JPS6193307A - Heating element utilizing combustion catalyst - Google Patents

Heating element utilizing combustion catalyst

Info

Publication number
JPS6193307A
JPS6193307A JP59214576A JP21457684A JPS6193307A JP S6193307 A JPS6193307 A JP S6193307A JP 59214576 A JP59214576 A JP 59214576A JP 21457684 A JP21457684 A JP 21457684A JP S6193307 A JPS6193307 A JP S6193307A
Authority
JP
Japan
Prior art keywords
combustion
heating element
catalyst
carrier
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59214576A
Other languages
Japanese (ja)
Inventor
Masahiko Nakajima
正彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakajima Dokosho Co Ltd
Original Assignee
Nakajima Dokosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakajima Dokosho Co Ltd filed Critical Nakajima Dokosho Co Ltd
Priority to JP59214576A priority Critical patent/JPS6193307A/en
Publication of JPS6193307A publication Critical patent/JPS6193307A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/18Radiant burners using catalysis for flameless combustion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To enable to obtain a relatively large calorific value to a shape while a combustion temperature is being kept comparatively low, by a method wherein a combustion catalyst layer is provided on the surface of a carrier made of porous ceramics and a wall surface of continuous voids, fuel gas and air are made to flow in naturally, and flameless combustion of them is made to perform on the combustion catalyst layer. CONSTITUTION:A large number of continuous voids 4 are existing in gaps among carrier particles 3, 3... of a cylindrical pipe wall 2 made of porous ceramics and catalyst content is carried on the carrier particles 3, 3.... Fuel gas flows in a flow path 1 along the direction of an arrow A and soaks and diffuses further in the direction of an arrow B through a natural inflaw to the voids to be formed among the carrier particles 3, 3.... Air is soaked and diffused in the direction of an arrow C to the voids 4 and an air-fuel gas mixture layer is formed on the surface of a combustion reaction sphere. When ignition is performed within the sphere L1, flameless combustion through the catalyst is performed and exhaust gas is discharged in the direction of an arrow D or through the pipe wall 2. A combustion temperature does not become so high as compared with that obtainable when mixing is made to perform forcibly, life of the catalyst is improved, an area of the reaction sphere per volume of an element is increased and a large calorific value can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃焼触媒を用いた加熱用素子に係り、特に比較
的小型の形状の加熱装置に組込むのに適した前記加熱用
素子装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a heating element using a combustion catalyst, and particularly to the heating element device suitable for being incorporated into a relatively small-sized heating device.

(従来技術の問題点) 触媒を用いた加熱または燃焼装置は従来から知られてお
り、この目的のために種々の燃焼触媒が提案され実施さ
れている。このよう・な触媒はたとえば産業排気ガスや
自動車排気ガス等の浄化のための二次燃焼用として広く
用いられており、また無炎燃焼の形態を利用して古くか
ら触媒カイロ等にも使用されである。
(Problems with the Prior Art) Heating or combustion devices using catalysts have been known for a long time, and various combustion catalysts have been proposed and implemented for this purpose. Such catalysts are widely used for secondary combustion to purify industrial exhaust gas, automobile exhaust gas, etc., and have also been used in catalytic body warmers for a long time due to their flameless combustion. It is.

さらに最近ではLS1.超LSI等精花電子部品の加工
に際して、被加工部に放電や誘電による損傷を与える懸
念のある従来の電気ハンダごてに代わるものとしてガス
加熱方式のハンダごてが見直されており、そのために用
いられる燃焼触媒も種々提案されている。ところで、こ
のようなガスハンダごてではこて先(チップ)に熱加工
に必要な温度を伝達するために燃焼温度を高温にするこ
とが必要である。このため燃料ガスに空気を強制的に取
りこませて燃焼させる試みがなされているが、その際の
燃焼触媒の素子温度は局部的には約1300℃近くの高
温に達っすることが多い。
More recently, LS1. When processing delicate electronic components such as VLSIs, gas-heated soldering irons are being reconsidered as an alternative to conventional electric soldering irons, which have the risk of damaging the workpiece due to electrical discharge or dielectricity. Various combustion catalysts have also been proposed. By the way, in such a gas soldering iron, it is necessary to raise the combustion temperature to a high temperature in order to transmit the temperature necessary for heat processing to the iron tip. For this reason, attempts have been made to forcibly introduce air into the fuel gas for combustion, but in this case the temperature of the combustion catalyst element often locally reaches a high temperature of approximately 1300°C.

しかし、現在知られている実用的な燃焼触媒の中で約1
000℃以上の高温に長時間耐えられるものはほとんど
なく、たとえば自動車排気ガス触媒として用いられてい
るコージェライト系のセラミック担体は約800〜to
oo℃で、また白金カイロの触媒担体としての石綿やガ
ラスせん維は1000℃付近でいずれも融解もしくは破
損し、かつ担持された触媒成分が担体中に浸透してその
活性を失なってしまう。
However, among the currently known practical combustion catalysts, about 1
There are few materials that can withstand high temperatures of over 1,000°C for long periods of time; for example, cordierite ceramic carriers used as automobile exhaust gas catalysts have a temperature of about 800°C or higher.
oo°C, and asbestos and glass fibers as catalyst carriers for platinum body warmers melt or break at around 1000°C, and the supported catalyst components permeate into the carrier and lose their activity.

本発明者はこのような高温に耐えるものとしてアルミナ
系のセラミック担体に白金族系(Pt−Rh)の金属触
媒を担持させた加熱用素子を用いる装置を先に提案した
(特願昭57−219498号)。
The present inventor had previously proposed a device that uses a heating element in which a platinum group (Pt-Rh) metal catalyst is supported on an alumina ceramic carrier as a device that can withstand such high temperatures (Japanese Patent Application No. 1983-1999). No. 219498).

この加熱用素子をたとえばガスハンダごての加熱チップ
等に用いると触媒寿命が従来よりも大きく改善されしか
もすぐれた機械的および熱的強度を得ることができる。
When this heating element is used, for example, as a heating tip of a gas soldering iron, the life of the catalyst is greatly improved compared to the conventional one, and excellent mechanical and thermal strength can be obtained.

