䞊であれば、本発明の目的ず
する吞䞊䜓ずしお充分圹割を果たすこずができる
が、第衚むの劂く10mm30秒以䞋の灯油吞䞊げ
胜力であれば灯油気化装眮ずしおの熱量効率が悪
く、したが぀お倚孔質衚面に短時間にタヌルが生
成し、灯油気化装眮ずしおの胜力発熱量の急激
な䜎䞋を損う。 このような結果から本発明の目的を果す吞䞊䜓
ずしおは、アルカリ性を有し、か぀灯油吞䞊げ胜
力が10mm30秒間以䞊の特性を有するこずが奜た
しく、特に15mm30秒間以䞊の灯油吞䞊げ胜力を
有する吞䞊䜓であれば、長期間、安定した機胜を
果すこずができる。 ここで重芁なこずは、基骚材、金属酞化物觊媒
は吞䞊䜓を埗るために必芁な物質であるず同時
に、異状油、異皮油などによるタヌル発生の抑制
ずしお働くためである。貎金属觊媒も同様にタヌ
ル分の抑制および分解に察しお効果的である。 実斜䟋䞭、基骚材ずしおAl2O3、合成れオラむ
トおよび金属酞化物ずしお、二酞化マンガン、フ
゚ラむトに぀いお蚘述したが、本発明では、前蚘
基骚材、金属酞化物および補助材は前述の材料を
甚いおも有効である。以䞊詳述の劂く本発明の液
䜓燃料燃焌装眮によれば液䜓燃料が安定しお気化
するので、良奜なる燃焌が長期間にわた぀お安定
しお埗られる。なお本発明は各皮類のバヌナ郚に
連結するこずにより調理噚、枩颚機、石油ストヌ
ブ等のあらゆる分野の燃焌噚に応甚するこずが可
胜である。
[Table] The method of supporting a catalyst on the porous layer of the absorbent shown in Table 3 will be briefly described. The catalysts shown in the examples of the present invention are noble metal catalysts, including platinum, rhodium, and palladium. In particular, after dissolving chloroplatinic acid in a solvent (water: alcohol = 50:50) to a concentration of 2 g/ A chloroplatinic acid solution was applied to the porous body by a spray method to a concentration of 0.01% by weight, and after drying, it was heat-treated at 300℃. Below, these results will be compared. In Tables 1 and 2, A and B are both porous materials whose main component is clay, but B has a higher degree of porosity, has better kerosene absorption ability, has a higher calorific value, and is less likely to turn into tar. Although the time required for taring has also been improved, especially for abnormal kerosene as shown in Table 2, even if a noble metal catalyst is supported, the time required to turn into tar has not been improved. All of them are porous bodies containing silicate lime, but the kerosene suction height differs depending on the composition and composition ratio. Among them, E and F were particularly excellent, and also showed excellent results in terms of calorific value and time until tar generation (both normal oil and abnormal oil). Among these, as detailed in Table 3, when abnormal oil is used, the time until it turns into tar is significantly shorter than that of normal oil. However, the difference between 2 in Table 1 and 2 in Table 3 is that there is almost no difference in the time it takes to turn into tar between normal oil and abnormal oil.
This is because the material constituting the porous body itself is a cracking catalyst that decomposes kerosene, tar, etc., as mentioned above. Furthermore, it is thought that this is because the platinum supported also functions as an oxidation catalyst that oxidizes substances with lower molecular weight. Furthermore, from these results, if the kerosene suction capacity is 10 mm/30 seconds or more, it can sufficiently serve as the wicking body for the purpose of the present invention, but as shown in Table 2 A, 10 mm/30 seconds If the kerosene wicking capacity is below, the calorific efficiency of the kerosene vaporizer will be poor, and tar will form on the porous surface in a short period of time, impairing the kerosene vaporizer's performance (rapid drop in calorific value). cormorant. From these results, it is preferable that a wicking body that achieves the purpose of the present invention has alkalinity and a kerosene absorption capacity of 10 mm/30 seconds or more, and particularly a kerosene absorption capacity of 15 mm/30 seconds or more. A wicking body that has the ability to lift can perform a stable function for a long period of time. What is important here is that the base aggregate and the metal oxide catalyst are necessary substances for obtaining the absorbent, and at the same time, they work to suppress the generation of tar due to foreign oils, foreign oils, and the like. Noble metal catalysts are also effective in inhibiting and decomposing tar content. In the examples, Al 2 O 3 was used as the base aggregate, and manganese dioxide and ferrite were described as the synthetic zeolite and metal oxide. However, in the present invention, the base aggregate, metal oxide, and auxiliary material are It is also effective to use As described in detail above, according to the liquid fuel combustion apparatus of the present invention, the liquid fuel is stably vaporized, so that good combustion can be stably obtained over a long period of time. The present invention can be applied to combustors in all fields, such as cooking appliances, hot air blowers, and kerosene stoves, by connecting to various types of burner sections.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明の䞀実斜䟋にかかる液䜓燃料
燃焌装眮の芁郚断面図、第図は同装眮の芁郚
拡倧断面図、第図は同装眮の特性を説明するグ
ラフ、第図は本発明の他の実斜䟋にかかる液䜓
燃料燃焌装眮の断面図、第図は第図の
液䜓燃料燃焌装眮の吞䞊䜓の拡倧正面図ず拡倧偎
面図である。   吞䞊䜓、  耇合発熱䜓。
FIG. 1A is a sectional view of a main part of a liquid fuel combustion device according to an embodiment of the present invention, FIG. 1B is an enlarged sectional view of a main part of the same device, and FIG. 2 is a graph explaining the characteristics of the device. FIG. 3 is a sectional view of a liquid fuel combustion device according to another embodiment of the present invention, and FIGS. 4a and 4b are an enlarged front view and an enlarged side view of the suction body of the liquid fuel combustion device of FIG. 1. . 5...Suction body, 6...Composite heating element.

