JPS62202972A - Air-cooled absorption type water chiller and heater - Google Patents

Air-cooled absorption type water chiller and heater

Info

Publication number
JPS62202972A
JPS62202972A JP61041781A JP4178186A JPS62202972A JP S62202972 A JPS62202972 A JP S62202972A JP 61041781 A JP61041781 A JP 61041781A JP 4178186 A JP4178186 A JP 4178186A JP S62202972 A JPS62202972 A JP S62202972A
Authority
JP
Japan
Prior art keywords
absorption
air
liquid
absorption liquid
absorption process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61041781A
Other languages
Japanese (ja)
Other versions
JPH0721364B2 (en
Inventor
大内 富久
河野 恭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4178186A priority Critical patent/JPH0721364B2/en
Priority to US07/017,559 priority patent/US4748830A/en
Priority to DE19873706072 priority patent/DE3706072A1/en
Priority to KR1019870001842A priority patent/KR930004388B1/en
Publication of JPS62202972A publication Critical patent/JPS62202972A/en
Publication of JPH0721364B2 publication Critical patent/JPH0721364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビル空調用冷熱源機器として利用される空冷
吸収式冷温水機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air-cooled absorption type water chiller/heater used as a cold/heat source device for building air conditioning.

〔従来の技術〕[Conventional technology]

従来の吸収式冷温水機は、特開昭59 125365号
公報に記載されているように、再生器からのi15い吸
収溶液を、吸収器を構成する垂直管の−に部に導き、各
垂直管内を流下させる一方、蒸発器からの冷媒蒸気を前
記垂直管の下部から供給して前記]1(直管内を流下す
る吸収溶液に吸収させて冷媒をより多く含んだ稀薄な吸
収溶液を生成する。
As described in Japanese Unexamined Patent Publication No. 125365/1983, a conventional absorption type water chiller/heater introduces an i15 i While flowing down the pipe, refrigerant vapor from the evaporator is supplied from the lower part of the vertical pipe to absorb it into the absorption solution flowing down the straight pipe to generate a dilute absorption solution containing more refrigerant. .

a薄な吸収溶液を生成する過程において発生する吸収熱
は、管壁およびフィンを介して+111記垂直管の管外
を通る冷却空気によって持ち去られる。
The absorbed heat generated in the process of producing a thin absorption solution is carried away by the cooling air that passes outside the vertical tube via the tube wall and fins.

また、特開昭50−50748号公報には、前記の吸収
過程を複数回繰り返して行なわせ、吸収溶液の流下距離
を長くすることが記載されている。
Further, Japanese Patent Application Laid-Open No. 50-50748 describes that the above-mentioned absorption process is repeated a plurality of times to lengthen the flow distance of the absorption solution.

〔発明が解決しよろとする問題点〕[Problems that the invention aims to solve]

しかし、 i’if者に開示の従来技術は、吸収過程を
多段階に行なわせることに関しては配慮されていない、
そのため、冷却に人気を用いる空冷式では。
However, the prior art disclosed to those who wish to i'if does not take into account the fact that the absorption process is carried out in multiple stages.
Therefore, air cooling is popular for cooling.

吸収溶液が垂直管を流下する間に、充分に冷却しきれな
くなり、吸収溶液の濃度とU度とを吸収冷凍サイクルを
形成する十で必要とするレベル以下にすることは健しい
While the absorption solution flows down the vertical tube, it will not be sufficiently cooled and it is advisable to reduce the concentration and U degree of the absorption solution below the level required to form an absorption refrigeration cycle.

また、後者に開i(iの従来技術は、各吸収過程におけ
る冷却空気11:に対して循環すべき吸収溶液の流量が
配慮されていない」−1吸収(社)内の吸収溶液の流れ
が直列的になっているため、各吸収過程における吸収溶
液のt’i環流h【は、吸収器に流れ込んだ犠とほぼ等
しく(吸収した冷媒蒸気の分だけ増える)、これだけの
循環量で吸収冷棟サイクルを形成するのに必要な′a度
リレベルよび温度レベルの吸収溶液を生成するには、吸
収過程の段数(実1(′f的な流下距離)を極端に増す
必要があり、後者に開示の多段吸収を空冷式吸収器に応
用しても実用に供し得るものを提供することは難しい。
In addition, the latter technology does not consider the flow rate of the absorption solution to be circulated with respect to the cooling air 11 in each absorption process. Because they are connected in series, the t'i return flow h[ of the absorbing solution in each absorption process is approximately equal to the sacrifice flowing into the absorber (increases by the amount of absorbed refrigerant vapor), and with this amount of circulation, absorption cooling can be achieved. In order to generate an absorption solution at the 'a degree relevel and temperature level required to form a ridge cycle, it is necessary to extremely increase the number of stages in the absorption process (actual 1 ('f flow distance)), and the latter Even if the disclosed multistage absorption is applied to an air-cooled absorber, it is difficult to provide one that can be put to practical use.