しかし、この改善された加熱用素子でも使用温度条件に
よってはその触媒寿命か実質上なお60〜80時間程度
のものであり、実用ヒ改良の余地が残されている。この
場合、燃料ガス(および空気)の流量を制御すれば発熱
温度をおさえることがある程度可能になる。しかし、担
体表面上に形成される触媒の燃焼反応領域の面積は一定
で限られているので、ガス流量を減少させればチップに
伝達される熱加工に必要な熱量も必然的に低下すること
になり、流量調節による適正な温度制御は実際上盛らず
しも容易ではない。
However, even with this improved heating element, the catalyst life is still only about 60 to 80 hours depending on the operating temperature conditions, and there is still room for practical improvement. In this case, controlling the flow rate of the fuel gas (and air) makes it possible to suppress the exothermic temperature to some extent. However, since the area of the combustion reaction region of the catalyst formed on the carrier surface is constant and limited, reducing the gas flow rate will inevitably reduce the amount of heat required for thermal processing transferred to the chip. Therefore, proper temperature control by adjusting the flow rate is actually not easy.

さらに最近のLSI、超LSI等の電子部分の加工に用
いられるハンダごてでは、精密な加工作業の負担になら
ないようにハンダごての小型化、軽量化が不可欠になっ
ており、先端部の触媒素子部分についてはミリオーダの
径(約2■φ外径、0.8■内径)のものがしばしば要
求される。
Furthermore, with the soldering irons used to process electronic components such as recent LSIs and VLSIs, it has become essential to make the soldering irons smaller and lighter so as not to burden the precision processing work. The catalyst element portion is often required to have a diameter on the order of a millimeter (approximately 2 mm outer diameter, 0.8 mm inner diameter).

このような条件に合致するようにガスハンダごてを設計
する場合には、加熱用素子の発熱量自体が極めて小さく
なる上に熱の外部への放散、伝達等による損失が相対的
に増大してチップ先端で利用できる有効熱量が著しく低
下し流量によるチー。
When designing a gas soldering iron to meet these conditions, the amount of heat generated by the heating element itself will be extremely small, and losses due to heat dissipation and transmission to the outside will be relatively increased. The effective amount of heat available at the tip tip is significantly reduced due to flow rate.

プの温度制御、が極めて不安定なものとなる。したがっ
て、所要の加工温度を得るためには素子側での燃焼温度
をある程度高くすることが不可欠になるが、これは必然
的に高温による触媒寿命の低下およびそれに伴なう素子
の煩繁な交換を招くことになり、連続的な生産ライン中
でのガスハンダごての使用を妨げる一因となっていた。
temperature control becomes extremely unstable. Therefore, in order to obtain the required processing temperature, it is essential to raise the combustion temperature on the element side to a certain degree, but this inevitably reduces the catalyst life due to the high temperature and requires complicated element replacement. This is one of the reasons that prevents the use of gas soldering irons in continuous production lines.

さらに、このような高温燃焼のためには前記のように燃
焼用の空気を充分に燃料ガス中に混合するためにエゼク
タ等の機構が必要になり、また精密な流量制御弁の設置
や制御のための高度の熟練が要求されるので、小型形状
の加熱装置の構造が複雑化しかつその操作が容易ではな
りかた。
Furthermore, such high-temperature combustion requires a mechanism such as an ejector to sufficiently mix combustion air into the fuel gas, as described above, and requires the installation and control of precise flow control valves. Since a high degree of skill is required for the heating, the structure of the small-sized heating device becomes complicated and its operation becomes difficult.

(発明の目的) 本発明の目的は燃焼温度を比較的低く保持しながらしか
も形状に比較して相対的に大きな発熱量を得ることので
きる燃焼触媒を用いた加熱用素子を提供することにある
(Object of the Invention) An object of the present invention is to provide a heating element using a combustion catalyst that can maintain a relatively low combustion temperature while also obtaining a relatively large calorific value compared to its shape. .

(発明の概要) 前記の目的は通気性を有する多孔質セラミックの担体と
該担体の表面上および内部の連続気孔の壁面上に担持さ
れた燃焼用触媒層とからなり、前記担体の連続気孔に対
して燃料ガスおよび空気を夫々常圧で自然流入させ相互
に拡散および混合させて前記触媒層上で無炎燃焼させる
ようにしたことを特徴とする燃焼触媒を用いた加熱用素
子によって達成される。
(Summary of the Invention) The object of the invention is to consist of a porous ceramic carrier having air permeability and a combustion catalyst layer supported on the surface of the carrier and on the walls of continuous pores in the carrier. On the other hand, this is achieved by a heating element using a combustion catalyst, characterized in that fuel gas and air are allowed to naturally flow in each at normal pressure, and are mutually diffused and mixed to cause flameless combustion on the catalyst layer. .

以下本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

(発明の構成) 本発明の加熱用素子に用いられる通気性を有する多孔質
セラミックの担体としてはアルミナならびにアルミナを
主成分としてこれにシリカを含む組成のものが好ましく
、具体的にはたとえばアルミナ、ムライト、アルミナム
ライトおよびムライトジルコン等のアルミナ系のセラミ
ツが用いられる。
(Structure of the Invention) The porous ceramic carrier having air permeability used in the heating element of the present invention is preferably alumina or a carrier having a composition mainly composed of alumina and containing silica. Specifically, for example, alumina, Alumina-based ceramics such as mullite, aluminumite, and mullite-zircon are used.

本発明においてはこのセラミック担体が通気性を有する
多孔質のものであることが必須の条件である。一般にセ
ラミック担体の気孔率は担体焼成時の温度および結合剤
の添加埴によって調節することができる。焼成温度(1
000℃〜700℃)を低くするほど気孔率は増大し燃
焼温度を上昇させるにつれてセラミック組織が緻密化し
て気孔率が減少する。さらに、セラミ−7り燃焼時には
PVA、CMC1でん粉等の結合剤が用いられるが、そ
の使用若を増大させるほど焼成後のセラミック中の連続
気孔の面積が増大する。また、たとえばセラミックフィ
ルタの製造技術において知られているように、特定メツ
シュの有機可燃物を混入して焼成時に消失させることに
より気孔サイズを制御することも可能である0本発明の
加熱用素子に用いる多孔質セラミックとしては燃料ガス
および空気が常圧で容易に流出入できる程度の気孔率を
有していれば良く、かかる気孔率は実際的には焼結セラ
ミック体の吸水率に換算して決定することができる。
In the present invention, it is essential that the ceramic carrier is porous and has air permeability. Generally, the porosity of a ceramic carrier can be adjusted by adjusting the temperature during firing of the carrier and the addition of a binder. Firing temperature (1
000° C. to 700° C.), the porosity increases, and as the combustion temperature increases, the ceramic structure becomes denser and the porosity decreases. Furthermore, binders such as PVA and CMC1 starch are used when burning ceramics, and the more they are used, the more the area of continuous pores in the fired ceramic increases. Furthermore, as is known in the art of manufacturing ceramic filters, it is also possible to control the pore size by incorporating a specific mesh of organic combustible material and dissipating it during firing. The porous ceramic used only needs to have a porosity that allows fuel gas and air to easily flow in and out at normal pressure, and in practice, such porosity is calculated by converting it into the water absorption rate of the sintered ceramic body. can be determined.

