JPS62200520A - Thin metallic film type magnetic recording medium - Google Patents

Thin metallic film type magnetic recording medium

Info

Publication number
JPS62200520A
JPS62200520A JP4155886A JP4155886A JPS62200520A JP S62200520 A JPS62200520 A JP S62200520A JP 4155886 A JP4155886 A JP 4155886A JP 4155886 A JP4155886 A JP 4155886A JP S62200520 A JPS62200520 A JP S62200520A
Authority
JP
Japan
Prior art keywords
layer
alloy
magnetic
protective layer
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4155886A
Other languages
Japanese (ja)
Inventor
Fumio Kishi
岸 文夫
Takayuki Yagi
隆行 八木
Kumiko Kameyama
亀山 久美子
Kenji Suzuki
謙二 鈴木
Hirotsugu Takagi
高木 博嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4155886A priority Critical patent/JPS62200520A/en
Publication of JPS62200520A publication Critical patent/JPS62200520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a thin metallic film type magnetic recording medium having excellent durability and corrosion resistance by providing a magnetic layer consisting of an alloy contg. Co as an essential component on a nonmagnetic substrate and protective layer consisting of an oxide of a Co-Y alloy thereon. CONSTITUTION:The magnetic layer 2 consisting of Co, Co-Cr, Co-V, Co-Mo, Co-W or other alloys contg. Co as the essential component is provided on the nonmagnetic substrate 1. The protective layer 3 consisting of the oxide of the Co-Y alloy is provided thereon. The ratio of the Y atoms incorporated into the layer 3 to the total number of the Co atoms and Y atoms is adequately 0.5-5%, more preferably 1-5%. The thickness of the layer 3 is 30-500Angstrom , more preferably 30-200Angstrom . The durability is improved by executing vapor deposition in such a manner that the C-axis of the magnetic layer 2 is oriented perpendicularly to the medium plane.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、耐久性および耐蝕性に優れた金属角膜型磁気
記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a metal corneal magnetic recording medium having excellent durability and corrosion resistance.

[従来の技術] 近年、磁気記録の高密度化に対する要求が強くなってき
ており、様々な研究開発が進められている。金属−y膜
の磁性層を用いる方式もこの一つで・ある、またその中
で特に垂直磁化1漠を用いる方式は、高密度になるほど
自己減磁がゼロに近づくため、高密度化に適した方式と
考えられている。
[Prior Art] In recent years, there has been a strong demand for higher density magnetic recording, and various research and development efforts are underway. One of these methods is a method using a magnetic layer of a metal-y film, and among these methods, the method using perpendicular magnetization is particularly suitable for high density applications because self-demagnetization approaches zero as the density increases. It is considered to be a method.

この金属薄膜型磁気記録媒体に用いられる磁性層の材料
としては、LとしてCo、 Go−Xi、 Go−P。
Materials for the magnetic layer used in this metal thin film magnetic recording medium include Co, Go-Xi, and Go-P as L.

Co−旧−P、 Co−Cr、 Go−V、 Go−H
a、 Co−PL、 Co−JCo−Or−Pd、 G
o−Or−No、 Go−Or−RhiCoを主成分と
する合金が研究されている。このような金属の磁性層を
もつ磁気記録媒体が有する大きな聞届の一つは、磁性層
と磁気ヘッドが直接接触すると両者にキズが発生するな
ど、耐庁耗性が著しく欠けていることであった。
Co-old-P, Co-Cr, Go-V, Go-H
a, Co-PL, Co-JCo-Or-Pd, G
Alloys whose main components are o-Or-No and Go-Or-RhiCo are being studied. One of the major disadvantages of magnetic recording media with such metal magnetic layers is that they have a significant lack of wear resistance, such as when the magnetic layer and magnetic head come into direct contact with each other, causing scratches on both. there were.

、この聞届は、磁気記録媒体としての信頼性にかかわる
重要な聞届であるが、この聞届を解決する方υ:とじて
、従来から脂肪酸、高級脂肪酸、オキシ脂肪酸、脂肪酸
アミド、脂肪酸エステル、脂肪族アルコール、金属セッ
ケン等を表面に塗布することが行なわれてきた。しかし
ながらL記の方法ではトップコート層の厚みを均一・に
することがむずかしく、その効果が使用するにつれて低
rし。
, this notification is an important notification related to the reliability of magnetic recording media, but how to resolve this notification υ: Conventionally, fatty acids, higher fatty acids, oxyfatty acids, fatty acid amides, fatty acid esters , aliphatic alcohol, metal soap, etc. have been applied to the surface. However, in the method described in L, it is difficult to make the thickness of the top coat layer uniform, and the effect decreases with use.