本発明の[1的は、少ない段数で実用に供し得る空冷吸
収器を有する空冷吸収式冷温水機を提供することにある
An object of the present invention is to provide an air-cooled absorption type water chiller/heater having an air-cooled absorber that can be put to practical use with a small number of stages.

〔問題点を解決するための手段〕[Means for solving problems]

吸収器は、複数の垂直管およびこれらの垂直管の下方に
位置し、各垂直管内と連絡されている吸収液溜め部を有
し、この吸収液溜め部は、前記j1・;直管外を通る冷
却空気の流れ方向に複数に区画されており、各吸収液溜
め部と、この溶液溜め部の]一方に位置する垂直管とか
らなる複数組の吸収過程が形成され、各吸収液溜め部の
吸収液を、前記冷却空気の下流側に位置する吸収過程か
ら上流側に位Vtする吸収過程に順次流す流路を有する
とともに前記散布装置は複数の吸収過程の少なくとも1
個の吸収過程に備えていることを特徴とする空冷吸収式
冷温水機。
The absorber has a plurality of vertical pipes and an absorption liquid reservoir located below these vertical pipes and communicating with the inside of each vertical pipe. It is divided into a plurality of sections in the flow direction of the cooling air passing therethrough, and a plurality of sets of absorption processes are formed, each consisting of an absorption liquid reservoir and a vertical pipe located on one side of this solution reservoir. The dispersion device has a flow path for sequentially flowing the absorption liquid from the absorption process located downstream of the cooling air to the absorption process located upstream Vt, and the dispersion device
An air-cooled absorption chiller/heater characterized by being equipped with an absorption process.

〔作用〕[Effect]

」−記の構成であるから、散布’3A置により吸収過程
の溶液溜め部の溶液をその上方に位置する垂直管に散布
し、これによって吸収過程の溶液循環軟を1発生器から
吸収器に流れ込んでくる吸収溶液の流量よりも多くして
いるので、吸収過程における吸収溶液の循環:改を、冷
却空気による冷却能力に応じた流量とすることができ1
通過する冷却空気の冷却能力で得られる最も稀薄な1l
I11度に近いレベルの吸収溶液を生成し、これを直ぐ
上流側に位置する吸収段階に順次導き、さらに吸収作用
を複数段階に行なわせ”〔いるので、少ない段数の吸収
過程により吸収冷凍サイクルの形成に必要なレベルの稀
薄な吸収溶液を得ることができる。
Since the configuration is as described above, the solution in the solution reservoir in the absorption process is sprayed onto the vertical pipe located above it by the spraying '3A position, thereby circulating the solution in the absorption process from the 1 generator to the absorber. Since the flow rate is higher than the flow rate of the inflowing absorption solution, the circulation of the absorption solution during the absorption process can be adjusted to a flow rate that corresponds to the cooling capacity of the cooling air.
The most dilute 1 liter that can be obtained by the cooling capacity of the passing cooling air
An absorption solution at a level close to 11 degrees Celsius is generated, which is sequentially guided to the absorption stage located immediately upstream, and the absorption action is performed in multiple stages. A dilute absorption solution of the level required for formation can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図により説明す
る。第1図において、1は高温11を土器。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In Figure 1, 1 indicates high temperature 11, which is earthenware.

2は低i1.1再生器、;lは空冷凝縮器、4は蒸発器
、5は吸収器、6は高温熱交換器、7は低湿熱交換器、
8は溶液循環ポンプ、9は冷媒スプレポンプである。−
ヒ記機器のなかで吸収器5および凝縮器3以外は従来の
ものを利用できる説明は省略する。
2 is a low i1.1 regenerator; l is an air-cooled condenser; 4 is an evaporator; 5 is an absorber; 6 is a high-temperature heat exchanger; 7 is a low-humidity heat exchanger;
8 is a solution circulation pump, and 9 is a refrigerant spray pump. −
Among the equipment described above, conventional equipment can be used except for the absorber 5 and the condenser 3, so a description thereof will be omitted.

吸収器5は垂直管]0の管外にフィン11を直交して配
設した複数列の空冷熱交換器で構成され。
The absorber 5 is composed of a plurality of rows of air-cooled heat exchangers in which fins 11 are arranged orthogonally outside a vertical tube.

