JPS62202312A - Thin metallic film type magnetic recording medium - Google Patents

Thin metallic film type magnetic recording medium

Info

Publication number
JPS62202312A
JPS62202312A JP4156186A JP4156186A JPS62202312A JP S62202312 A JPS62202312 A JP S62202312A JP 4156186 A JP4156186 A JP 4156186A JP 4156186 A JP4156186 A JP 4156186A JP S62202312 A JPS62202312 A JP S62202312A
Authority
JP
Japan
Prior art keywords
alloy
protective layer
magnetic
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4156186A
Other languages
Japanese (ja)
Inventor
Fumio Kishi
岸 文夫
Takayuki Yagi
隆行 八木
Kumiko Kameyama
亀山 久美子
Kenji Suzuki
謙二 鈴木
Hirotsugu Takagi
高木 博嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4156186A priority Critical patent/JPS62202312A/en
Publication of JPS62202312A publication Critical patent/JPS62202312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve durability and corrosion resistance by providing a magnetic layer consisting of an alloy contg. Co as an essential component and a protective layer consisting of oxide of a Co-Cu alloy thereon on a nonmagnetic substrate surface. CONSTITUTION:The magnetic layer 2 consisting of the Co alloy film and the protective layer 3 formed by partially oxidizing the Co-Cu alloy are provided on the nonmagnetic substrate 1. Co and alloys such as Co-Cr, Co-V, Co-Mo, Co-Cr-Rh and Co-Cr-Mo are used for the material of the magnetic layer 2. Some metallic phase remains preferably in the protective layer in order to obtain the protective layer 3 having good durability. Corrosion arises when the metallic phase is oxidized but the metallic phase is the Co-Cu alloy and has the corrosion resistance higher than the corrosion resistance of the simple substance of Co and therefore, the corrosion resistant effect is obtd. even if the metallic phase remains.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐久性および耐蝕性に優れた金属薄膜型磁、
気記録媒体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a metal thin film type magnet with excellent durability and corrosion resistance,
This relates to recording media.

[従来の技術] 近年、磁気記録の高密度化に対する要求が強くなってき
ており、様々な研究開発が進められている。金FigJ
漠の磁性層を用いる方式もこの一つである。またその中
で特に垂直磁化膜を用いる方式は、高密度になるほど自
己減磁がゼロに近づくため、高密度化に適した方式と考
えられている。
[Prior Art] In recent years, there has been a strong demand for higher density magnetic recording, and various research and development efforts are underway. Gold FigJ
One example of this is a method using a vague magnetic layer. Among these, the method using a perpendicularly magnetized film is considered to be a method suitable for increasing the density because self-demagnetization approaches zero as the density increases.

この金属薄膜型磁気記録媒体に用いられる磁性層の材料
としては、主としテCo、 Co−Ni、 Co−P。
The materials for the magnetic layer used in this metal thin film magnetic recording medium are mainly Co, Co-Ni, and Co-P.

Co−Xi−P、 Co−Cr、 Co−V、 Co−
Ha、 Co−Pt、 Co−W。
Co-Xi-P, Co-Cr, Co-V, Co-
Ha, Co-Pt, Co-W.

Co−Cr−Pd、 Co−Or−No、 Co−Cr
−Rh等Coを主成分とする合金が研究されている。こ
のような金属の磁性層をもつ磁気記録媒体が有する大き
な問題の一つは、磁性層と磁気ヘッドが直接接触すると
両者にキズが発生するなど、耐摩耗性が著しく欠けてい
ることであった。
Co-Cr-Pd, Co-Or-No, Co-Cr
Co-based alloys such as -Rh are being studied. One of the major problems with magnetic recording media with such metal magnetic layers is that they lack a significant amount of wear resistance, with direct contact between the magnetic layer and the magnetic head causing scratches on both. .

この問題は、磁気記録媒体としての信頼性にかかわる重
要な問題であるが、この問題を解決する方法として、従
来から脂肪酸、高級脂肪酸、オキシ脂肪酸、脂肪酸アミ
ド、脂肪酸エステル、脂肪族アルコール、金属セッケン
等を表面に塗布することが行なわれてきた。しかしなが
ら上記の方法ではトップコート層の厚みを均一にするこ
とがむずか17<、その効果が使用するにつれて低下し
、耐久性がない為に満足すべきものではなかった。
This problem is an important problem related to the reliability of magnetic recording media, but conventional methods for solving this problem include using fatty acids, higher fatty acids, oxyfatty acids, fatty acid amides, fatty acid esters, fatty alcohols, and metal soaps. etc. have been applied to the surface. However, the above method was not satisfactory because it was difficult to make the thickness of the top coat layer uniform, its effectiveness decreased with use, and it lacked durability.