耐久性がない為に満足すべきものではなかった。It was not satisfactory because it lacked durability.

この点を改良する方法として001g化物の保護層を形
成することが行なわれている。成膜の手段としては蒸着
法(例えば特開昭58−137528号−1特開昭80
−191425号等参照)、反応スパッタリング法(例
えば特開昭59−193536号、特開昭80−508
22号参照)によるものなどが提案されている。
As a method to improve this point, forming a protective layer of 001g compound has been carried out. As a means of film formation, a vapor deposition method (for example, JP-A-58-137528-1, JP-A-80
-191425 etc.), reactive sputtering method (for example, JP-A-59-193536, JP-A-80-508)
22) has been proposed.

しかしながら2L記の保護層は耐蝕性の点で問題があり
、例えば高温多湿の条件ドに放置した後に記録・再生を
行なうと、fl’j生信号の低F、欠落が生ずる。この
耐蝕性自体は、酸化の程度を強くすることでかなり向ヒ
するが、この場合耐久性が劣化してしまい1両方の性能
を両ケさせることができない、この点が実用り大きな問
題となっている。
However, the protective layer of No. 2L has a problem in terms of corrosion resistance, and for example, when recording or reproducing is performed after being left in a hot and humid condition, low F and omissions of the fl'j raw signal occur. This corrosion resistance itself can be significantly improved by increasing the degree of oxidation, but in this case the durability deteriorates and it is not possible to combine both performances, which is a major problem in practical use. ing.

[発明が解決しようとする開題点] 本発明は、上述した従来技術の聞届点を除去し、耐久性
と耐蝕性がともに優れた金IJi薄膜型磁気記録媒体を
提供することを目的とする。
[Problem to be Solved by the Invention] An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and provide a gold IJi thin film magnetic recording medium that has excellent durability and corrosion resistance. .

[開題点を解決するためのF段および作用1本発明は、
非磁性)、(体の少なくとも−・方の面に、Coを主成
分とする合金よりなる磁性層と、その]二にGo−Y合
金の酸化物よりなる保護層とを有することを特徴とする
金属薄膜型磁気記録媒体であり、これにより前記目的を
達成するものである。
[F stage and action 1 for solving the open problem The present invention is
Non-magnetic), (on at least one side of the body, it has a magnetic layer made of an alloy mainly composed of Co, and secondly a protective layer made of an oxide of a Go-Y alloy. This is a metal thin film type magnetic recording medium that achieves the above object.

第1図に本発明の金属薄膜型磁気記録媒体の基本的な構
成を示す、1は非磁性基体、2は00合金膜よりなる磁
性層、3はGo−Y合金を部分的に酸化してなる保護層
である。lの非磁性基体としては、ポリエチレンテレフ
タレート、ポリイミド。
FIG. 1 shows the basic structure of the metal thin film magnetic recording medium of the present invention. 1 is a non-magnetic substrate, 2 is a magnetic layer made of a 00 alloy film, and 3 is a partially oxidized Go-Y alloy. It is a protective layer. The non-magnetic substrate 1 is polyethylene terephthalate or polyimide.

ポリカーボネート、ポリアミド等から成るプラスチック
フィルムあるいはステンレス、アルミニウム、ガラス副
を用いることができる。2の磁性層の材料としては、 
Go、 Go−Car、 Go−V、 Go−No。
A plastic film made of polycarbonate, polyamide, etc., or a stainless steel, aluminum, or glass sub-layer can be used. The material for the second magnetic layer is:
Go, Go-Car, Go-V, Go-No.

Go−W、 Co−P、 Go−Ni、 Co−Pt、
 Go−Xi−P、 Go−Cr−Ru。
Go-W, Co-P, Go-Ni, Co-Pt,
Go-Xi-P, Go-Cr-Ru.

Go−Gr−Rh、 Go−Cr−No等の合金を用い
ることができる。
Alloys such as Go-Gr-Rh and Go-Cr-No can be used.