冷却空気入口側の列の一部分が、上下にヘッダ12.1
4を設け、Ifli縮器3製器3している。凝縮器3の
上部へラダ]2が低温再生器2の気相部i に蒸気導管
13を介して連絡され、下部ヘッダ14は蒸発器4と液
冷媒導管15により連絡され、かつ、下部ヘッダ14に
は抽気装置16の抽気管17が連絡されている。
Part of the row on the cooling air inlet side is connected to the header 12.1 above and below.
4 are installed, and 3 Ifli compressors and 3 manufacturers are installed. The upper ladder] 2 of the condenser 3 is connected to the gas phase part i of the low temperature regenerator 2 via a vapor conduit 13, and the lower header 14 is connected to the evaporator 4 by a liquid refrigerant conduit 15, and the lower header 14 An air bleed pipe 17 of an air bleed device 16 is connected to.

吸収器5は4列(一部3列)の垂直管10a。The absorber 5 has four rows (partly three rows) of vertical tubes 10a.

] Ob 、 10 r、 、 10 (1からなり、
各列が1つの吸収過程を構成しており、これにより1.
第1段〜第4段吸収過程を構成している。吸収器5の−
1一部ヘッダ18は蒸発器4の気相部と蒸気通路19を
介して連絡さ九、各吸収過程の吸収液散布装置が、19
けられている。散布装置は、それぞれ1散布ポンプ26
.この散布ポンプ26の出[1に接続された散布導管2
0からなる。垂直管10 (10a。
] Ob , 10 r, , 10 (consists of 1,
Each row constitutes one absorption process, which allows 1.
This constitutes the first to fourth stage absorption processes. Absorber 5 -
1 Part of the header 18 is connected to the gas phase part of the evaporator 4 via a steam passage 19.
I'm being kicked. The spraying device consists of one spraying pump 26 each.
.. The dispersion conduit 2 connected to the outlet [1 of this dispersion pump 26]
Consists of 0. Vertical tube 10 (10a.

Job、]、Or、]Od)が接続されている管板上に
は各吸収過程間の吸収液の混合の防止と、各垂直管10
a、10b、10c、1.Odへの吸収液分配を均一に
するため、仕切W22(22a。
Job, ], Or, ]Od) are connected to the tube plate to prevent mixing of the absorption liquid between each absorption process and to prevent each vertical tube 10
a, 10b, 10c, 1. In order to uniformly distribute the absorption liquid to Od, partition W22 (22a) is used.

22b、22C)が設けられている。22b, 22C) are provided.

吸収器5の下部ヘッダ23には各吸収過程の受は皿24
a、24b、24cと稀液タンク25が設けられ、各受
けll112.4 (24n 、 24 b 、 24
 c、 )にはそれぞれ散布ポンプ26 a 、 2.
6 b 、 26 cが連結されている。各溶液導管2
0a、2.Ob。
The lower header 23 of the absorber 5 has a tray 24 for receiving each absorption process.
a, 24b, 24c and a diluted liquid tank 25 are provided, and each receptacle 112.4 (24n, 24b, 24
c, 2) are equipped with spray pumps 26a, 2.c, respectively.
6b and 26c are connected. Each solution conduit 2
0a, 2. Ob.

20r、、20dに分岐管2.1 a 、 21 b 
、 2.1 r。
20r, 20d branch pipes 2.1 a, 21 b
, 2.1 r.

が連結されている。are connected.

次に動作を説明する。高温再/1°器1で吸収液は燃焼
器(図示せず)か#:Iの燃焼ガスで加熱されて蒸発器
1.OL、冷媒蒸気を発生し、で、濃縮される。
Next, the operation will be explained. In the high-temperature re/1° reactor 1, the absorption liquid is heated with combustion gas from a combustor (not shown) or #:I, and then transferred to the evaporator 1. OL generates refrigerant vapor, which is then concentrated.

発生した冷媒蒸気は低温再生器2の伝熱管27内に導か
れ、管外4:、 J’f+’、 ’/lfされる吸収液
を加熱して冷媒蒸気を発生させて濃縮するとともに、自
身は凝縮液化【7、液冷’l’v:’!’;”;? 2
 Flを経由して凝縮器3に送られる。なオ9.液冷媒
導管28の途中を空冷熱交換器29の形状にして、ファ
ン(図示せず)で吸引される冷却空気で冷却されるので
、凝縮器3の熱性iiηを削減できろ。低温再生器2で
発生した冷媒蒸気は蒸気導管13を経由し”C凝お;τ
器:3の1一部へラダ12に導かれ、伝熱管;3Δ内で
冷却空気により冷却されて凝縮液化し、凝縮液は下部ヘ
ッダ14に溜まり、ここから液冷媒導管15を経由して
蒸発器4に送られる。蒸発器4の液冷媒は冷媒スプレポ
ンプ9により伝熱管29トに散布され、管29内を流れ
る冷水と!(各交換し°C蒸発気化し。
The generated refrigerant vapor is guided into the heat transfer tube 27 of the low-temperature regenerator 2, and the absorption liquid outside the tube 4:, is condensation and liquefaction [7, liquid cooling 'l'v:'! ';”;? 2
It is sent to the condenser 3 via Fl. Nao9. The middle of the liquid refrigerant conduit 28 is shaped like an air-cooled heat exchanger 29, and since cooling is performed by cooling air sucked in by a fan (not shown), the thermal properties iiη of the condenser 3 can be reduced. The refrigerant vapor generated in the low-temperature regenerator 2 passes through the vapor conduit 13 and is condensed.
The condensed liquid is guided into the ladder 12 to a part of the heat exchanger tube 3, and is condensed and liquefied by cooling air within the heat exchanger tube 3Δ.The condensed liquid collects in the lower header 14, and is evaporated from there via the liquid refrigerant conduit 15. Sent to vessel 4. The liquid refrigerant in the evaporator 4 is sprayed onto the heat transfer tubes 29 by the refrigerant spray pump 9, and the cold water flowing inside the tubes 29 and! (Each time was evaporated and replaced at °C.)