この点を改良する方法としてCO酸化物の保護層を形成
することが行なわれている。成膜の手段としては蒸着法
(例えば特開昭5[(−137528号、特開昭f10
−191425号等参照)、反応スパッタリング法(例
えば特開昭59−1935313号、特開昭6O−50
i322号参照)によるものなどが提案されている。
As a method to improve this point, forming a protective layer of CO oxide has been carried out. As a means of film formation, a vapor deposition method (for example, JP-A No. 5 [(-137528), JP-A No. 10-11]
-191425 etc.), reactive sputtering method (for example, JP-A-59-1935313, JP-A-6O-50)
i322) has been proposed.

しかしながら]−記の保護層は耐蝕性の点で問題があり
、例えば高温多湿の条件下に放置した後に記録・再生を
行なうと、再生信号の低下、欠落が生ずる。この耐蝕性
自体は、酸化の程度を強くすることでかなり向上するが
、この場合耐久性が劣化してしまい、両方の性能を両立
させることができない、この点が実用」−大きな問題と
なっている。
However, the protective layer described above has a problem in terms of corrosion resistance; for example, when recording and reproducing are performed after being left under high temperature and high humidity conditions, the reproduced signal deteriorates or is lost. This corrosion resistance itself can be considerably improved by increasing the degree of oxidation, but in this case the durability deteriorates and it is not possible to achieve both properties at the same time, which is a major problem in practical use. There is.

[発明が解決しようとする問題点] 本発明は、上述した従来技術の問題点を除去し、耐久性
と#触性がともに優れた金属薄膜型磁気記録媒体を提供
することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to eliminate the above-mentioned problems of the prior art and provide a metal thin film magnetic recording medium that is excellent in both durability and tactility.

[問題点を解決するための1段および作用]本発明は、
非磁性基体の少なくとも一方の而に、0口を主成分とす
る合金よりなる磁性層と、その上にCo−Cu合金の酸
化物よりなる保護層とを有することを特徴とする金属薄
膜型磁気記録媒体であり、これにより前記目的を達成す
るものである。
[First step and action for solving the problem] The present invention has the following features:
A metal thin film type magnet, characterized in that at least one of the non-magnetic substrates has a magnetic layer made of an alloy containing 0 as a main component, and a protective layer made of an oxide of a Co-Cu alloy thereon. It is a recording medium that achieves the above object.

第1図に本発明の金属薄膜型磁気記録媒体の基本的な構
成を示す、lは非磁性基体、?はCo合金膜よりなる磁
性層、3はCローCu合金を部分的に酸化してなる保護
層である。1の非磁性基体としては、ポリエチ1/ンテ
レフタレート、ポリイミド、ポリカーボネート、ポリア
ミド等から成るプラスチックフィルムあるいはステンレ
ス、アルミニウム、ガラス等を用いることができる。2
の磁性層の材料としては、 Co、 co−Or、 C
o−V、 Co−No。
FIG. 1 shows the basic structure of the metal thin film magnetic recording medium of the present invention, where l is a nonmagnetic substrate and ? 3 is a magnetic layer made of a Co alloy film, and 3 is a protective layer made of a partially oxidized C-low-Cu alloy. As the non-magnetic substrate 1, a plastic film made of polyethylene terephthalate, polyimide, polycarbonate, polyamide, etc., stainless steel, aluminum, glass, etc. can be used. 2
Materials for the magnetic layer include Co, co-Or, C
o-V, Co-No.

Co−W、 Co−P、 Co−旧、 Co−Pt、 
Co−Ni−P、 Co−Cr−Ru。
Co-W, Co-P, Co-old, Co-Pt,
Co-Ni-P, Co-Cr-Ru.

Co−Cr−Rh、 Co−Or−No等の合金を用い
ることができる。
Alloys such as Co-Cr-Rh and Co-Or-No can be used.