このほかに、本発明の金属薄膜型磁気記録媒体には例え
ば基体と磁性層との間に付着力向りや表面粗度の制御を
目的とした中間層、重置ヘッドを用いる場合に有効な高
透磁率層などを設けてもよい、また酸化物の保護層tに
潤滑層として脂肪酸、高級脂肪酸、オキシ脂肪酸、脂肪
酸アミド、脂肪酸エステル、脂肪族アルコール、金属セ
ッケン算の被膜を設けてもよい、さらに基体裏面に潤滑
または帯電防止のための層を設けることも可能である。
In addition, the metal thin film magnetic recording medium of the present invention includes, for example, an intermediate layer between the substrate and the magnetic layer for the purpose of controlling the direction of adhesion and surface roughness; A magnetic permeability layer etc. may be provided, and a coating of fatty acid, higher fatty acid, oxyfatty acid, fatty acid amide, fatty acid ester, fatty alcohol, or metal soap may be provided as a lubricating layer on the oxide protective layer t. Furthermore, it is also possible to provide a layer for lubrication or antistatic purposes on the back surface of the substrate.

加えて基体の両面に磁性層、保護層等を設ける構造も可
能である。
In addition, a structure in which magnetic layers, protective layers, etc. are provided on both sides of the substrate is also possible.

保護層の持つべき性質として、ヘッド材料との凝着を起
こしにくく、従って滑性の良いことと同時にF層のCO
系合金磁性層と強く1着し、はかれにくいものでなくく
てならない。
The properties that the protective layer should have are that it does not easily adhere to the head material, and therefore has good lubricity, and at the same time, the CO of the F layer.
It must adhere strongly to the alloy magnetic layer and be difficult to peel off.

Go主体の酸化物が保護層として優れるのは。Why is Go-based oxide excellent as a protective layer?

GO30A  Cスピネル構造)の形のときに固体潤滑
性があり、表面凝着性の減少の一、J/ tj、が大き
いためである。ところが、完全に酸化された保護層の場
合、磁性層との界面でり、c、ρ、構造の金属相と酸化
物相(“上にCa30s  :スピネル構造)が接して
おり、両者の結晶格子が整合しにくいために層間の結合
が弱く、ヘッドとの摺動により保護層がはがれやすい、
従って耐久性のよい保護層を得るには、保護層中に若丁
の金属相が残存していることが好ましく、この残存した
金属相が磁性層との付着力の向上を担っているものと推
定される。
This is because when it is in the form of GO30A C spinel structure), it has solid lubricity and the reduction in surface adhesion, J/tj, is large. However, in the case of a completely oxidized protective layer, at the interface with the magnetic layer, the metal phase with c, ρ structure and the oxide phase (Ca30s on top: spinel structure) are in contact, and the crystal lattice of both is in contact. Because it is difficult to align, the bond between the layers is weak, and the protective layer easily peels off due to sliding with the head.
Therefore, in order to obtain a durable protective layer, it is preferable that a small amount of metal phase remain in the protective layer, and this remaining metal phase is responsible for improving the adhesion with the magnetic layer. Presumed.

腐蝕はこの金属相が酸化されることにより生ずる。これ
に対して本発明では、金属相がCo−Y合金であり、G
o単体よりも耐蝕性が高いため金属相が残存しても耐蝕
効果が得られるものである。
Corrosion is caused by oxidation of this metallic phase. On the other hand, in the present invention, the metal phase is a Co-Y alloy, and the G
o Since the corrosion resistance is higher than that of a single substance, the corrosion resistance effect can be obtained even if the metal phase remains.

なお、Yの含有量が過多になると耐蝕性はむしろ低ドす
る。耐蝕効果に対するYの組成比の最適範囲が存在し、
それ以りではむしろ有害である。
Note that if the content of Y is excessive, the corrosion resistance is rather reduced. There is an optimal range of composition ratio of Y for corrosion resistance effect,
Anything beyond that is actually harmful.

以Fの検討の結果として、保護層に含まれるY原子の星
としては、Go原子とY原子の総数に対するYJ<Cr
−数の比率として0.5〜5%が好適であり、さらに望
ましくは1〜5%である。
As a result of the following F study, as a star of Y atoms included in the protective layer, YJ<Cr with respect to the total number of Go atoms and Y atoms.
- A suitable number ratio is 0.5 to 5%, more preferably 1 to 5%.