そのとき冷水が冷却され゛C所要の冷凍作用を得ろ。At that time, the cold water is cooled to obtain the required refrigeration effect.

蒸発器4で蒸発した冷媒蒸気は蒸気導管19を経て吸収
器5の一ヒ部ヘッダ18に導かれる。
The refrigerant vapor evaporated in the evaporator 4 is led to a header 18 of the absorber 5 via a vapor conduit 19.

一方、高温再生器1で生成された濃溶液および低温再生
器2で生成された濃溶液は、それぞれ高n、λ熱交換器
6.低温熱交換器7.濃液4管30を経由して、吸収器
5の下部へラダ23の第1段吸収過程の受は皿24aに
流入し、散布ポンプ26aにより、散布管20nからヘ
ッダ外壁と仕切板22aとの中に供給され、冷媒蒸気と
ともに、垂直管群10a内を流下し、冷媒蒸気を吸収し
て稀釈さオt、受は皿24aに戻る。また、散布導管2
0aを通る吸収液の一部は分流されて分岐管21aから
第2段吸収過程の仕切板22aと22bの11Iに供給
され、垂直W群tab内を冷媒蒸気とともに流下し、冷
媒蒸気を吸収して稀釈され、受は皿24bに戻る。また
、受けITIL24bの吸収液は散布ポンプ25bによ
り散布導管20bからユニットbの仕切板22iと22
bの間に供給され。
On the other hand, the concentrated solution generated in the high temperature regenerator 1 and the concentrated solution generated in the low temperature regenerator 2 are transferred to the high n, λ heat exchanger 6. Low temperature heat exchanger7. The receiver of the first stage absorption process of the ladder 23 flows into the lower part of the absorber 5 via the concentrated liquid 4 pipe 30, and flows into the tray 24a, and the spray pump 26a causes the water to flow between the outer wall of the header and the partition plate 22a from the spray pipe 20n. The refrigerant vapor is supplied into the container, flows down the vertical tube group 10a together with the refrigerant vapor, absorbs the refrigerant vapor and is diluted, and then returns to the tray 24a. In addition, the dispersion pipe 2
A part of the absorption liquid passing through 0a is branched and supplied from the branch pipe 21a to the partition plates 22a and 22b 11I of the second stage absorption process, flows down in the vertical W group tab together with the refrigerant vapor, and absorbs the refrigerant vapor. The receiver is then returned to the tray 24b. Further, the absorption liquid in the receiving ITIL 24b is transferred from the distribution pipe 20b to the partition plates 22i and 22 of the unit b by the distribution pump 25b.
Supplied during b.

前述と同様に冷媒蒸気を吸収する。また、第2段吸収過
程の吸収液の1部は分岐管21bに分流され、第2段吸
収過程に供給される。同様に、第3段吸収過程を循環す
る吸収液の一部は分岐管21cより第4段吸収過程に供
給される。第4段吸収過程の吸収液は、一部が希液タン
ク25に流出し、循環ポンプ8により希液導管31を経
由し、低温熱交換器7に流入し、ここから一部が低温再
生器2に、残りが高温熱交換器6を経由して高温再生器
1に送られる。
Absorb refrigerant vapor as before. Further, a part of the absorption liquid in the second stage absorption process is branched to the branch pipe 21b and supplied to the second stage absorption process. Similarly, a part of the absorption liquid circulating in the third stage absorption process is supplied to the fourth stage absorption process through the branch pipe 21c. Part of the absorption liquid in the fourth stage absorption process flows out into the diluted liquid tank 25, flows into the low temperature heat exchanger 7 via the diluted liquid conduit 31 by the circulation pump 8, and from there, part of it flows into the low temperature regenerator. 2, the remainder is sent to the high temperature regenerator 1 via the high temperature heat exchanger 6.