このほかに、本発明の金属薄膜型磁気記録媒体には例え
ば基体と磁性層との間に付着力向上や表面粗度の制御を
目的とした中間層、垂直ヘッドを用いる場合に有効な高
透磁率層などを設けてもよい、また酸化物の保護層上に
潤滑層として脂肪酸、高級脂肪酸、オキシ脂肪酸、脂肪
酸アミド、脂肪酸エステル、脂肪族アルコール、金属セ
ッケン等の被膜を設けてもよい。さらに基体裏面に潤滑
または帯?If防止のための層を設けることも可能であ
る。加えて基体の両面に磁性層、保護層等を設ける構造
も可teである。
In addition, the metal thin film magnetic recording medium of the present invention includes, for example, an intermediate layer between the substrate and the magnetic layer for the purpose of improving adhesion and controlling surface roughness, and a high permeability layer that is effective when using a perpendicular head. A magnetic layer or the like may be provided, or a coating of fatty acid, higher fatty acid, oxyfatty acid, fatty acid amide, fatty acid ester, fatty alcohol, metal soap, etc. may be provided as a lubricating layer on the oxide protective layer. Further lubrication or band on the back side of the base? It is also possible to provide a layer for If prevention. In addition, a structure in which magnetic layers, protective layers, etc. are provided on both sides of the substrate is also possible.

保護層の持つべき性質として、ヘッド材料との凝看を起
こしにくく、従って滑性の良いことと同時に下層のCO
系合金磁性層と強く付着し、はかれにくいものでなくく
てならない。
The properties that the protective layer should have are that it is unlikely to cause aggregation with the head material, and therefore has good lubricity, and at the same time, it should reduce CO2 in the underlying layer.
It must adhere strongly to the alloy magnetic layer and be difficult to peel off.

Co主体の酸化物が保護層として優れるのは、CO3O
4(スピネル構造)の形のときに固体潤滑性があり、表
面凝看性の減少の寄与が大きいためである。ところが、
完全に酸化された保護層の場合、磁性層との界面でり、
c、p、構造の金属相と酸化物相(主にCo:+04:
スピネル構造)が接しており、両者の結晶格子が整合し
にくいために層間の結合が弱く、ヘッドとの摺動により
保護層がはがれやすい、従って耐久性のよい保3へ層を
得るには、保護層中に若干の金属相が残存していること
が好ましく、この残存した金属相が磁性層との付着力の
向上を担っているものと推定される。
Co-based oxide is excellent as a protective layer because CO3O
4 (spinel structure) has solid lubricity, which largely contributes to the reduction in surface visibility. However,
In the case of a completely oxidized protective layer, at the interface with the magnetic layer,
c, p, metal phase and oxide phase (mainly Co:+04:
Since the crystal lattices of the two are in contact with each other, the bond between the layers is weak, and the protective layer is likely to peel off due to sliding with the head. Therefore, in order to obtain a highly durable layer, It is preferable that some metal phase remains in the protective layer, and it is presumed that this remaining metal phase is responsible for improving the adhesive force with the magnetic layer.

腐蝕はこの金属相が酸化されることにより生ずる。これ
に対して本発明では、金属相がCa−Cu合金であり、
co巾体よりも耐蝕性が高いため金属相が残存しても耐
蝕効果が得られるものである。
Corrosion is caused by oxidation of this metallic phase. On the other hand, in the present invention, the metal phase is a Ca-Cu alloy,
Since the corrosion resistance is higher than that of the cobalt material, the corrosion resistance effect can be obtained even if the metal phase remains.

なお、Cuの含有賃が過多になると耐久性が低下する。Note that if the content of Cu becomes excessive, the durability will decrease.

この原因としては金属相内でCu相の析出が多くなるこ
とが考えられる。
This is thought to be caused by an increase in the amount of Cu phase precipitated within the metal phase.

以上の検討の結果として、保護層に含まれるCu原子の
丑としては、GO原子とCu原子の総数に対するCu原
子数の比率として5〜50%が好適であり、さらに望ま
しくは10〜50%である。
As a result of the above studies, the ratio of the number of Cu atoms to the total number of GO atoms and Cu atoms is preferably 5 to 50%, and more preferably 10 to 50%. be.

また、保護層の厚さは種々検討の結果30〜500八が
好適であり、一層好ましい範囲は30〜200Aである
。30A以下では保護効果が充分でなく、また500A
を越えるとスペーシングロスのため記録再生特性が劣化
する。
Further, as a result of various studies, the thickness of the protective layer is preferably 30 to 500 mm, more preferably 30 to 200 mm. If it is less than 30A, the protective effect is not sufficient, and if it is less than 500A,
If it exceeds this, the recording and reproducing characteristics will deteriorate due to spacing loss.