本発明においては前記吸水率が8〜20マ2の範囲にあ
ることが好ましい。吸水率が8%以下では後述するガス
および空気の担体中への自然流入が不充分となり、一方
20%以上では担体の機械的および熱的強度が損なわれ
るので好ましくない。
In the present invention, the water absorption rate is preferably in the range of 8 to 20 m2. If the water absorption rate is less than 8%, the natural flow of gas and air into the carrier, which will be described later, will be insufficient, while if it is more than 20%, the mechanical and thermal strength of the carrier will be impaired, which is not preferable.

また本発明の加熱用素子においてはその熱伝導率を0.
003〜0.006 cal/cm/sec℃とするこ
とが好ましい。 0.006 cal/cm/sec”
0以上であると素子点火時の着火点の熱が容易に奪われ
て反応開始温度(約180℃)に達する時間が長くなり
、一方、0.003 cal/am/sec’o以下の
素子はその製造が困難でありかつ機械的強度が低下する
。担体の熱伝導率はほぼ気孔率に反比例するので、製造
条件を気孔率について上に述べた条件と見合せながら調
節することによって好ましい値が得られる。
Furthermore, the heating element of the present invention has a thermal conductivity of 0.
It is preferable to set it as 003-0.006 cal/cm/sec degreeC. 0.006 cal/cm/sec”
If it is 0 or more, the heat at the ignition point when the element is ignited is easily taken away, and the time to reach the reaction start temperature (approximately 180°C) becomes longer. It is difficult to manufacture and has low mechanical strength. Since the thermal conductivity of the carrier is approximately inversely proportional to the porosity, a preferable value can be obtained by adjusting the manufacturing conditions while taking into consideration the conditions described above regarding the porosity.

セラミック担体については前記特願昭57−21949
8号に記載されているように、触媒成分の半融等を防止
するために塩化アルミニウムの含浸、焼成によって表面
や気孔壁にγ−アルミナの被膜を予め形成しておくこと
が好ましい。
Regarding the ceramic carrier, the above-mentioned Japanese Patent Application No. 57-21949
As described in No. 8, it is preferable to form a γ-alumina coating on the surface and pore walls in advance by impregnating with aluminum chloride and firing to prevent the catalyst components from melting or the like.

本発明の加熱用素子においては、前記多孔質セラミック
の担体に対して燃焼触媒の層が担体の表面上ならびにそ
の内部の連続気孔の壁面上に通常の含浸、焼成等によっ
て担持される。この触媒としては白金を主成分としロジ
ウム、ルテニウム等のその他の白金族金属を添加した組
成のものが好ましい、特に点火から反応開始までの時間
を短縮する上では白金80〜98:ロジウム2〜10(
重量%)の組成の触媒が好ましい。
In the heating element of the present invention, a layer of a combustion catalyst is supported on the surface of the porous ceramic carrier as well as on the walls of continuous pores within the carrier by conventional impregnation, firing, etc. The catalyst preferably has a composition containing platinum as the main component and other platinum group metals such as rhodium and ruthenium.In particular, in order to shorten the time from ignition to the start of the reaction, platinum 80-98: rhodium 2-10 (
% by weight) is preferred.

前記白金族系触媒は基本的には前記特願昭57−219
498号に記載された方法により、調製することができ
る。
The above-mentioned platinum group catalyst is basically disclosed in the above-mentioned Japanese Patent Application No. 57-219.
It can be prepared by the method described in No. 498.

本発明における前記触媒成分を担持させた多孔質のセラ
ミックの担体は、燃焼ガスおよび空気を夫々常圧で前記
担体の連続気孔中に対して自然流入させ相ゲに拡散およ
び混合させて触媒層l−で無炎燃焼させるような加熱用
素子の形態として用いられる。このような形態としては
加熱用素子を用いる装置の具体的な構造にしたがって、
たとえば実施例で示すような中空筒状、平板状等の任意
の形状が可能である。
In the present invention, the porous ceramic carrier supporting the catalyst component is prepared by allowing combustion gas and air to naturally flow into the continuous pores of the carrier at normal pressure, and to phase them and diffuse and mix them into the catalyst layer. - It is used as a heating element for flameless combustion. Depending on the specific structure of the device that uses the heating element, such a form may include:
For example, any shape such as a hollow cylinder or a flat plate as shown in the embodiments is possible.

(発明の作用) 第1図は中空円筒状に形成された本発明の加熱用素子の
縦断面を示すモデル図である。
(Function of the Invention) FIG. 1 is a model diagram showing a longitudinal section of a heating element of the present invention formed into a hollow cylindrical shape.

図中、加熱用素子は中心部に軸方向に沿って貫設された
ガス流路lを有する円筒状の多孔質セラミックの担体か
らなり、その筒壁2の内部の担体粒子3.3−−一−の
間隙には筒壁2の内表面から外表4面にかけて連続する
多数の微細な気孔4が存在する。筒壁2の内外表面なら
びに内部の担体粒子の表面には触媒成分が担持されて燃
焼反応領域が形成されている。その他国中、5は加熱用
素子の支持部である。
In the figure, the heating element consists of a cylindrical porous ceramic carrier having a gas flow path 1 extending in the axial direction in the center, and carrier particles 3.3-- inside the cylindrical wall 2. A large number of fine pores 4 are present in the gap 1-, which are continuous from the inner surface to the outer surface 4 of the cylindrical wall 2. A combustion reaction region is formed by carrying a catalyst component on the inner and outer surfaces of the cylinder wall 2 and on the surface of the carrier particles inside. In other countries, 5 is the support part of the heating element.