一11記のように、散布装置により吸収過程の吸収液溜
め部の吸収液をその上方に位置する垂直管に散布し、こ
れによって吸収過程の溶液循環欧を、発生器から吸収器
に流れ込んでくる吸収液の流量よりも多くしているので
、吸収過程における吸収液の循環濱・を、冷却空気によ
る冷却能力に応じたlAと喰とすることができ、通過す
る冷却空気の冷却能力で得られる最も稀薄な濃度に近い
レベルの吸収液を生成し、これを直ぐ上流側に位置する
吸収段階に順次導き、さらに吸収作用を複数段階に行な
わせているので、少ない段数の吸収過程により吸収冷凍
サイクルの形成に必要なレベルの稀薄な吸収液を得るこ
とができる。
As shown in Section 111, the absorption liquid in the absorption liquid reservoir in the absorption process is dispersed by the dispersion device to the vertical pipe located above it, whereby the solution circulating in the absorption process flows from the generator to the absorber. Since the flow rate of the absorption liquid is higher than the flow rate of the absorption liquid flowing through the absorption process, the circulation rate of the absorption liquid during the absorption process can be set to 1A according to the cooling capacity of the cooling air, and the cooling capacity of the passing cooling air can be used to increase the flow rate of the absorption liquid. The system generates an absorption liquid with a level close to the diluted concentration that can be obtained, and sequentially guides this liquid to the absorption stage located immediately upstream.The absorption action is then carried out in multiple stages, so absorption freezing can be achieved through the absorption process with a small number of stages. It is possible to obtain the level of dilute absorption liquid required for cycle formation.

なお、受は皿24 a 、 24 b 、 24 r、
はボンブサクションダクトコl 2.11 、32 b
 、 32 c、に設けられた連通管33a、b、cで
互いに連通されて。
In addition, the receivers are plates 24a, 24b, 24r,
is bomb suction duct 2.11, 32 b
, 32c, and communicate with each other through communication pipes 33a, b, and c provided in the.

ポンプ26の空転防1ヒが図られている。The pump 26 is prevented from running idly.

第3図は本発明の他の実施例である。なお、第1図と同
じ機能の箇所には同−付号を付している。
FIG. 3 shows another embodiment of the invention. Note that parts with the same functions as those in FIG. 1 are given the same number.

本実施例では、吸収過程から次段の吸収過程への吸収液
の分流は、下部ヘッダ2;3に設けた受は皿24 (2
4b 、 24 c 、 24− d )を前段の吸収
過程の垂直管10の下部まで一部分24n’。
In this embodiment, the absorption liquid is diverted from the absorption process to the next absorption process using a receiver provided in the lower header 2;
4b, 24c, 24-d) to the lower part of the vertical tube 10 in the previous absorption process 24n'.

24b’、24r、’ を張り出させることによって達
成しており、製作、ヒ容易にできる利点がある。
This is achieved by projecting out 24b', 24r, and 24', which has the advantage of being easy to manufacture and install.

第4図は、本発明の他の実施例である。各段の吸収過程
から次段の吸収過程への吸収液の分流は。
FIG. 4 shows another embodiment of the invention. The absorption liquid is divided from the absorption process of each stage to the absorption process of the next stage.

受は皿24aから受11(L 24 b 、 24 C
,24d、溶液タンク25の順に順次at <オーバフ
ロー)するようにする堰34ri、34b、34C,3
4dを設けている点が前記実施例と異なる0本実施例で
は各受け@24の液面が堰34により常に所定以上に確
保されるため散布ポンプ26の空転等が防止できる。
The receiver is from the plate 24a to the receiver 11 (L 24 b, 24 C
, 24d, and the solution tank 25 in order of at<overflow).
In this embodiment, the difference from the previous embodiment is that 4d is provided, so that the liquid level in each receiver 24 is always maintained above a predetermined level by the weir 34, so that the spray pump 26 can be prevented from running idly.

第5図は、本発明の他の実施例である。各段の吸収・・
力程の受は皿24の一部に液タンク35a。
FIG. 5 shows another embodiment of the invention. Absorption of each stage...
The liquid tank 35a is a part of the plate 24 for receiving the force.

:35b、35cを、1qけ、該液タンク35fl、3
5b。
:35b, 35c, 1q, the liquid tank 35fl, 3
5b.

35c内にフロー1−弁36a 、 36b 、 36
 c、を設け、次段の吸収過程へ吸収液を分流する分岐
管2 L a 、 2 ’L h 、 21. c、を
散布ポンプ26a。
Flow 1 in 35c - valves 36a, 36b, 36
Branch pipes 2 La, 2'L h, 21. c, a spray pump 26a;

26b、26r、の吐出側に連結するとともに、これら
の分岐管21a、21b、21cの途中にフロート弁3
6 a 、 36b 、 36 c、をそれぞれ配設し
たどころが前述の実施例と異なる。
26b, 26r, and a float valve 3 in the middle of these branch pipes 21a, 21b, 21c.
This embodiment differs from the previous embodiment in that 6a, 36b, and 36c are respectively provided.