本発明はCo系合金磁性膜一般に応用できる技術である
が、磁性層(六方晶系)のC軸が媒体面に対して垂直な
方向に配向している場合の方が、無配向または剥配向の
場合に比べて保護層が多少薄い場合でも耐久性が比較的
良い傾向があった。これは磁性層と保護層内の金属相の
間の結晶学的な整合性のとりやすさに差があるためであ
ろう。近年研究の盛んなCo−Cr等、Coo垂直磁化
膜はC軸が媒体面に垂直方向であり、本発明はとりわけ
CO系合金垂直磁気記録媒体に有効である。特に垂直磁
気記録媒体をリングヘッドとの組み合わせで用いる場合
、面内磁気記録方式に比しスペーシングロスが大であり
、磁性層と磁気ヘッドとのより良好な密着が必要である
との報告がなされており(第9回日本応用磁気学会学術
講演概要集P、100 ) 、本発明はその高密度記録
性とあいまって薄い保護膜を要する垂直磁気記録媒体に
おいて、著しい効能を発揮する。
Although the present invention is a technology that can be applied to Co-based alloy magnetic films in general, when the C axis of the magnetic layer (hexagonal system) is oriented in a direction perpendicular to the medium surface, it is better to use non-oriented or peel-oriented magnetic films. Even when the protective layer was somewhat thinner, the durability tended to be relatively good. This is probably due to the difference in ease of achieving crystallographic consistency between the magnetic layer and the metal phase in the protective layer. In Co-perpendicularly magnetized films such as Co--Cr, which have been extensively studied in recent years, the C-axis is perpendicular to the medium surface, and the present invention is particularly effective for CO-based alloy perpendicular magnetic recording media. In particular, it has been reported that when a perpendicular magnetic recording medium is used in combination with a ring head, the spacing loss is greater than in the longitudinal magnetic recording method, and better adhesion between the magnetic layer and the magnetic head is required. (The 9th Japan Society of Applied Magnetics Academic Conference Abstracts P, 100), and the present invention, combined with its high-density recording properties, exhibits remarkable effectiveness in perpendicular magnetic recording media that require a thin protective film.

また、近年の研究開発の技術的動向によれば、Co合合
金底屈磁性層真空蒸着法、スパッタリング法等、真空中
における物理蒸着プロセスによる形成が一般に高品質の
磁性膜を得やすい。たとえばCo−Ni合金膜の様に面
内磁化膜の場合、その抗磁力を高めるため斜め蒸着と同
時に酸素導入蒸着の技術が用いられることが多く、その
時に表面酸化層もつくられる(たとえば特開昭58−4
1439号)。
Furthermore, according to recent technical trends in research and development, it is generally easier to obtain a high-quality magnetic film by forming a Co alloy bottom-tropic magnetic layer by a physical vapor deposition process in a vacuum, such as a vacuum evaporation method or a sputtering method. For example, in the case of an in-plane magnetized film such as a Co-Ni alloy film, in order to increase its coercive force, an oxygen-introducing evaporation technique is often used at the same time as oblique evaporation, and a surface oxide layer is also created at that time (for example, Showa 58-4
No. 1439).

この際磁性体内部まで酸化が若干おこるので、最表面を
強く酸化しようどすると実際には磁性層内部も酸化し、
Bsの低下をもたらして記録再生特性が低下する(たと
えば特開昭H1!112425号)、対象とする記録密
度が比較的低い面内記録媒体では、この方法は充分な実
用性を持ちうるちのであり1本発明はたとえば上記公開
公報に開示された成膜方法で表面部形成にあずかる蒸気
流にCuを含む金属の蒸気流を合流させる様な形態で実
現できる。一方、CO系垂直磁化膜では使用される記Q
密度の高さのためにスペーシングロスは極力減らす必要
があり、本発明実施例の形成方法にて開示される様に磁
性膜と酸化膜の形成工程とが分離される方が有利である
At this time, some oxidation occurs to the inside of the magnetic material, so if you try to strongly oxidize the outermost surface, the inside of the magnetic layer will actually be oxidized.
This method has sufficient practicality for target in-plane recording media with relatively low recording densities, where recording and reproducing characteristics deteriorate due to a decrease in Bs (for example, Japanese Patent Laid-Open No. 112425). Yes, the present invention can be realized, for example, by the film forming method disclosed in the above-mentioned publication, in which a vapor flow of a metal containing Cu is merged with a vapor flow participating in the formation of a surface portion. On the other hand, the description Q used in the CO-based perpendicular magnetization film is
Due to the high density, it is necessary to reduce the spacing loss as much as possible, and it is advantageous to separate the steps of forming the magnetic film and the oxide film, as disclosed in the forming method of the embodiment of the present invention.