:51図に示す担体において、燃料ガスが図中矢印A方
向に沿ってガス流路lに流入し、さらにここから筒壁2
の内部の担体粒子3.3−−−−の間に形成される気孔
4に対して自然流入によって矢印B方向に浸透、拡散す
る。一方担体の外部の空気は筒壁2の外表面から内部の
気孔4に対して同様にして矢印C方向に浸透、拡散し燃
焼反応領域の表面に燃料ガスとの混合層を形成する。こ
こで燃料ガスの濃度は筒壁2の軸方向に沿って示した領
域L1.でもっとも高く、以下領[L2、L3の順に低
下する。中央の領域L2では燃料ガスと空気とが適度な
比で混合され燃焼時にもっとも発熱反応が活発な領域で
ある。
:51 In the carrier shown in FIG.
It permeates and diffuses in the direction of arrow B by natural inflow into the pores 4 formed between the carrier particles 3.3----- inside the carrier particles. On the other hand, the air outside the carrier similarly permeates and diffuses in the direction of arrow C from the outer surface of the cylinder wall 2 to the inner pores 4, forming a mixed layer with the fuel gas on the surface of the combustion reaction region. Here, the concentration of fuel gas is determined in the region L1. shown along the axial direction of the cylinder wall 2. It is the highest, and decreases in the order of L2 and L3. In the central region L2, fuel gas and air are mixed at an appropriate ratio, and the exothermic reaction is most active during combustion.

ここで領域Llで点火を行なうと、まず領域L1で燃焼
反応が起りこれが漏次領域L2. L3に及んで触媒全
体が短時間で所定の燃焼動作状態となる。
When ignition is performed in the region Ll, a combustion reaction occurs first in the region L1, and this occurs in the reciprocal region L2. At L3, the entire catalyst becomes in a predetermined combustion operating state in a short period of time.

自然流入した燃料ガスおよび空気は常圧で筒壁内部の気
孔4の燃焼反応領域に拡散して触媒による無炎燃焼を行
ない、その排気ガス(HO、Go、、 )はガス流路1
から矢印り方向にまたは筒壁2を通して素子外部に排出
される。
The naturally flowing fuel gas and air diffuse into the combustion reaction area of the pores 4 inside the cylinder wall at normal pressure and undergo flameless combustion by the catalyst, and the exhaust gas (HO, Go, , ) is released into the gas flow path 1.
It is discharged to the outside of the element in the direction of the arrow or through the cylindrical wall 2.

ここで前記燃料ガス、空気および排気ガスの流出入につ
いては実際にはさらに複雑な態様が存在することが考え
られる。しかし1本発明者等の基本的な一つの実験によ
れば、円筒状の加熱用素子の両端に夫々液化ガスのボン
ベを連結して点火すると素子が直ちに赤熱されて無炎燃
焼を継続することが確認されている。この場合には、通
常のガスハンダごての場合のようなエゼクタによる空気
の積極的な吸込機構等は何等設けられていないので、燃
焼に必要なガスは全てボンベから自然蒸発したガスによ
り、また空気は素子周辺からの外気により夫々はぼ自然
圧力による連続気孔中への流入および相互の拡散、混合
によって得られたものとみられる。さらに、この実験で
は燃焼排気ガスの積極的な排出経路を設けていないので
燃料ガスが気孔中で燃焼されながら次第に排気ガスとな
り素子外表面から自然に流出するものと考えられる。こ
こで素子の外周面に高温の炎を近づけても何等有炎燃焼
が生じないので、燃焼ガスは多孔質セラミックの担体の
内部および表面における触媒の作用によってほとんど完
全に燃焼されていることが確認された。
Here, it is conceivable that more complicated aspects actually exist regarding the inflow and outflow of the fuel gas, air, and exhaust gas. However, according to one basic experiment conducted by the present inventors, when liquefied gas cylinders are connected to both ends of a cylindrical heating element and ignited, the element immediately becomes red hot and flameless combustion continues. has been confirmed. In this case, unlike the case of a normal gas soldering iron, there is no active suction mechanism for air using an ejector, so all the gas necessary for combustion comes from naturally evaporated gas from the cylinder and from air. It seems that the external air from around the element flows into the continuous pores due to almost natural pressure, and is obtained by mutual diffusion and mixing. Furthermore, in this experiment, no active exhaust path was provided for the combustion exhaust gas, so it is thought that the fuel gas was burned in the pores and gradually turned into exhaust gas and naturally flowed out from the outer surface of the element. Here, even when a high-temperature flame was brought close to the outer peripheral surface of the element, no flaming combustion occurred, confirming that the combustion gas was almost completely combusted by the action of the catalyst inside and on the surface of the porous ceramic carrier. It was done.

(発明の効果) 本発明の加熱用素子の場合では、燃料ガスおよび空気は
多孔質セラミックの担体を用いた加熱用素子に対して夫
々常圧で自然流入されて互いに拡散混合され、この状態
で触媒作用下に燃焼される。したがって、反応領域での
燃焼温度は従来のガスハンダごて等のように予め充分な
量の空気を強制的に混合させる場合はど高くならず、触
媒の寿命を大幅に向上させることができる。
(Effects of the Invention) In the case of the heating element of the present invention, fuel gas and air are naturally introduced into the heating element using a porous ceramic carrier at normal pressure, and are diffused and mixed with each other. Burned under catalytic action. Therefore, if a sufficient amount of air is forcibly mixed in advance, as in a conventional gas soldering iron, the combustion temperature in the reaction region will not rise too high, and the life of the catalyst can be greatly improved.

特にこの場合、反応領域は円筒状担体の筒壁2の内外表
面のみならず、筒壁2の内部の連続気孔の壁面(担体粒
子3の表面)にも形成されているので、素子体植当りの
反応領域の面積が茗し増大されて大きな発熱量を得るこ
とができ、換汀すれば所要の発、!S量を得るための担
体の寸法を著しく減少させることができる。このように
、本発明の加熱用素子においては、相体を多孔質構造と
したことにより、全体として大きな発熱量が得られるの
で、加熱加工部、たとえばチップ先端に約200〜40
0℃程度のハンダ付温度で所要の熱量を伝達するための
に燃焼温度をそれほど高くする必要がなく、触媒寿命を
著しく増大させることができる。
Particularly in this case, the reaction region is formed not only on the inner and outer surfaces of the cylindrical wall 2 of the cylindrical carrier but also on the wall surface of the continuous pores inside the cylindrical wall 2 (the surface of the carrier particles 3). By increasing the area of the reaction region, a large amount of heat can be obtained, and by exchanging it, the required amount of heat can be obtained. The size of the support to obtain the S content can be significantly reduced. As described above, in the heating element of the present invention, a large amount of heat is obtained as a whole due to the porous structure of the phase body.
At a soldering temperature of about 0° C., the combustion temperature does not have to be very high to transfer the required amount of heat, and the catalyst life can be significantly increased.

さらに、この加熱用素子に供給する燃料ガスおよび空気
は前記のように常圧で自然流入により与えられるので、
従来のようなエゼクタ等の空気吸込機構の必要がなく構
造が極めて簡略化されそれによって加熱装置全体として
の小型化が容易になる。
Furthermore, since the fuel gas and air supplied to this heating element are provided by natural inflow at normal pressure as described above,
There is no need for an air suction mechanism such as an ejector as in the prior art, and the structure is extremely simplified, thereby making it easier to downsize the heating device as a whole.