また、保護層の厚さは種々検討の結果30〜500人が
好適であり、−・層好ましい範囲は30〜200八であ
る。30A以ドでは保護効果が充分でなく、また500
八を越えるとスペーシングロスのため記録IIT生特性
が劣化する。
Further, as a result of various studies, the thickness of the protective layer is preferably 30 to 500, and the preferable range is 30 to 200. If the current is 30A or higher, the protective effect is not sufficient, and if the current is 500A or higher,
If it exceeds 8, the recording IIT raw characteristics will deteriorate due to spacing loss.

本発明はCO系合金磁性1模一般に応用できる技術であ
るが、磁性層(六方晶系)のC軸が媒体面に対して垂直
な方向に配向している場合の方が、無配向または斜配向
の場合に比べて保護層が多少薄い場合でも耐久性が比較
的良い傾向があった。これは磁性層と保護層内の金属相
の間の結晶学的な整合性のとりやすさに差があるためで
あろう、近年研究の盛んなGo−Cr′:g、CO系垂
直磁化膜はC軸が媒体面に垂直方向であり、本発明はと
りわけGo系合金屯装置気記録媒体に有効である。特に
重置磁気記録媒体をリングヘッドとの組み合わせで用い
る場合、面内磁気記録方式に比しスペーシングロスが大
であり、磁性層と磁気ヘッドとのより良好な密着が必要
であるとの報告がなされており(第9回11本応用磁気
学会学術講演概要集P、100 ) 、本発明はその高
密度記録性とあいまつて薄い保護膜を要する6直磁気記
録媒体において、著しい効能を発揮する。
The present invention is a technology that can be applied to CO-based alloy magnetism 1 model in general, but it is better to use non-oriented or oblique magnetic layers when the C-axis of the magnetic layer (hexagonal system) is oriented in a direction perpendicular to the medium surface. Even when the protective layer was somewhat thinner than in the case of orientation, the durability tended to be relatively good. This is probably due to the difference in the ease of achieving crystallographic consistency between the magnetic layer and the metal phase in the protective layer. The C axis is perpendicular to the medium surface, and the present invention is particularly effective for Go-based alloy recording media. In particular, it has been reported that when using a superimposed magnetic recording medium in combination with a ring head, the spacing loss is greater than in the longitudinal magnetic recording method, and better adhesion between the magnetic layer and the magnetic head is required. (9th 11th Annual Meeting of the Japan Society of Applied Magnetics, Abstracts of Academic Lectures P, 100), and the present invention, combined with its high-density recording properties, exhibits remarkable effectiveness in direct magnetic recording media that require a thin protective film. .

また、近年の研究開発の技術的動向によれば。Also, according to the technological trends of research and development in recent years.

co合金金属磁性層は真空蒸看法、スパッタリング法等
、真空中における物理蒸着プロセスによる形成が・般に
高品質の磁性1漠を得やすい、たとえばGo−1合金膜
の様に面内磁化膜の場合、その抗磁力を高めるため斜め
蒸着と同時に酸素導入蒸着の技術が用いられることが多
く、その時に表面酸化層もつくられる(たとえば特開昭
58−41439号)。
The co alloy metal magnetic layer is generally formed by a physical vapor deposition process in a vacuum such as vacuum evaporation or sputtering. In this case, in order to increase the coercive force, a technique of oxygen introduction vapor deposition is often used at the same time as oblique vapor deposition, and a surface oxidation layer is also formed at this time (for example, JP-A-58-41439).

この際磁性体内部まで酸化が若「おこるので、最表面を
強く酸化しようとすると実際には磁性層内部も酸化し、
Ogの低下をもたらして記録再生特性が低ドする(たと
えば特開昭80−191425号)、対象とする記録密
度が比較的低い面内記録媒体では、この方法は充分な実
用性を持ちうるちのであり1本発明はたとえばL記公開
公報に開示された1&、膜力法で表面部形成にあずかる
蒸気流にYを含む全屈の蒸気流を合流させる様な形態で
実現できる。一方、Co系爪直磁化膜では使用される記
Q密度の高さのためにスペーシングロスは極力減らす必
要があり、本発明実施例の形成方法にて開示される様に
磁性膜と酸化膜の形成工程とが分離される方が有利であ
る。
At this time, oxidation occurs to the inside of the magnetic material, so if you try to strongly oxidize the outermost surface, the inside of the magnetic layer will actually be oxidized.
This method has sufficient practicality for longitudinal recording media with a relatively low recording density, which results in a decrease in Og and poor recording/reproducing characteristics (for example, JP-A-80-191425). Therefore, the present invention can be realized, for example, in a form in which a fully curved vapor flow containing Y is merged with a vapor flow participating in the formation of a surface portion by the film force method disclosed in the Japanese Patent Publication No. 1 & L. On the other hand, due to the high Q density used in the Co-based nail direct magnetization film, it is necessary to reduce the spacing loss as much as possible. It is advantageous if the forming steps are separated.