本発明は薄く、かつ耐久性、#摩耗性に富み、また磁性
層の磁気特性を損ねることなく、かつ耐蝕性の良好な酸
化保護膜を提供するものであり。
The present invention provides an oxidation protective film that is thin, durable, highly abrasive, does not impair the magnetic properties of the magnetic layer, and has good corrosion resistance.

その点からも高記録密度、短波長領域で使用される垂直
記録媒体に好適に使用されうるちのである。
From this point of view, it can be suitably used in perpendicular recording media used in high recording density and short wavelength regions.

[実施例コ 以下、実施例に基づいて説明する。なお、ここでは保護
層の厚さは実施例、比較例とも約100Aとした場合の
結果である。
[Example] The following is a description based on an example. Note that here, the results are obtained when the thickness of the protective layer was approximately 100A in both Examples and Comparative Examples.

実施例1 非磁性基体として厚さ10gtmのポリイミド樹脂フィ
ルムを用いて、この上に厚さ0.4 pmのCo−Ca
r合金膜を連続蒸着して長尺のサンプルを得た。
Example 1 A polyimide resin film with a thickness of 10 gtm was used as a non-magnetic substrate, and a Co-Ca film with a thickness of 0.4 pm was applied thereon.
A long sample was obtained by continuously depositing an r-alloy film.

このサンプル上にCo−Cu酸化膜の保護層を第2図に
示した装置により反応スパッタリング法で形成した。4
は真空槽、5は排気装置、6はCo−Cu合金ターゲッ
トであり、外部の高周波電源に接続されている。あらか
じめ真空蒸着法によりCo−Cr合金層をポリイミドフ
ィルム上に形成しであるサンプルフィルム7は巻出しロ
ール8から中rlflフリーローラー9、駆動キャンl
O1再び中間フリーローラー9を経て巻取りロール11
に達する。12は防着板、13は酸素導入パイプ、14
はアルゴン導入パイプである。
A protective layer of a Co--Cu oxide film was formed on this sample by a reactive sputtering method using the apparatus shown in FIG. 4
5 is a vacuum chamber, 5 is an exhaust device, and 6 is a Co-Cu alloy target, which is connected to an external high-frequency power source. A sample film 7, in which a Co-Cr alloy layer was previously formed on a polyimide film by a vacuum evaporation method, was transferred from an unwinding roll 8 to a medium rlf free roller 9 to a driving can l.
O1: Winding roll 11 via intermediate free roller 9 again
reach. 12 is an anti-adhesion plate, 13 is an oxygen introduction pipe, 14
is the argon introduction pipe.

成膜時の到達圧力は3 X 10−’Pa以下、Arガ
ス圧は0.30Pa、酸素導入量は8 cc/分、単位
面間あたりの投入電力は4 W/c+a2 である。こ
のとき堆積速度は約20A/秒で、サンプルフィルムの
駆動速度は15c+a/分である。
The ultimate pressure during film formation was 3 x 10-'Pa or less, the Ar gas pressure was 0.30 Pa, the amount of oxygen introduced was 8 cc/min, and the input power per unit surface was 4 W/c+a2. At this time, the deposition rate was about 20 A/sec, and the sample film drive rate was 15 c+a/min.

実施例2 厚す12 g rsのポリエチレンテレフタレートフィ
ルムの基体上に厚さ0.4 gn+のCo−Ni−P合
金層をメッキ法によって形成した後、実施例1と同様に
してCo−Cu合金の酸化物保護層を形成した。
Example 2 After forming a Co-Ni-P alloy layer with a thickness of 0.4 gn+ on a polyethylene terephthalate film substrate with a thickness of 12 g rs by plating, a Co-Cu alloy layer was formed in the same manner as in Example 1. An oxide protective layer was formed.

実施例3 実施例1と同様の基体上に、厚さ0.4 gmのCo−
Pt合金層を真空蒸着法によって形成した後。
Example 3 A 0.4 gm thick Co-
After forming a Pt alloy layer by vacuum evaporation.