また、本発明の加熱用素子は素子自体の発熱量が従来の
表面燃焼型の素子よりも格段に大きいため、流量調節に
より温度制御を行なう際にも流量変化がこて先の温度変
化に及ぼす影響はそれほど思念ではなく安定な温度制御
を容易に行なうことができる。
In addition, since the heating element of the present invention has a much larger calorific value than the conventional surface combustion type element, changes in the flow rate affect the temperature change of the tip even when controlling the temperature by adjusting the flow rate. The influence is not so deliberate, and stable temperature control can be easily performed.

以下、本発明の加熱用素子ならびにかかる加熱用素子を
適用する具体的な加熱装置についてさらに説明する。
Hereinafter, the heating element of the present invention and a specific heating device to which such a heating element is applied will be further explained.

加熱用素子の製造例 ムライト系セラミック(3Al O,2S102)粉末
に対して結合剤としてのCMCを約0.1 w%混入し
た原料を温度900℃で3時間焼成して外径?■、内径
0.8■、長さ50mmの寸法で吸水率16%、見掛比
重2.8、熱伝導率0.003 cal/cm/sec
”cの中空円筒状の多孔質セラミックの担体をiA製し
た。この担体に5z塩化アルミニウム水溶液を減圧下に
含浸させた後、5tアンモニア水溶液に浸し、流水で水
溶性の塩類を除去してから90℃で3時間、さらに11
5℃で2時間乾燥させ、次いで800℃で3時間焼成し
て担体筒壁の内外表面ならびに内部の気孔面にγ−アル
ミナの被膜を形成した。この担体に塩化白金酸の1z水
溶液中に塩化ロジウムを1〜2z含有させた溶液を含浸
させて自然乾燥した後、水素還元炉で200℃〜300
℃に昇温させて担体の筒壁の表面および内部の気孔面に
白金触媒を担持させた。
Example of manufacturing a heating element A raw material prepared by mixing approximately 0.1 w% of CMC as a binder with mullite ceramic (3Al O, 2S102) powder was fired at a temperature of 900°C for 3 hours to reduce the outer diameter. ■, inner diameter 0.8■, length 50mm, water absorption rate 16%, apparent specific gravity 2.8, thermal conductivity 0.003 cal/cm/sec
A hollow cylindrical porous ceramic carrier of "c" was manufactured by iA. This carrier was impregnated with a 5z aluminum chloride aqueous solution under reduced pressure, then immersed in a 5t ammonia aqueous solution, and water-soluble salts were removed with running water. 3 hours at 90℃, then 11
It was dried at 5° C. for 2 hours, and then fired at 800° C. for 3 hours to form a γ-alumina coating on the inner and outer surfaces of the carrier cylinder wall and on the internal pore surfaces. This carrier was impregnated with a solution containing 1-2z of rhodium chloride in a 1z aqueous solution of chloroplatinic acid, air-dried, and heated at 200°C to 300°C in a hydrogen reduction furnace.
The temperature was raised to 0.degree. C. to support the platinum catalyst on the surface of the cylindrical wall and the internal pores of the carrier.

本発明の加熱用素子は比較的高い温度を必要とするガス
ハンダごて等の加熱装置に効果的に適用することができ
る他、燃焼が触媒燃焼に固有な無炎形態であることから
、取扱いの容易さと安全性とが要求される携帯用の加熱
ないしは保温器具の熱源としても好適に用いられる。
The heating element of the present invention can be effectively applied to heating devices such as gas soldering irons that require relatively high temperatures, and since combustion is a flameless type unique to catalytic combustion, it is difficult to handle. It is also suitably used as a heat source for portable heating or heat-retaining equipment that requires ease and safety.

例1 本発明の加熱用素子を液化ブタンガスを熱源とするガス
ハンダごての加熱に適用した例を第2図に示す。
Example 1 FIG. 2 shows an example in which the heating element of the present invention is applied to heating a gas soldering iron using liquefied butane gas as a heat source.

図中11は前記製造例によって形成された多孔質のムラ
イト系セラミックからなる中空円筒状の担体であり、支
持部材12等によって熱伝導率の高い材料からなる外筒
13中に収容固定されている。外筒13の外周面にはそ
の基部から先端部にかけて空気取込用のスリット14.
14−−−−一が、またチップ15に近い最先端部には
燃焼ガス排気用のスリット16、l[3−−−−一が夫
々穿設されている。外筒13の支持部材には液化ブタン
ガスのタンク(図示せず)からのガスを担体11のガス
流路に導入する導管17が嵌合されている。その他国中
、1Bは伝熱用リング19は点火用ヒータ、20は点火
スイッチである。
In the figure, reference numeral 11 denotes a hollow cylindrical carrier made of porous mullite ceramic formed according to the manufacturing example described above, and is housed and fixed in an outer cylinder 13 made of a material with high thermal conductivity by means of a support member 12 and the like. . The outer circumferential surface of the outer cylinder 13 is provided with a slit 14 for air intake from its base to its tip.
14--1, and slits 16 and 1[3--1 for exhausting combustion gas are formed at the most distal end near the chip 15, respectively. A conduit 17 that introduces gas from a liquefied butane gas tank (not shown) into the gas flow path of the carrier 11 is fitted into the support member of the outer cylinder 13 . In other countries, 1B is a heat transfer ring 19 for an ignition heater, and 20 is an ignition switch.

ブタンガスタンクのバルブ(図示せず)を開放してブタ
ンガスを導管17から担体11のガス流路に100mJ
L/分で流入させると、このガスは担体11の筒壁に沿
って流れこの間に常圧で内部の気孔に対して自然に流入
して拡散、浸透する。一方外筒13のスリット14.1
4−−−−一から空気が同様にして担体11内部の気孔
中に自然流入により拡散、浸透し燃焼反応領域−ヒでブ
タンガスと混合される(第1図参照)。
The valve of the butane gas tank (not shown) is opened and butane gas is introduced from the conduit 17 into the gas flow path of the carrier 11 at a rate of 100 mJ.
When flowing at a rate of L/min, this gas flows along the cylindrical wall of the carrier 11, during which time it naturally flows into the internal pores at normal pressure, and diffuses and permeates therein. On the other hand, the slit 14.1 of the outer cylinder 13
4--In the same way, air diffuses and permeates into the pores inside the carrier 11 by natural flow, and is mixed with butane gas in the combustion reaction region (see FIG. 1).