本発明は薄く、かつ耐久性、耐摩耗性に富み、また磁性
層の磁気特性を損ねることなく、かつ耐蝕性の良好な酸
化保護膜を提供するものであり、その点からも高記録密
度、短波長領域で使用される垂直記録媒体に好適に使用
されうるちのである。
The present invention provides a thin oxidation protective film that is highly durable and wear-resistant, does not impair the magnetic properties of the magnetic layer, and has good corrosion resistance. It can be suitably used in perpendicular recording media used in the short wavelength region.

[実施例1 以ド、実施例に基づいて説明する。なお、ここでは保護
層の厚さは実施例、比較例とも約10OAとした場合の
結果である。
[Example 1] Hereinafter, description will be given based on an example. Note that the results here are obtained when the thickness of the protective layer was approximately 10 OA in both Examples and Comparative Examples.

実施例1 非磁性基体として厚さ10p−のポリイミド樹脂フィル
ムを用いて、この上に厚さ0.4 JLtaのCo−C
r合金膜を連続蒸)iして長尺のサンプルを得た。
Example 1 A polyimide resin film with a thickness of 10 p- is used as a non-magnetic substrate, and a Co-C film with a thickness of 0.4 JLta is applied thereon.
The alloy film was continuously vaporized to obtain a long sample.

このサンプル1−にco−Y酸化膜の保護層を第2図に
示した装置により反応スパッタリング法で形成した。4
は真空槽、5は排気装置、6はCa−Y合金ターゲット
であり、外部の高周波電源に接続されている。あらかじ
め真空蒸若法によりGo−Cr合金層をポリイミドフィ
ルムにに形成しであるサンプルフィルム7は巻出しロー
ル8から中間フリーローラー9、駆動キャン10.再び
中間フリーローラー9を経て巻取りロール11に達する
。 +2は防着板、13は酸素導入パイプ、14はアル
ゴン導入パイプである。
A protective layer of a co-Y oxide film was formed on this sample 1- by a reactive sputtering method using the apparatus shown in FIG. 4
5 is a vacuum chamber, 5 is an exhaust device, and 6 is a Ca-Y alloy target, which is connected to an external high-frequency power source. A sample film 7, in which a Go-Cr alloy layer was previously formed on a polyimide film by a vacuum steaming method, was passed from an unwinding roll 8 to an intermediate free roller 9 to a driving can 10. It passes through the intermediate free roller 9 again and reaches the winding roll 11. +2 is an adhesion prevention plate, 13 is an oxygen introduction pipe, and 14 is an argon introduction pipe.

J&脱膜時到達圧力は3X10’Pa以丁、Arガス圧
は0.30Pa、 m未導入jjHハ8 c c /分
、中位面積アタりの投入電力は4 W/cm2 である
、このとき堆積速度は約20A/秒で、サンプルフィル
ムの駆動速度は15c履/分である。
The ultimate pressure during J & film removal is 3 x 10'Pa, the Ar gas pressure is 0.30 Pa, m is not introduced, jjH is 8cc/min, and the input power for medium area attack is 4 W/cm2. The deposition rate is approximately 20 A/sec and the sample film drive rate is 15 c/min.

実施例2 厚さ12p腸のポリエチレンテレフタレートフィルL1
のノ^体りに厚さ0.4延腸のCa−旧−P合金層をメ
ッキ法によって形成した後、実施例1と同様にしてGo
−Y合金の酸化物保、喜層を形成した。
Example 2 Polyethylene terephthalate fill L1 with a thickness of 12p
After forming a 0.4-thick Ca-old-P alloy layer on the body by plating, Go was applied in the same manner as in Example 1.
-The oxide layer of the Y alloy was formed.

実施例3 実施例1と同様の基体りに、厚さ0.4用−のGo−P
L合金層を真空蒸着法によって形成した後、実施例1と
同様にCo−Y酸化膜の保護層を形成した。
Example 3 Go-P with a thickness of 0.4 was applied to the same substrate as in Example 1.
After forming the L alloy layer by vacuum evaporation, a protective layer of Co--Y oxide film was formed in the same manner as in Example 1.