実施例1と同様にCo−Cu酸化膜の保護層を形成した
A protective layer of Co--Cu oxide film was formed in the same manner as in Example 1.

実施例4 実施例1と同様の基体上に、実施例1と同様のCo−C
r合金層を設け、第3図に示した装置によりCo−Cu
酸化膜の保護層を真空蒸着法により形成した。
Example 4 The same Co-C as in Example 1 was deposited on the same substrate as in Example 1.
A Co-Cu alloy layer is provided, and the Co-Cu
A protective layer of oxide film was formed by vacuum evaporation.

全体の構造は第2図の装置とほぼ同じであり、不図示の
導入パイプにより酸素を真空槽内に導入する。真空槽の
一部を隔壁15によって仕切り、その内部をもう一つの
排気装a16によって排気している。この小部屋の中に
電子銃17が設置されており、これから射出される電子
ビームによりルツボ18内のCo−Gu合金ベレット1
9を加熱する。隔壁を設ける目的は、この内部を高真空
に保つことにより酸素流入による電子銃の損傷を防ぐた
めである。
The overall structure is almost the same as the apparatus shown in FIG. 2, and oxygen is introduced into the vacuum chamber through an introduction pipe (not shown). A part of the vacuum chamber is partitioned by a partition wall 15, and the inside thereof is evacuated by another exhaust system a16. An electron gun 17 is installed in this small room, and the electron beam emitted from the electron gun 17 causes the Co-Gu alloy pellet 1 in the crucible 18 to
Heat 9. The purpose of providing the partition wall is to maintain the interior at a high vacuum to prevent damage to the electron gun due to oxygen inflow.

到達圧力は5 X 101Pa以下、酸素導入量は12
cc/分、堆積速度は約50OA/秒、サンプルフィル
ムの送り速度は3.5m/分である。
The ultimate pressure is 5 x 101 Pa or less, and the amount of oxygen introduced is 12
cc/min, the deposition rate is about 50 OA/sec, and the sample film feed rate is 3.5 m/min.

実施例5 実施例1と同様の基体上に同様のCo−Cr合金層を形
成した後、同じ装置でCo−Cu合金の層を形成し、こ
の表面を第4図に示した装置によりプラズマ酸化するこ
とにより保護層を形成した。電極20の間に生じた酸素
プラズマ中をサンプルを通過させ、プラズマ酸化を行う
Example 5 After forming a similar Co-Cr alloy layer on the same substrate as in Example 1, a Co-Cu alloy layer was formed using the same equipment, and this surface was subjected to plasma oxidation using the equipment shown in Figure 4. A protective layer was formed by doing this. The sample is passed through oxygen plasma generated between the electrodes 20 to perform plasma oxidation.

条件は真空度0.30Pa、酸素分圧Q、08Pa、投
入電力300W、サンプルフィルムの送り速度は40c
m/分である。
The conditions are vacuum degree 0.30 Pa, oxygen partial pressure Q 08 Pa, input power 300 W, and sample film feeding speed 40 c.
m/min.

比較例1〜5 保護層にCuを含まずGO酸化物とした他は実施例1〜
5と同様に作製されたサンプルをそれぞれ比較例1〜5
とした。
Comparative Examples 1 to 5 Examples 1 to 5 except that the protective layer did not contain Cu and was made of GO oxide
Samples prepared in the same manner as in Comparative Examples 1 to 5
And so.

比較例6,7 保護層としてCut(0%含有のCo−Cu酸化物とし
た他は実施例1および実施例4と同様に作製されたサン
プルをそれぞれ比較例6.7とした。
Comparative Examples 6 and 7 Comparative Examples 6 and 7 were samples prepared in the same manner as in Example 1 and Example 4, except that Cut (Co-Cu oxide containing 0%) was used as the protective layer.

第1表は上記実施例および比較例について、保護層のC
u含有量、耐久性および耐蝕性試験の結果を示したもの
である。ただし、Cu含有量は保護層に含まれる金属(
すなわちCo+Cu)原子数に対するCu原子数の比率
を示す。
Table 1 shows the C of the protective layer for the above Examples and Comparative Examples.
The results of u content, durability and corrosion resistance tests are shown. However, the Cu content is the metal (
That is, the ratio of the number of Cu atoms to the number of Co+Cu atoms is shown.