この状態でスイッチ20を閉じてヒータ19に通電加熱
すると、担体11のこの部分が加熱され約1〜3秒後に
ブタンガスとの混合気とが触媒燃焼反応を開始し加熱用
素子全体が約800℃の温度に加熱される。
In this state, when the switch 20 is closed and the heater 19 is heated, this part of the carrier 11 is heated, and after about 1 to 3 seconds, the mixture with the butane gas starts a catalytic combustion reaction, and the entire heating element reaches about 800°C. heated to a temperature of

この熱は良好な熱伝導率を有する担体11自体により、
そしてさらには担体11と外筒13との間に介在する伝
熱リング18により外筒13を通してこて先15に伝達
され、その温度を約300℃に保持する。
This heat is transferred by the carrier 11 itself, which has good thermal conductivity.
Furthermore, the heat is transmitted to the iron tip 15 through the outer cylinder 13 by the heat transfer ring 18 interposed between the carrier 11 and the outer cylinder 13, and the temperature is maintained at about 300°C.

本実施例のハンダごては約1000時間のJiI続使用
後にもその触媒作用に何等の低下も認められなっかだ。
The soldering iron of this example did not show any deterioration in its catalytic action even after continuous use of JiI for about 1000 hours.

尚、前記加熱用素子を従来のガスハンダごてと同様な空
気の強制混合方式で用いた場合の結果を比較のために示
す。
For comparison, the results obtained when the heating element was used in a forced air mixing method similar to a conventional gas soldering iron are shown.

液化ブタンガスタンクからエゼクタにより高圧で噴出さ
れるブタンガスに空気を強制的にとりこませた混合気を
触媒反応領域に流入させる形式の通常のハンダごてに本
発明の加熱用素子を取付けて使用した。ブタンガス流量
は100mJL/■inとし電気ヒータで点火したとこ
ろ発熱反応開始後間もなく触媒温度が1000〜130
0℃に達した。この状態で連続的に使用したところ、加
熱用素子は80時間程度で触媒機能を失ない反応が停止
した。この場合の触媒金属は半融化し、又は担体の孔壁
かも内部に浸透していることが認められた。
The heating element of the present invention was attached to a conventional soldering iron that allows a mixture of butane gas and air forced into it, which is ejected at high pressure from a liquefied butane gas tank by an ejector, to flow into a catalytic reaction area. The butane gas flow rate was 100 mJL/■in, and when ignited with an electric heater, the catalyst temperature rose to 1000-130 shortly after the exothermic reaction started.
The temperature reached 0°C. When used continuously in this state, the heating element did not lose its catalytic function and the reaction stopped after about 80 hours. In this case, it was observed that the catalyst metal was semi-melted or penetrated into the pore walls of the carrier.

例2 本発明の加熱用素子は比較的小型の形状で大きな発熱量
が得られ、しかもその寿命が長いので一般の加熱ないし
は保温装置の発熱体としても好適に用いることができる
Example 2 The heating element of the present invention has a relatively small size, can generate a large amount of heat, and has a long life, so it can be suitably used as a heating element for general heating or heat retention equipment.

第3図は前記実施例1で調整した加熱用素子を無炎加熱
型の調理用ガスコンロに組込んだ例を示す。図中、ガス
コンロのケーシング21の底部には熱源としての液化ブ
タンガスのポンベ22ガ内蔵され、ポンベからの液化ガ
スを供給バルブ23から供給パイプ24を介して上方の
加熱調理部に送るようにしである。加熱調理部は前記ケ
ーシング21の上面に設けられた支持用の枠体25とそ
の枠体25に支持された加熱用素子28とからなってい
る。加熱用素子26の点火は電池27を電源として点火
スイッチ2日により行なわれる。その他国中、29はケ
ーシング21の外面に取付けた供給バルブ23の開閉用
つまみであり、30はポンベ22の底面に設けた止めね
じ付キャップである。
FIG. 3 shows an example in which the heating element prepared in Example 1 is incorporated into a flameless heating type cooking gas stove. In the figure, a pump 22 of liquefied butane gas as a heat source is built into the bottom of a casing 21 of the gas stove, and the liquefied gas from the pump is sent from a supply valve 23 through a supply pipe 24 to the cooking section above. . The heating cooking section includes a supporting frame 25 provided on the upper surface of the casing 21 and a heating element 28 supported by the frame 25. The heating element 26 is ignited by turning the ignition switch 2 using the battery 27 as a power source. In other countries, 29 is a knob for opening and closing the supply valve 23 attached to the outer surface of the casing 21, and 30 is a cap with a set screw provided on the bottom of the pump 22.

第3図示の加熱用素子28はたとえば第4図に示すよう
にして多数の筒状素子31を夫々がほぼ同一の平面に配
列されるように枠体25に挿通固定し、隣接する各素子
31の開口両端部をフッ素系ゴム等の耐熱性ゴム管32
によって一つおきに順次接続することによって形成され
る。その他国中、33は前記触媒素子31の一部に付設
された点火用ヒータである。
The heating element 28 shown in FIG. 3 is constructed by inserting and fixing a large number of cylindrical elements 31 through the frame 25 so that they are arranged on substantially the same plane, as shown in FIG. Heat-resistant rubber tube 32 such as fluorine rubber is connected to both opening ends of
is formed by sequentially connecting every other one. In other countries, 33 is an ignition heater attached to a part of the catalyst element 31.

前記ガスコンロではポンベ22から気化した液化ブタン
ガスがバルブ23の開放によって加熱用素子26の内部
のガス供給通路にほぼ常圧で流入し素子26の多孔質セ
ラミックの4+i体の内部気孔を通して外方に拡散して
行く。一方、これにともなってケーシング21のL方か
らの空気が同様にして素子26の内部に拡散され、気孔
面に担持された触媒による反応領域上にブタンガスとの
混合層が形成される。
In the gas stove, liquefied butane gas vaporized from the pump 22 flows into the gas supply passage inside the heating element 26 at approximately normal pressure by opening the valve 23 and diffuses outward through the internal pores of the 4+i porous ceramic body of the element 26. I'll go. On the other hand, along with this, air from the L side of the casing 21 is similarly diffused into the inside of the element 26, and a mixed layer with butane gas is formed on the reaction region of the catalyst supported on the pore surface.

この状態でヒータ33に点火すると前記反応領域で触媒
による燃焼が開始されて加熱用素子26が順次全体にわ
たって赤熱され調理のための加熱が行なわれる。
When the heater 33 is ignited in this state, combustion by the catalyst is started in the reaction area, and the entire heating element 26 is sequentially heated to red heat for cooking.