Claims (1)

【特蚱請求の範囲】  バヌナヌ郚ず、バヌナヌ郚に燃料を気化させ
お送る液䜓燃料吞䞊䜓ずを有し、この液䜓燃料吞
䞊䜓はケむ酞石灰を結合剀ずした倚孔質䜓よりな
り、その気化郚に発熱䜓を蚭けるず共に衚面に癜
金、ロゞりム、パラゞりム等の貎金属の少なくず
も䞀぀を担持させた液䜓燃料燃焌装眮。  䞊蚘吞䞊䜓の灯油吞䞊早さを10mm30秒間以
䞊ずした特蚱請求の範囲第項に蚘茉の液䜓燃料
燃焌装眮。  䞊蚘吞䞊䜓は少なくずもケむ酞石灰ず骚材を
均䞀混合しお圢成した倚孔質䜓により構成した特
蚱請求の範囲第項に蚘茉の液䜓燃料燃焌装眮。
[Claims] 1. It has a burner section and a liquid fuel suction body that vaporizes and sends fuel to the burner section, and this liquid fuel suction body is made of a porous body using lime silicate as a binder. , a liquid fuel combustion device in which a heating element is provided in the vaporization part and at least one of noble metals such as platinum, rhodium, palladium, etc. is supported on the surface. 2. The liquid fuel combustion device according to claim 1, wherein the kerosene suction speed of the suction body is 10 mm/30 seconds or more. 3. The liquid fuel combustion device according to claim 1, wherein the absorbent body is a porous body formed by uniformly mixing at least lime silicate and aggregate.
JP7522879A 1979-06-14 1979-06-14 Liquid-fuel combustor Granted JPS56908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7522879A JPS56908A (en) 1979-06-14 1979-06-14 Liquid-fuel combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7522879A JPS56908A (en) 1979-06-14 1979-06-14 Liquid-fuel combustor

Publications (2)

Publication Number Publication Date
JPS56908A JPS56908A (en) 1981-01-08
JPS6220443B2 true JPS6220443B2 (en) 1987-05-07

Family

ID=13570151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7522879A Granted JPS56908A (en) 1979-06-14 1979-06-14 Liquid-fuel combustor

Country Status (1)

Country Link
JP (1) JPS56908A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318627B2 (en) * 2005-08-10 2012-11-27 Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg Process for preparation of a catalyst carrier
JP4748116B2 (en) * 2007-06-13 2011-08-17 トペタ自動車株匏䌚瀟 Snap ring

Also Published As

Publication number Publication date
JPS56908A (en) 1981-01-08

Similar Documents

Publication Publication Date Title
USRE31719E (en) Supported catalyst for purifying gas and method of manufacturing the same
US4465458A (en) Apparatus for burning liquid fuel equipped with heating-type fuel vaporizer
JPS6240061B2 (en)
CN101343185B (en) High-strength insulating brick and preparation thereof
JPS6220443B2 (en)
US4595664A (en) Burner skeleton
US4518347A (en) Liquid fuel combustion apparatus
JP2001158659A (en) Lining material for molten aluminum bath
JPS5916814B2 (en) Kerosene vaporization catalyst
JP2005075697A (en) Microwave-absorbing exothermal ceramic
US5006498A (en) Artificial stone wick for a burner and processes for the preparation thereof
JPS6256784B2 (en)
JPS62170185A (en) Ceramic heater
JPS60207818A (en) Liquid fuel burner
JPS57105243A (en) Catalyst for catalytic combustion and preparation thereof
JPS6115365Y2 (en)
JPS6131765B2 (en)
JPS6251226B2 (en)
CA1150615A (en) Apparatus for burning liquid fuel equipped with heating-type fuel vaporizer
JPH02198632A (en) Catalyst
JPS6252621B2 (en)
JPH0132883B2 (en)
JPS6193307A (en) Heating element utilizing combustion catalyst
JP2724819B2 (en) Ceramic plate for vaporization
JPS6250721B2 (en)