実施例4 実施例1と同様の基体りに、実施例1と同様のCo−C
r合金層を設け、第3図に示した装置によりGo−Y酸
化膜の保、(C層を真空蒸着法により形成した。
Example 4 The same Co-C as in Example 1 was applied to the same substrate as in Example 1.
An R alloy layer was provided, a Go-Y oxide film was formed using the apparatus shown in FIG. 3, and a C layer was formed by vacuum evaporation.

全体の構造は第2図の装置とほぼ同じであり、不図示の
導入パイプにより酸素を真空槽内に導入する。真空槽の
一部を隔壁15によって仕切り、その内部をもう・つの
排気装置16によって排気している。この小部屋の中に
電f−銃17が設置されており、これから射出される電
f−ビームによりルツボ18内のGo−Y合金ベレー2
ト19を加熱する。隔壁を設ける]1的は、この内部を
高真空に保つことにより酸素流入による電Y〜銃の損傷
を防ぐためである。
The overall structure is almost the same as the apparatus shown in FIG. 2, and oxygen is introduced into the vacuum chamber through an introduction pipe (not shown). A part of the vacuum chamber is partitioned by a partition wall 15, and the inside thereof is evacuated by another exhaust device 16. An electric f-gun 17 is installed in this small room, and the electric f-beam emitted from it fires the Go-Y alloy beret 2 in the crucible 18.
Heat the plate 19. The first reason is to maintain the interior at a high vacuum to prevent damage to the gun due to oxygen inflow.

到達圧力は5 X 105Pa以ド、酸素導入hYは1
2cc/分、堆積速度は約500A/秒、サンプルフィ
ルムの送り速度は3.5m/分である。
The ultimate pressure is 5 x 105 Pa or more, and the oxygen introduction hY is 1
2 cc/min, the deposition rate is about 500 A/sec, and the sample film feed rate is 3.5 m/min.

実施例5 実施例1と同様の基体りに同様のGo−Cr合金層を形
成した後、同じ装置でGo−Y合金の層を形成し、この
表面を第4図に示した装置によりプラズマ酸化すること
により保護層を形成した。電極2゜の間に生じたIv素
プラズマ中をサンプルを通過させ、プラズマ酸化を行う
Example 5 After forming a similar Go-Cr alloy layer on the same substrate as in Example 1, a Go-Y alloy layer was formed using the same equipment, and this surface was subjected to plasma oxidation using the equipment shown in Figure 4. A protective layer was formed by doing this. The sample is passed through Iv elementary plasma generated between 2 degrees of electrodes to perform plasma oxidation.

条件は真空度0.30Pa、 1%j素分圧0.08P
a、投入電力300 W、サンプルフィルムの送り速度
は40c履/分である。
Conditions are vacuum degree 0.30 Pa, 1% J elementary partial pressure 0.08 P
a. The input power was 300 W, and the feeding speed of the sample film was 40 c/min.

比較例1〜5 保護層にYを含まずCo酸化物とした他は実施例1〜5
と同様に作製されたサンプルをそれぞれ比較例1〜5と
した。
Comparative Examples 1 to 5 Examples 1 to 5 except that the protective layer did not contain Y and was made of Co oxide
Samples prepared in the same manner as above were designated as Comparative Examples 1 to 5, respectively.

比較例6,7 保護層として77%含有のGo−Y1%i化物とした他
は実施例1および実施例4と同様に作製されたサンプル
をそれぞれ比較例6.7とした。
Comparative Examples 6 and 7 Samples prepared in the same manner as in Example 1 and Example 4 were used as Comparative Examples 6 and 7, respectively, except that Go-Y1% i-ide containing 77% was used as the protective layer.

第1表はL記実施例および比較例について、保護層のY
含有量、耐久性および耐蝕性試験の結果を示したもので
ある。ただし、Y含有量は保護層に含まれる金Jili
E(すなわちGo+Y)原子数に対するY原子数の比率
を示す。
Table 1 shows Y of the protective layer for L examples and comparative examples.
The results of content, durability and corrosion resistance tests are shown. However, the Y content is determined by the amount of gold contained in the protective layer.
It shows the ratio of the number of Y atoms to the number of E (ie Go+Y) atoms.