本例のガスコンロでは触媒作用によりほとんど無炎状態
の燃焼がで行われるため、近年防災上通常のガスコンロ
の使用が規ル1されているような場所においても安全に
用いることができる。また、燃焼用の空気は単にケーシ
ングの上方等から自然流入によって供給されるので従来
のように空気混合量の調節04Mを設ける必要もなくそ
の操作も極めて簡単である。
Since the gas stove of this example performs almost flameless combustion due to the catalytic action, it can be used safely even in places where the use of ordinary gas stoves has recently become a regulation 1 for disaster prevention reasons. Further, since the air for combustion is simply supplied by natural inflow from above the casing, there is no need to provide an air mixing amount adjustment 04M as in the conventional case, and the operation thereof is extremely simple.

尚、本例では中空円筒状の加熱用素子が用いられている
が、燃料ガスが加熱用素子中で空気と拡散、混合される
形態であればその形状は筒状に限らず任意のものとする
こともできる。
Although a hollow cylindrical heating element is used in this example, the shape is not limited to the cylindrical shape but may be any shape as long as the fuel gas is diffused and mixed with air in the heating element. You can also.

たとえば第5図および第6図に小すように、ケーシング
34の上部の加熱調理部として格子状の支持用枠体35
の各格子枠に夫々方形板状の加熱用素子3B、36−−
−〜−を嵌合支持させ全体として一体化された平面状の
加熱板を形成してもよい。この場合ガスポンベ等から供
給される燃料ガスは第6図に示すようにケーシング34
中に設けられた通路37から連通孔38を介して加熱板
下方に設けられた供給室33に流入し、ここから加熱用
素子36の内部に上方へ常圧で浸透、拡散していく、−
力添焼用の外気はケーシング34の上方から加熱用素子
3Bの内部に浸透、拡散して燃料ガスと混合され、この
状態で触媒による無炎燃焼が行なわれる。
For example, as shown in FIG. 5 and FIG.
Rectangular plate-shaped heating elements 3B, 36-- are provided in each lattice frame of
- to - may be fitted and supported to form an integrated planar heating plate as a whole. In this case, the fuel gas supplied from the gas pump etc. is supplied to the casing 34 as shown in FIG.
It flows from a passage 37 provided therein through a communication hole 38 into a supply chamber 33 provided below the heating plate, and from there permeates and diffuses upward into the heating element 36 at normal pressure.
The outside air for force preheating permeates and diffuses into the heating element 3B from above the casing 34 and is mixed with the fuel gas, and in this state flameless combustion is performed by the catalyst.

例3 第7図は本発明の加熱用素子を魔法ビンに組込んで随時
加温することによりその保温効果を一層確実なものとし
た一例を示す。
Example 3 FIG. 7 shows an example in which the heating element of the present invention is incorporated into a thermos flask and heated at any time to further ensure its heat retention effect.

図中、41は魔法ビンのケーシング、42は液体収容容
器、43はそのキャップを示す。ケーシング41の下部
の空間には液化ガスポンベ44.ガス供給バルブ45、
供給パイプ46、加熱用素子等からなる加熱ないしは保
温部47、電池48、点火スイッチ49等が内臓されて
なり、それらの構成およびa 11は基本的には例1の
場合と同様である。またケーシング41の下部の周壁に
は外気地這および排気用の透口50が設けられている。
In the figure, 41 is a casing of a thermos bottle, 42 is a liquid container, and 43 is a cap thereof. A liquefied gas pump 44 is provided in the space below the casing 41. gas supply valve 45,
A supply pipe 46, a heating or heat retaining section 47 consisting of a heating element, a battery 48, an ignition switch 49, etc. are built-in, and their configuration and a 11 are basically the same as in Example 1. Further, a through hole 50 for outside air and exhaust is provided in the lower peripheral wall of the casing 41.

乳児用ミルク等を旅行中など比較的長時間にわたって一
定温度に維持することが必要な際には、ミルクを魔法ビ
ンに入れて携帯する場合が多い。
When it is necessary to maintain infant milk or the like at a constant temperature for a relatively long period of time, such as when traveling, the milk is often carried in a thermos bottle.

このような場合、魔法ビンの保温効果のみでは不充分で
ありしばしば再加温が必要になる。本例では内蔵した加
熱用素子を随時作動させて液体収容容器43をその下面
から加熱することができる。また加熱用素子にバイメタ
ルを旧設しその感温作動部によってボンベのバルブの開
閉を制御するようにしておけば魔法ビン内部を自動的に
常に定温に保持することもできる。さらに、本実施例で
この程度の加温に要するガス量を供給するボンベはたと
えば通常のガスライタのボンベ程度のものでも充分であ
り、その取扱いは極めて安全かつ容易である。
In such cases, the heat retention effect of the thermos bottle alone is insufficient and rewarming is often required. In this example, the built-in heating element can be activated at any time to heat the liquid storage container 43 from its lower surface. Furthermore, if a bimetal is used as the heating element and its temperature-sensitive operating part controls the opening and closing of the valve of the cylinder, the inside of the thermos bottle can be automatically maintained at a constant temperature at all times. Furthermore, in this embodiment, a cylinder for supplying the amount of gas required for heating to this extent may be a cylinder for a normal gas lighter, and its handling is extremely safe and easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示すためのモデル図、第2図は
本発明を適用したガスハンダごての概略縦断面図、第3
図は本発明の加熱用素子の別の適用例を示す概略縦断面
図、第4図は前記適用例に用いる加熱用素子の平面図、
第5図前記加熱用素子の別の形態を示すf面図、第6図
は前記第5図のVI−VI断面図、第7図は本発明の加
熱用素子のさらに別の適用例を示す概略8断面図である
。 ■・・・ガス論路     2・・・筒壁3・・・担体
粒F4・・・気孔 11・・・但体       13・・・外筒14.1
6・・・スリット   15・・・チップ17・・・導
管       18・・・伝熱用リング19・・・点
火用ヒータ
Fig. 1 is a model diagram showing the principle of the present invention, Fig. 2 is a schematic longitudinal sectional view of a gas soldering iron to which the present invention is applied, and Fig. 3 is a schematic longitudinal sectional view of a gas soldering iron to which the present invention is applied.
The figure is a schematic vertical cross-sectional view showing another application example of the heating element of the present invention, FIG. 4 is a plan view of the heating element used in the application example,
FIG. 5 is an f-plane view showing another form of the heating element, FIG. 6 is a VI-VI sectional view of FIG. 5, and FIG. 7 is a further example of application of the heating element of the present invention. FIG. 8 is a schematic cross-sectional view. ■... Gas flow path 2... Cylinder wall 3... Carrier grains F4... Pores 11... However, body 13... Outer cylinder 14.1
6... Slit 15... Chip 17... Conduit 18... Heat transfer ring 19... Ignition heater