本実施例では各散布ポンプ26の吸込み液面が、フロー
ト弁36による分流計31節機能によって所定の高さに
保持されるため各散布ポンプ2Gの空転が防止できる。
In this embodiment, the suction liquid level of each spray pump 26 is maintained at a predetermined height by the flow meter 31 node function of the float valve 36, so that idling of each spray pump 2G can be prevented.

第6UfiIは、本発明の他の実施例であり、受皿24
の吸収液を次段の吸収過程へ送り込むための分岐管2.
1  (218,21))、 7.1 を二、21d)
を、各散布ポンプ26(2G t&、 26 b 、 
2 G e 。
The sixth UfiI is another embodiment of the present invention, and the saucer 24
A branch pipe for sending the absorption liquid to the next absorption process2.
1 (218,21)), 7.1 to 2, 21d)
, each spray pump 26 (2G t&, 26 b,
2Ge.

26d、26e)の吸込み管同士を連絡するように設け
たち−である。
The suction pipes 26d and 26e) are connected to each other.

このようにすると、llllj段の濃度が若干高い吸収
液が各散布ポンプ26に吸込まれる吸収液に混入される
ため、散布されろ吸収液の濃度は、前段の吸収液と受量
24内に混入させる場合よりも高くできる。これにより
2吸収能力の高い吸収液が散布されることになり吸収が
さらに良く行なわ九、より〜・層低い濃度の吸収液を生
成できる。
In this way, the absorbent liquid in the llllj stage with a slightly higher concentration is mixed with the absorbent liquid sucked into each spray pump 26, so that the concentration of the absorbed liquid that has been sprayed is equal to that of the absorbent liquid in the previous stage and in the receiving volume 24. It can be made higher than when mixed. As a result, an absorbent liquid with a high absorption capacity is dispersed, and absorption is performed even better, and an absorbent liquid with a lower concentration can be produced.

第7図は本発明の他の実施例であり、第1段吸収過程と
第2段吸収過程に、受皿241′にの吸収液を垂直管1
0aに、受皿24bの吸収液を垂直管10bにそれぞれ
散布すること、すなわち自己の吸収過程内での吸収液の
再循環は行なわ才しず、第1段吸収過程から第2段吸収
過程へは吸収液が直列的に流れ、第3段〜第5 r9の
各吸収過程における吸収液の流れを前述の実施例と同様
の流れとしたものである。
FIG. 7 shows another embodiment of the present invention, in which the absorption liquid in the saucer 241' is transferred to the vertical pipe 1 in the first stage absorption process and the second stage absorption process.
0a, the absorption liquid in the tray 24b is sprayed into the vertical pipes 10b, that is, the absorption liquid is not recirculated within its own absorption process, and the absorption liquid from the first stage absorption process to the second stage absorption process is not performed. The absorption liquid flows in series, and the flow of the absorption liquid in each absorption process from the third stage to the fifth r9 is similar to that in the previous embodiment.

本実施例では、第1段吸収過程の散布ポンプ268′の
吐出側が、第2吸収過程の垂直管tabの上方に設置し
た散布器20b′に連結され、第1段吸収過程の受皿2
4bは、第3段吸収過程の溶液ポンプ26Gの吸込側と
導管37を介して連絡されている。また第1段吸収過程
の垂直管LOaの」一方に設置された散布器20 +i
 ’は、濃液導管30を介して低温熱交換器7に連絡さ
れている。
In this embodiment, the discharge side of the dispersion pump 268' for the first-stage absorption process is connected to the dispersion device 20b' installed above the vertical pipe tab for the second-stage absorption process, and the receiving tray 268' for the first-stage absorption process
4b is connected via a conduit 37 to the suction side of the solution pump 26G in the third stage absorption process. In addition, a sprayer 20 +i installed on one side of the vertical pipe LOa in the first stage absorption process.
' is connected to the low temperature heat exchanger 7 via the concentrated liquid conduit 30.

」1記の実施例では、第1段および第2段の各吸収過程
における吸収液の流れを直列的としたが。
In Example 1, the flow of the absorption liquid in each absorption process of the first stage and the second stage was made to be serial.