耐久性試験はE記実施例および比較例のサンプルを81
幅に裁断し、テープ状にした後、市販の8鳳履VTRデ
ツキを用いて行った。゛方法は、テストパターンを記録
した後くり返しfIp生を行い、ヘッド出力およびドロ
ップアウト数のパス回数による変化を調べた。耐久性の
判定基準は次のとおりである。くり返し再生100パス
[Jの出力の低ドが初期の出力に対して3dB以内をA
、3dB以りをB。
Durability test was carried out using 81 samples of Examples and Comparative Examples in Section E.
After cutting it into width and making it into a tape shape, it was made using a commercially available 8-tear VTR deck. In this method, after recording a test pattern, repeated fIp recordings were performed to examine changes in head output and number of dropouts depending on the number of passes. The criteria for determining durability are as follows. Repeated playback 100 passes
, 3dB or more is B.

ま−た、100パスに達するj■1にドロップアウトの
数が200個/分を越えたものはCとした。なお、ドロ
ップアウトの数え方は11均出力より113dB以りの
出力紙ドが15g秒以1−続いたときに1個と数えた。
In addition, those in which the number of dropouts exceeded 200 per minute after reaching 100 passes were classified as C. Incidentally, a dropout was counted as one dropout when an output paper signal of 113 dB or more than the 11 average output continued for 15 g seconds or more.

耐蝕性試験は上記と同様に作製したサンプルテープを5
0℃、湿度70%の恒温恒湿槽内に50時間放置した後
、上記と同様のデツキで記録、再生を試みた。その際全
く支障のないものをA、放置中に最外周になっていた部
分30cm程度でドロップアウトの増加が見られたが他
は支障がなかったものをB、テープ全体にわたって正常
な出力の得られない部分がくり返し現われるものをC1
正常に記録11f生できる部分がテープ全長の20%以
りとなったものをDとした。
Corrosion resistance test was performed using sample tape prepared in the same manner as above.
After leaving it in a constant temperature and humidity chamber at 0° C. and 70% humidity for 50 hours, recording and playback were attempted using the same deck as above. A indicates that there was no problem at all, and B indicates that there was an increase in dropouts in the outermost 30cm portion of the tape while the tape was left unused, but no other problems occurred.B indicates that normal output was obtained over the entire tape. C1 is the part that appears repeatedly.
A tape in which the portion where 11 f of normal recording could be made was 20% or more of the total length of the tape was designated as D.

第1表 第2表は回じ〈1耐久性、耐蝕性の試験結果を示す。た
だし、この場合のサンプルは、前記実施例および比較例
において、同じ材質で厚みが略50pmのフィルムをノ
、t′体として用いてディスク状に整形されたもので、
50kBPIのシグナルを記録・1す生したものである
Tables 1 and 2 show the test results for durability and corrosion resistance. However, the sample in this case was formed into a disk shape using the same material and approximately 50 pm thick film as the body in the above Examples and Comparative Examples.
A 50 kBPI signal was recorded and generated.

耐久性の判定基べむは+00万パス走行後の出力の低下
が初期出力に比べて3dB以内をA、3dB以七をB、
安定した1す主出力の得られなくなったものをCとした
The criteria for determining durability is A if the output decreases after + million passes is within 3 dB compared to the initial output, B if it is more than 3 dB,
The case where stable main output could no longer be obtained was designated as C.

耐蝕性の判定基準は、上述と同様の条件に放置した後記
録再生を試み、支障のないものをA、出力の欠落が生じ
るものをB、安定した出力の得られないものをCとした
The criteria for determining corrosion resistance were as follows: After being left under the same conditions as described above, recording and reproducing were attempted, and those with no problems were rated A, those with output loss were rated B, and those with no stable output were rated C.