Claims (1)

【特許請求の範囲】 1、通気性を有する多孔質セラミックの担体と該担体の
表面上および内部の連続気孔の壁面上に担持された燃焼
触媒層とからなり、前記担体の連続気孔に対して燃料ガ
スおよび空気を夫々常圧で自然流入させ相互に拡散およ
び混合させて前記触媒層上で無炎燃焼させるようにした
ことを特徴とする燃焼用触媒を用いた加熱用素子。 2、前記多孔質セラミックの気孔率が吸水率に換算して
8〜20%である前記特許請求の範囲第1項記載の加熱
用素子。 3、前記多孔質セラミックがアルミナ系セラミックであ
り、前記燃焼触媒が白金族系の金属触媒である前記特許
請求の範囲第1項記載の加熱用素子。 4、前記燃料ガスが液化ガス源から供給される炭化水素
ガスである前記特許請求の範囲第1項記載の加熱用素子
。 5、前記多孔質セラミックの熱伝導率が0.003〜0
.006cal/cm/sec℃である前記特許請求の
範囲第1項記載の加熱用素子。
[Claims] 1. Consisting of a porous ceramic carrier having air permeability and a combustion catalyst layer supported on the surface of the carrier and on the walls of continuous pores in the carrier, 1. A heating element using a combustion catalyst, characterized in that fuel gas and air are allowed to naturally flow in each other at normal pressure, and are mutually diffused and mixed to cause flameless combustion on the catalyst layer. 2. The heating element according to claim 1, wherein the porous ceramic has a porosity of 8 to 20% in terms of water absorption. 3. The heating element according to claim 1, wherein the porous ceramic is an alumina ceramic, and the combustion catalyst is a platinum group metal catalyst. 4. The heating element according to claim 1, wherein the fuel gas is a hydrocarbon gas supplied from a liquefied gas source. 5. The porous ceramic has a thermal conductivity of 0.003 to 0.
.. 0.006 cal/cm/sec°C.
JP59214576A 1984-10-13 1984-10-13 Heating element utilizing combustion catalyst Pending JPS6193307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59214576A JPS6193307A (en) 1984-10-13 1984-10-13 Heating element utilizing combustion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214576A JPS6193307A (en) 1984-10-13 1984-10-13 Heating element utilizing combustion catalyst

Publications (1)

Publication Number Publication Date
JPS6193307A true JPS6193307A (en) 1986-05-12

Family

ID=16658000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214576A Pending JPS6193307A (en) 1984-10-13 1984-10-13 Heating element utilizing combustion catalyst

Country Status (1)

Country Link
JP (1) JPS6193307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622587A2 (en) * 1992-04-30 1994-11-02 Poretti-Gaggini Sa Method for burning gases and combustion chamber for carrying out this method
WO1995007438A1 (en) * 1993-09-06 1995-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catalytic burner
JP2008039254A (en) * 2006-08-03 2008-02-21 Gifu Univ Micro-combustor and micro power generator
CN103994437A (en) * 2014-04-05 2014-08-20 沈阳工程学院 Back heating type bipyramid oppositely-jetting flame porous medium combustor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398527A (en) * 1977-02-08 1978-08-29 Matsushita Electric Ind Co Ltd Combustion apparatus of liquid fuel
JPS5414331A (en) * 1977-07-05 1979-02-02 Automobile Foundry Method of casting providing pouring basin close to thin walled region
JPS54142191A (en) * 1978-04-25 1979-11-06 Riyoozu De Atsupurikaashiyon K Catalysis mass for heterogeneous catalysis reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398527A (en) * 1977-02-08 1978-08-29 Matsushita Electric Ind Co Ltd Combustion apparatus of liquid fuel
JPS5414331A (en) * 1977-07-05 1979-02-02 Automobile Foundry Method of casting providing pouring basin close to thin walled region
JPS54142191A (en) * 1978-04-25 1979-11-06 Riyoozu De Atsupurikaashiyon K Catalysis mass for heterogeneous catalysis reaction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622587A2 (en) * 1992-04-30 1994-11-02 Poretti-Gaggini Sa Method for burning gases and combustion chamber for carrying out this method
EP0622587A3 (en) * 1992-04-30 1995-04-05 Poretti Gaggini Sa Method for burning gases and combustion chamber for carrying out this method.
WO1995007438A1 (en) * 1993-09-06 1995-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catalytic burner
US5810577A (en) * 1993-09-06 1998-09-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Catalytic burner
JP2008039254A (en) * 2006-08-03 2008-02-21 Gifu Univ Micro-combustor and micro power generator
CN103994437A (en) * 2014-04-05 2014-08-20 沈阳工程学院 Back heating type bipyramid oppositely-jetting flame porous medium combustor
CN103994437B (en) * 2014-04-05 2016-03-02 沈阳工程学院 Back-heating type bicone flames in opposing direction porous media combustor

Similar Documents

Publication Publication Date Title
US6634864B1 (en) High fluid flow and pressure in a capillary pump for vaporization of liquid
US3912443A (en) Radiant gas burners
US4900245A (en) Infrared heater for fluid immersion apparatus
US20080090188A1 (en) Catalytic Burner
JPS6193307A (en) Heating element utilizing combustion catalyst
JPS6312225B2 (en)
US5352114A (en) Catalytic burning apparatus and catalytic burning method
JPH088114B2 (en) Fuel cell anode waste gas combustion method
JP3672601B2 (en) Catalytic combustion method
JPS58124544A (en) Catalyst for combustion
CN2901073Y (en) Waste gasoline gasifier
CN201273630Y (en) Catalysis combustor
JPS58136905A (en) Burner
JPS6080015A (en) Gas burner of infrared ray radiation type
JPH01169222A (en) Catalytic burner
JPS6260605B2 (en)
JPS60207818A (en) Liquid fuel burner
JPH0579220U (en) Heat generating device and warmer using the same
JPS59109711A (en) Heater employing liquefied gas as heat source
JPH09324903A (en) Evaporating element
JPH11169709A (en) Combustion catalyst and catalyst combusting device
JPH0355409A (en) Catalyst combustion device
JPS6026206A (en) Liquid fuel catalyst burner
JPS602812A (en) Liquid fuel combustion device
JPH0612339Y2 (en) Catalytic combustion stove