耐久性試験は上記実施例および比較例のサンプルを8■
幅に裁断し、テープ状にした後、重版の8 a+mVT
Rデツキを用いて行った。方法は、テストパターンを記
録した後くり返し再生を行い、ヘッド出力およびドロッ
プアウト数のパス回数による変化を調べた。耐久性の判
定基準は次のとおりである。くり返し再生100バス目
の出力の低下が初期の出力に対して3dB以内をA、3
dB以上をB。
Durability tests were conducted on the samples of the above examples and comparative examples.
After cutting to width and making into tape form, reprint 8a+mVT
This was done using an R deck. The method involved recording a test pattern and repeatedly playing it back to examine changes in head output and number of dropouts depending on the number of passes. The criteria for determining durability are as follows. If the output of the 100th bus repeatedly played is within 3 dB of the initial output, A, 3
B for more than dB.

また、100パスに達する前にドロップアウトの数が2
00個/分を越えたものはCとした。なお、ドロップア
ウトの数え方は平均出力より16dB以上の出力低下が
15p秒以上続いたときに1個と数えた。
Also, the number of dropouts is 2 before reaching 100 passes.
Those exceeding 00 pieces/min were rated C. Note that a dropout was counted as one dropout when the output decreased by 16 dB or more from the average output for 15 p seconds or more.

耐蝕性試験は上記と同様に作製したサンプルテープを5
0℃、湿度70%の恒温恒湿槽内に50時間放nした後
、上記と同様のデツキで記録、再生を試みた。その際全
く支障のないものをA、放置中に最外周になっていた部
分30C】程度でドロップアウトの増加が見られたが他
は支障がなかったものをB、テ・−プ全体にわたって正
常な出力の得られない部分がくり返し現われるものをC
2正常に記録再生できる部分がテープ全長の20%以上
となったものをDとした。
Corrosion resistance test was performed using sample tape prepared in the same manner as above.
After leaving it in a constant temperature and humidity chamber at 0° C. and 70% humidity for 50 hours, recording and reproduction were attempted using the same deck as above. A indicates that there was no problem at all, and B indicates that there was an increase in dropouts at the outermost part of the tape (about 30C), which was the outermost part while the tape was left unattended, but no problems were found elsewhere. C indicates a part where a certain output cannot be obtained repeatedly.
2 A tape in which the portion that can be recorded and reproduced normally was 20% or more of the total length of the tape was designated as D.

第1表 第2表は同じく耐久性、耐蝕性の試験結果を示す。ただ
し、この場合のサンプルは、前記実施例および比較例に
おいて、同じ材質で厚みが路50p−mのフィルムを基
体として用いてディスク状に整形されたもので、50k
BPIのシグナルを記録・再生したものである。
Tables 1 and 2 also show the test results for durability and corrosion resistance. However, the sample in this case was formed into a disk shape using the same material as in the above Examples and Comparative Examples and having a thickness of 50 p-m as a substrate.
This is a recording and reproduction of BPI signals.

耐久性の判定基準は100万パス走行後の出力の低下が
初期出力に比べて3dB以内をA、3dB以北をB、安
定した再生出力の得られなくなったものをCとした。
The criteria for determining durability are A when the output decreases within 3 dB compared to the initial output after 1 million passes, B when the output exceeds 3 dB, and C when stable playback output cannot be obtained.

耐蝕性の判定基準は、上述と同様の条件に放置した後記
録再生を試み、支障のないものをA、出力の欠落が生じ
るものをB、安定した出力の得られないものをCとした
The criteria for determining corrosion resistance were as follows: After being left under the same conditions as described above, recording and reproducing were attempted, and those with no problems were rated A, those with output loss were rated B, and those with no stable output were rated C.