第2表 [9,明の効果] 以上説明したように、 Co系合金磁性層上にGo−Y
合金を酸化してなる保護層を設けることにより、従来の
保、;〜層を設ける場合と比べて同笠以にの耐久性を維
持しながら、耐蝕性を格段に向丘させることができた。
Table 2 [9, Effect of light] As explained above, Go-Y on the Co-based alloy magnetic layer
By providing a protective layer formed by oxidizing the alloy, it was possible to significantly improve corrosion resistance while maintaining the same durability as in the case of providing a conventional protective layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の金属薄11り)!l/l111気記録
媒体のノ、(本市な構成を示す概念図、第2図は保1か
層の形成に用いた高周波スパッタリング装置の概略図、
第3図は同じく保、Δ層の形成に用いた真空蒸看装置、
第4図は保護層の酸化に用いたプラズマ酸化装置である
。 l:非磁性基体、2:Ca系合金磁・外層、3:Co−
Y酸化物保護層、4:真空槽、5:排気装置、6:Co
−Y合金ターゲット、7:サンプルテニプ、8:巻出し
ロール。 9:中間フリーローラー、IO=駆動キャン。 11:巻取りロール、12:防着板。 13:酸素導入パイプ、 l4:アルゴン導入パイプ、15:隔+5=、16:I
ノ1気装置、17二電f−銃、18ニルツボ、19:C
o−Y合金ペレント、20:’心棒、21:コンデンサ
ー、22:高周波電源、23:アース。
Figure 1 shows the metal thin film 11 of the present invention)! Figure 2 is a schematic diagram of the high-frequency sputtering device used to form the 1/1 layer.
Figure 3 shows the vacuum steaming equipment used to form the Δ layer.
FIG. 4 shows a plasma oxidation apparatus used for oxidizing the protective layer. 1: Non-magnetic substrate, 2: Ca-based alloy magnetic outer layer, 3: Co-
Y oxide protective layer, 4: Vacuum chamber, 5: Exhaust device, 6: Co
-Y alloy target, 7: sample tenip, 8: unwinding roll. 9: Intermediate free roller, IO = drive can. 11: Winding roll, 12: Anti-adhesion plate. 13: Oxygen introduction pipe, l4: Argon introduction pipe, 15: Separation +5=, 16: I
1 air device, 17 electric f-gun, 18 nil pressure point, 19:C
o-Y alloy pellet, 20: 'mandrel, 21: capacitor, 22: high frequency power supply, 23: ground.

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性基体の少なくとも一方の面に、Coを主成
分とする合金よりなる磁性層と、その上にCo−Y合金
の酸化物よりなる保護層とを有することを特徴とする金
属薄膜型磁気記録媒体。
(1) A thin metal film characterized by having a magnetic layer made of an alloy containing Co as a main component on at least one surface of a nonmagnetic substrate, and a protective layer made of an oxide of a Co-Y alloy thereon. type magnetic recording media.
(2)磁性層が媒体の面に対して垂直な方向に磁化が並
ぶように異方性を付与されたものである特許請求の範囲
第1項記載の金属薄膜型磁気記録媒体。
(2) The metal thin film type magnetic recording medium according to claim 1, wherein the magnetic layer is provided with anisotropy so that the magnetization is aligned in a direction perpendicular to the plane of the medium.
JP4155886A 1986-02-28 1986-02-28 Thin metallic film type magnetic recording medium Pending JPS62200520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4155886A JPS62200520A (en) 1986-02-28 1986-02-28 Thin metallic film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4155886A JPS62200520A (en) 1986-02-28 1986-02-28 Thin metallic film type magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62200520A true JPS62200520A (en) 1987-09-04

Family

ID=12611758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4155886A Pending JPS62200520A (en) 1986-02-28 1986-02-28 Thin metallic film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62200520A (en)

Similar Documents

Publication Publication Date Title
US4622271A (en) Magnetic recording medium
US4994321A (en) Perpendicular magnetic recording medium and the method for preparing the same
JPH1049853A (en) Magnetic recording medium and its manufacture
JPS62200520A (en) Thin metallic film type magnetic recording medium
JPH0546013B2 (en)
JPS62202311A (en) Thin metallic film type magnetic recording medium
JPS62200521A (en) Thin metallic film type magnetic recording medium
JPS62219223A (en) Thin metallic film type magnetic recording medium
JPS62202312A (en) Thin metallic film type magnetic recording medium
JPS62200519A (en) Thin metallic film type magnetic recording medium
JPH01287819A (en) Magnetic recording medium
JPS6199922A (en) Magnetic recording medium
JPH01105313A (en) Magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPH01140419A (en) Magnetic recording medium
JPS6326818A (en) Magnetic recording medium
JPS6378339A (en) Production of magnetic recording medium
JPH0352115A (en) Metallic thin film type magnetic recording medium
JPH05143982A (en) Production of magnetic recording medium
JPS61239423A (en) Magnetic recording medium
JPS6326819A (en) Magnetic recording medium
JPH01109516A (en) Magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPH01205716A (en) Magnetic recording medium
JPH01125715A (en) Magnetic recording medium