JPS62198165A - Schottky junction type field effect transistor - Google Patents

Schottky junction type field effect transistor

Info

Publication number
JPS62198165A
JPS62198165A JP3911886A JP3911886A JPS62198165A JP S62198165 A JPS62198165 A JP S62198165A JP 3911886 A JP3911886 A JP 3911886A JP 3911886 A JP3911886 A JP 3911886A JP S62198165 A JPS62198165 A JP S62198165A
Authority
JP
Japan
Prior art keywords
electrode
source electrode
schottky junction
gate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3911886A
Other languages
Japanese (ja)
Inventor
Haruo Kakuwa
角和 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3911886A priority Critical patent/JPS62198165A/en
Publication of JPS62198165A publication Critical patent/JPS62198165A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the reliability and screening test yield of a Schottky junction type field effect transistor by forming a cutout at part of an active layer on the periphery of a source electrode near a gate power supplying point in a GaAs FET to alleviate a current concentration generated at the end of the source electrode even if an excess surge is input. CONSTITUTION:A drain electrode 104d and a source electrode 104s ohmically bonded on an active layer 103 formed through a buffer layer 102 are formed on a semi-insulating semiconductor substrate 101. A gate electrode 104g ohmically bonded between the electrodes 104d and 104s is formed. After a hole is opened by a photoresist 105 in an SiO2 layer 105 near a gate power supplying point 114g around the electrode 104s by photoetching, with the photoresist 106 as a mask it is etched to remove part of the layer 103 to form a cutout 11. A small signal GaAs FET having a Schottky junction at the source electrode has excellent surge resistance characteristic.

Description

【発明の詳細な説明】 〔産業上の々1」用分野〕 この発明はショットキ接合型it!!V−効来トランジ
スタの構造に関するものである。
[Detailed description of the invention] [Industrial field] This invention is a Schottky junction type IT! ! It concerns the structure of a V-effect transistor.

〔従来の技術〕[Conventional technology]

近年砒化カリウムショットキ接合摺電Jf1−効果トラ
ンジスタ(以下GaAsFET)は厄、用範囲が拡大す
るにつれてその靜を破壊耐力の改善が、より一層重候な
ものになってきている0第6図に示すG a A s 
F E ’1’は、通常半絶縁性基板】0】上に高純駁
GaAsバッファ鳩】02を弁してn型でキャリヤ濃度
が】〜3 XI O”cm−”。
In recent years, potassium arsenide Schottky junction sliding current JF1-effect transistors (hereinafter referred to as GaAsFETs) have been in trouble, and as their range of use has expanded, improvements in their breakdown strength have become increasingly important.0Figure 6 shows Ga As
F E '1' is usually a semi-insulating substrate [0] with a high purity GaAs buffer layer [02] on it and is n-type with a carrier concentration of ~3 XI O"cm-".

厚ざが0.5μm8度の能動層】03をエピタキシャル
成長させたウェーハを用い、その能動層103上にソー
ス、ドレイン電極を形成するために金ゲルマニウム/ニ
ッケルを魚屑し、水素炉中で熱処理を施してオーミック
接合になるソースTo極] 04 g 、  ドレイン
電極104dが形成されている。さらに、この両室極間
の51021m105に微細な光蝕技術によってアルミ
ニクムのゲート電&104gが形成されている06〜I
Bt)Hz径程度小信号として使用される(jaAsi
’ETの電極間寸法はその尚周波付性を実椀するため、
ノース。ドレイン電極間で4μm1ゲート、ソースII
極間で1μm1ゲート長は0.3〜0.5μmと極、め
て微lノーな値を有しているOこのような構造のチップ
を小型外囲器に組み込み、0aAsF’ET  に要求
される高信頼性を得るために厳しいスクリーニングが実
施され、内部に潜在する不良を完全に除去したのち、製
品化されている。
Using a wafer on which active layer 03 with a thickness of 0.5 μm and 8 degrees was epitaxially grown, gold germanium/nickel was scraped onto the active layer 103 to form source and drain electrodes, and heat treatment was performed in a hydrogen furnace. A source To electrode which becomes an ohmic contact by applying the same voltage to the source To electrode] 04g and a drain electrode 104d are formed. Furthermore, an aluminum gate electrode &104g is formed on the 51021m105 between the two chamber electrodes using fine photoetching technology.
Bt) Used as a small signal around Hz diameter (jaAsi
'ET's inter-electrode dimensions are determined to ensure its frequency stability.
North. 4 μm between drain electrodes 1 gate, source II
The distance between electrodes is 1 μm, and the gate length is 0.3 to 0.5 μm, which is an extremely small value.A chip with this structure can be incorporated into a small package to meet the requirements for 0aAsF'ET. In order to ensure high reliability, the product is manufactured after rigorous screening has been carried out to completely eliminate any latent defects.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところでこのような厳しい恢肴工程を通過した製品でも
時に破壊に至る故障が発生することがある。これらの故
障品を詳細にI’d fすると、はとんどの場合、ゲー
ト給ち、点】]4gに近いゲート、ソース電極間・に焼
損fffl106が認められ、電圧サージによる故障発
生ということが推定される。
By the way, even products that have gone through such a rigorous processing process can sometimes experience failures that lead to destruction. If we examine these defective products in detail, in most cases, burnout fffl106 was observed between the gate and source electrodes near the gate and source electrodes, indicating that the failure was caused by a voltage surge. Presumed.