他の任意たとえば第:51v、第4段の各吸収過程のみ
につき直列的に吸収液を流すこともできる6以上の各実
施例で述べたように、各垂直管内に流ドする吸収液の流
btを冷凍サイクルの吸収液循環IJtとは無関係に大
きくとることができるため。
In other optional cases, for example, the absorption liquid may be allowed to flow in series only for each absorption process in the 4th stage. This is because bt can be made large regardless of absorption liquid circulation IJt in the refrigeration cycle.

ili:直管の流下液膜流量不足による乾いた箇所の発
生が防「ヒでき、高い伝熱性能を得ることができる。
ili: The generation of dry spots due to insufficient flow rate of the falling liquid film in straight pipes can be prevented, and high heat transfer performance can be obtained.

また、実施例は、吸収過程が4段、5段であるが、その
数が2段以上であればよい。
Further, in the embodiments, the absorption process is performed in four stages or five stages, but the number of stages may be two or more stages.

〔発明の効果〕〔Effect of the invention〕

以上ノのように本発明によれば、少ない段数で実用に供
し得る空冷吸収器を有する空冷吸収式冷温水機を提供す
ることができる。
As described above, according to the present invention, it is possible to provide an air-cooled absorption type water chiller/heater having an air-cooled absorber that can be put to practical use with a small number of stages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のサイクル構成図、第2図は
、第1図の吸収器の断面平面図、第ご3図は、そのとき
の各ユニットの吸収液の温度並びに冷却空気の湿度の一
例である。第3図は本発明の、他の実施例の空冷吸収器
、凝縮器の構成図、第4図は本発明の他の実施例の空冷
吸収器の構成図。 第5図は本発明の他の実施例の空冷吸収器の構成図、第
6図は、本発明の他の実施例の空冷吸収器。 蒸発器の構成図、第7図は、本発明の他の実施例の空冷
吸収器、蒸発器の構成図である。 5・・・吸収器、LOa、10b、l0IS、1.Od
−垂直管、20 a 、 20 b 、 20 c 、
 20 d −散布導管、21 Jl 、 2 l b
 、 21 (S 、 21 d ・=分岐管。 24 a、 241)、 24 a、 24 (J 、
 24 t=−吸収液の受皿、 26a 、 2 t;
 b 、 26a 、 26 d 。 26 e−散布ポンプ、:34 a 、 34 b 、
 34 a −堰、36 a 、 :S 6 b 、 
3 f; c、 :S G d−フローl−弁。
Fig. 1 is a cycle configuration diagram of an embodiment of the present invention, Fig. 2 is a cross-sectional plan view of the absorber shown in Fig. 1, and Fig. 3 shows the temperature of the absorbing liquid and cooling air of each unit at that time. This is an example of humidity. FIG. 3 is a block diagram of an air-cooled absorber and condenser according to another embodiment of the present invention, and FIG. 4 is a block diagram of an air-cooled absorber according to another embodiment of the present invention. FIG. 5 is a block diagram of an air-cooled absorber according to another embodiment of the present invention, and FIG. 6 is a diagram showing an air-cooled absorber according to another embodiment of the present invention. FIG. 7 is a block diagram of an air-cooled absorber and an evaporator according to another embodiment of the present invention. 5...Absorber, LOa, 10b, l0IS, 1. Od
- vertical tubes, 20a, 20b, 20c,
20 d - dispersion conduit, 21 Jl, 2 l b
, 21 (S, 21 d = branch pipe. 24 a, 241), 24 a, 24 (J,
24 t=-receptacle for absorption liquid, 26a, 2 t;
b, 26a, 26d. 26 e-spraying pump: 34 a, 34 b,
34 a - weir, 36 a, :S 6 b,
3 f; c, :S G d-flow l-valve.

Claims (1)