第2表 [発明の効果] 以上説明したように、Co系合金磁性層上にCo−Cu
合金を酸化してなる保護層を設けることにより、従来の
保護層を設ける場合と比べて同等以上の耐久性を維持し
ながら、1耐蝕性を格段に向上させることができた。
Table 2 [Effects of the Invention] As explained above, Co-Cu alloy is formed on the Co-based alloy magnetic layer.
By providing a protective layer formed by oxidizing an alloy, it was possible to significantly improve corrosion resistance while maintaining durability equivalent to or higher than that obtained when a conventional protective layer is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の金属薄膜型磁気記録媒体の基本的な構
成を示す概念図、第2図は保護層の形成に用いた高周波
スパッタリング装置の概略図、第3図は同じく保護層の
形成に用いた真空蒸着装置、第4図は保護層の酸化に用
いたプラズマ酸化装置である。 l:非磁性基体、2:Co系合金磁性層。 3:Co−Cu酸化物保護層、4:真空槽、5:排気装
置、6:Co−Cu合金ターゲット。 7:サンプルテープ、8:3出しロール、9:中間フリ
ーローラー、10:駆動キャン。 ll:巻取りロール、12:防着板、 13:酸素導入パイプ、 14:アルゴン導入パイプ、15:隔壁、16:排気装
置、17:電子銃、18ニルツボ、19:Co−Cu合
金ペレット、20:電極、21:コンデンサー、22:
高周波電源、23:アース。
Fig. 1 is a conceptual diagram showing the basic structure of the metal thin film magnetic recording medium of the present invention, Fig. 2 is a schematic diagram of the high frequency sputtering apparatus used for forming the protective layer, and Fig. 3 is also a schematic diagram for forming the protective layer. Figure 4 shows the plasma oxidation equipment used to oxidize the protective layer. 1: non-magnetic substrate, 2: Co-based alloy magnetic layer. 3: Co-Cu oxide protective layer, 4: Vacuum chamber, 5: Exhaust device, 6: Co-Cu alloy target. 7: Sample tape, 8: 3 output roll, 9: Intermediate free roller, 10: Drive can. ll: Winding roll, 12: Anti-adhesive plate, 13: Oxygen introduction pipe, 14: Argon introduction pipe, 15: Partition wall, 16: Exhaust device, 17: Electron gun, 18 Nil pot, 19: Co-Cu alloy pellet, 20 : Electrode, 21: Capacitor, 22:
High frequency power supply, 23: Earth.

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性基体の少なくとも一方の面に、Coを主成
分とする合金よりなる磁性層と、その上にCo−Cu合
金の酸化物よりなる保護層とを有することを特徴とする
金属薄膜型磁気記録媒体。
(1) A metal thin film characterized by having, on at least one surface of a non-magnetic substrate, a magnetic layer made of an alloy containing Co as a main component, and a protective layer made of an oxide of a Co-Cu alloy thereon. type magnetic recording media.
(2)磁性層が媒体の面に対して垂直な方向に磁化が並
ぶように異方性を付与されたものである特許請求の範囲
第1項記載の金属薄膜型磁気記録媒体。
(2) The metal thin film type magnetic recording medium according to claim 1, wherein the magnetic layer is provided with anisotropy so that the magnetization is aligned in a direction perpendicular to the plane of the medium.
JP4156186A 1986-02-28 1986-02-28 Thin metallic film type magnetic recording medium Pending JPS62202312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4156186A JPS62202312A (en) 1986-02-28 1986-02-28 Thin metallic film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4156186A JPS62202312A (en) 1986-02-28 1986-02-28 Thin metallic film type magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62202312A true JPS62202312A (en) 1987-09-07

Family

ID=12611848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4156186A Pending JPS62202312A (en) 1986-02-28 1986-02-28 Thin metallic film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62202312A (en)

Similar Documents

Publication Publication Date Title
US4622271A (en) Magnetic recording medium
US4994321A (en) Perpendicular magnetic recording medium and the method for preparing the same
JPS6378328A (en) Magnetic recording medium
JPH1049853A (en) Magnetic recording medium and its manufacture
JPS62202312A (en) Thin metallic film type magnetic recording medium
JPH01220120A (en) Magnetic tape
JPS62200521A (en) Thin metallic film type magnetic recording medium
JPS62219223A (en) Thin metallic film type magnetic recording medium
JPS62200520A (en) Thin metallic film type magnetic recording medium
JPS62202311A (en) Thin metallic film type magnetic recording medium
JPS62200519A (en) Thin metallic film type magnetic recording medium
JPS61105721A (en) Magnetic recording medium
JPS61240428A (en) Magnetic recording medium
JP2959110B2 (en) Manufacturing method of magnetic tape
JPH01105313A (en) Magnetic recording medium
JPS61278012A (en) Magnetic recording medium
JPH0411322A (en) Magnetic recording medium
JPS58171717A (en) Magnetic recording medium
JPS61239423A (en) Magnetic recording medium
JPS60127520A (en) Magnetic recording medium
JPH1074319A (en) Manufacture of magnetic recording medium and manufacturing device therefor
JPH08129741A (en) Magnetic recording medium
JPS61271616A (en) Magnetic recording medium
JPS62192922A (en) Production of magnetic recording medium
JPS6326819A (en) Magnetic recording medium