【特許請求の範囲】 1、再生器、凝縮器、蒸発器、吸収器、熱交換器および
散布装置を有し、これらが作動的に連絡されたものにお
いて、前記吸収器は、複数の垂直管とこれら各垂直管の
下方に位置する吸収液溜め部とこの吸収液溜め部の吸収
液を垂直管に散布する散布装置とを備え、吸収液溜め部
は、前記垂直管外を通る冷却空気の流れ方向に複数に区
画され、これら区画された各吸収液溜め部と、この吸収
液溜め部の上方に位置する垂直管とにより複数組の吸収
過程が形成され、各吸収液溜め部の吸収液を、前記冷却
空気の下流側に位置する吸収過程から上流側に位置する
吸収過程に流す流路を有するとともに前記散布装置は、
複数の吸収過程の少なくとも1個の吸収過程に備えてい
ることを特徴とする空冷吸収式冷温水機。 2、特許請求の範囲第1項において、前記散布装置は、
全部の吸収過程にそれぞれ設けられている空冷吸収式冷
温水機。 3、特許請求の範囲第1項において、前記散布装置は、
冷却空気の上流側に位置する吸収過程にのみ設けられて
いる空冷吸収式冷温水機。
[Claims] 1. A regenerator, a condenser, an evaporator, an absorber, a heat exchanger, and a dispersion device, all of which are operatively connected, wherein the absorber comprises a plurality of vertical pipes. and an absorption liquid reservoir located below each of the vertical pipes, and a dispersion device for dispersing the absorption liquid in the absorption liquid reservoir onto the vertical pipes. The absorption liquid reservoir is divided into a plurality of sections in the flow direction, and a plurality of sets of absorption processes are formed by each of these partitioned absorption liquid reservoirs and a vertical pipe located above the absorption liquid reservoir, and the absorption liquid in each absorption liquid reservoir is divided into a plurality of sections. The dispersion device has a flow path for causing the cooling air to flow from an absorption process located on the downstream side to an absorption process located on the upstream side, and
An air-cooled absorption type water chiller/heater, characterized in that it is provided for at least one of a plurality of absorption processes. 2. In claim 1, the spraying device comprises:
Air-cooled absorption type water cooler/heater installed in each absorption process. 3. In claim 1, the spraying device comprises:
An air-cooled absorption type water chiller/heater that is installed only in the absorption process located upstream of the cooling air.
JP4178186A 1986-02-28 1986-02-28 Air-cooled absorption type water heater Expired - Lifetime JPH0721364B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4178186A JPH0721364B2 (en) 1986-02-28 1986-02-28 Air-cooled absorption type water heater
US07/017,559 US4748830A (en) 1986-02-28 1987-02-24 Air-cooled absorption heating and cooling system
DE19873706072 DE3706072A1 (en) 1986-02-28 1987-02-25 AIR-COOLED ABSORPTION HEATING AND COOLING SYSTEM
KR1019870001842A KR930004388B1 (en) 1986-02-28 1987-02-28 Air cooled absorption type water chiller and heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4178186A JPH0721364B2 (en) 1986-02-28 1986-02-28 Air-cooled absorption type water heater

Publications (2)

Publication Number Publication Date
JPS62202972A true JPS62202972A (en) 1987-09-07
JPH0721364B2 JPH0721364B2 (en) 1995-03-08

Family

ID=12617906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4178186A Expired - Lifetime JPH0721364B2 (en) 1986-02-28 1986-02-28 Air-cooled absorption type water heater

Country Status (1)

Country Link
JP (1) JPH0721364B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285750A (en) * 1988-05-11 1989-11-16 Hitachi Ltd Absorption type water cooling and heating machine
JPH01291075A (en) * 1988-05-19 1989-11-22 Sanyo Electric Co Ltd Heat exchanger for absorption refrigerating machine
JPH03294768A (en) * 1990-04-11 1991-12-25 Hitachi Zosen Corp Air-cooled absorber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285750A (en) * 1988-05-11 1989-11-16 Hitachi Ltd Absorption type water cooling and heating machine
JPH01291075A (en) * 1988-05-19 1989-11-22 Sanyo Electric Co Ltd Heat exchanger for absorption refrigerating machine
JPH03294768A (en) * 1990-04-11 1991-12-25 Hitachi Zosen Corp Air-cooled absorber

Also Published As

Publication number Publication date
JPH0721364B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US4688399A (en) Heat pipe array heat exchanger
US20010015077A1 (en) Liquid desiccant air conditioner
JPH10160282A (en) Vapor compression cooling system
JPS58205084A (en) Thin film evaporating type heat exchanger
US4748830A (en) Air-cooled absorption heating and cooling system
US7066241B2 (en) Method and means for miniaturization of binary-fluid heat and mass exchangers
US6578629B1 (en) Application of heat pipe science to heating, refrigeration and air conditioning systems
JPH06221718A (en) High temperature regenerator absorption type cold/hot water apparatus and the apparatus
JP2000179989A (en) Sprinkler of absorption water cooler/heater
JP3789815B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
JPS62202972A (en) Air-cooled absorption type water chiller and heater
US5048308A (en) Absorption refrigerator
CN216114444U (en) Evaporative cooling system
KR890004392B1 (en) Air cooled absorption refrigeration system
JPH0571827A (en) Absorption freezer
US6802364B1 (en) Method and means for miniaturization of binary-fluid heat and mass exchangers
JPH02282670A (en) Heat exchanger
JPH03211391A (en) Falling film evaporator
JP2974000B2 (en) Air-cooled absorption refrigeration system
CN113669816B (en) Evaporative cooling system and method for operating the same
JP3171138B2 (en) Air-cooled absorption refrigeration system
JPH04254170A (en) Multiunit type refrigerant evaporator
JPH0979793A (en) Orthogonally intersection flow type cooling tower
JP2875614B2 (en) Air cooling absorption air conditioner
CN113669816A (en) Evaporative cooling system and method for operating the same