軟土の原因は、平面的にはノース。ドレイン111極]
’04s、]]0dかケート電極104gを挾んでゲー
ト給電点】】4gからゲート終端124g’lで等間隔
に形成されているため、ゲート耐圧を超えるサージがケ
ートi41.極に印加された場合、最も電位の扁くなる
ゲート給電点114g近傍と、ソース電極104sの甲
で電界集中が起こる角(かど)部114sで遇刺電流に
よる2イラメンタリ破壊(F目amentaryBre
akdown、以下破壊と略称)の発生、これに続く/
ヨードバスの発生、そして最終的な焼損によりFETを
破壊に至らしめたものである。
The cause of the soft soil is the North in terms of plane. Drain 111 pole]
'04s,]]0d or the gate electrode 104g are formed at equal intervals between the gate electrode 104g and the gate terminal 124g'l, so a surge exceeding the gate withstand voltage may occur between the gate electrode 104g and the gate electrode 104g. When the electric field is applied to the pole, a two-ironemental breakdown (amentary Bre
akdown (hereinafter abbreviated as destruction) occurs, followed by /
This caused the FET to be destroyed due to the generation of iodobas and eventual burnout.

これを第7図で説明すると、を流は能動層103のごく
表面のみを流れるのでソース端では電流集中も発生しや
すく、また、これはゲーlt極に対向するソース端にフ
ィラメンタリ破壊発止の寮内にもなっていた。これを防
止するため、ソースtLh 104 sの角部に丸みを
つけて電界集中を弱める方法、またを言ソース電極10
4Sのオーミック接合部を能動層】03の中深くまで浸
透させる方法、なども採られてきたか、いずれも効果的
な結果I言得られていない。
To explain this with reference to FIG. 7, since the current flows only on the very surface of the active layer 103, current concentration tends to occur at the source end, and this also causes filamentary breakdown at the source end opposite to the gale electrode. It was also inside the dormitory. In order to prevent this, there is a method of rounding the corners of the source tLh 104 s to weaken the electric field concentration.
Methods such as making the 4S ohmic junction penetrate deep into the active layer 03 have also been adopted, but none of these methods have yielded effective results.

軟土の如く、高周波物性の実親を擾先する小信号U a
 A s F E Tはサージに対し2弱いといり問題
点があった。
Like soft soil, a small signal U a that touches the real parent of high-frequency physical properties
A s FET had a problem as it was 2 weak against surge.

したがってこの発明は上記従来の間組点に鑑み、これを
改良した電界効果トランジスタの補遺を提供することを
目的とする0 〔問題点を解決するだめの手段〕 上記目的を達成するためのこの発明の構成を実施例に対
応する第1図tag、 fb)を用いて説明する。この
発明では、半絶縁性半纏体基板101の表面上にバッフ
ァ層】02を介して形成された能動層103上にオーミ
ック接合したドレイン電極] 04(1,ソースを極1
04Sを設け、又これら両電極間にショットキ接合され
たゲート電極104gが設けられたショットキ接合型電
界効果トランジスタを形成し、このショットキ接合型電
界効果トランジスタのゲート′に他の給電点114gに
近接したソース電極]04Sの周辺の能動層の一部を除
去することにより切欠部1】を設けた4111造になっ
ている0〔作用〕 第1図(a)、fb)に示したこの発明のショットキ接
合型電界効果トランジスタにおいて、ゲート電極104
gにゲー)%極を超えるサージが印加された場合、最も
電位の尚くなるゲート給電点114g近傍と電界の集中
が起こるゲート給を点114gに近接したソース電極】
04Sの角部との間には切欠部11を設けているため、
これら両電極c】o4g、1o4s)をηすれる電流は
第2図に示すように切欠部】】を介して迂回して流れる
ようになるので、過剰’RUtによる両電極(104g
、104s)間の焼損が生じにくくなる。
Therefore, in view of the above-mentioned conventional interpolation points, it is an object of the present invention to provide an improved field-effect transistor supplement. The configuration will be explained using FIG. 1 (tag, fb) corresponding to the embodiment. In this invention, the drain electrode]04 (1, the source is connected to the active layer 103 which is ohmically connected to the active layer 103 formed on the surface of the semi-insulating semi-integrated substrate 101 via the buffer layer [02]).
A Schottky junction field effect transistor is formed in which a Schottky junction field effect transistor 04S is provided, and a Schottky junction gate electrode 104g is provided between these two electrodes, and the gate' of this Schottky junction field effect transistor is located close to another power supply point 114g. By removing a part of the active layer around the source electrode] 04S, a cutout 1] is provided to form a 4111 structure. In a junction field effect transistor, the gate electrode 104
When a surge exceeding G)% is applied to g, the potential is lowest near the gate feeding point 114g, and the gate feeding point where the electric field is concentrated is the source electrode near the point 114g]
Since a notch 11 is provided between the corner of 04S,
The current flowing through these two electrodes c]o4g, 1o4s) detours through the notch]] as shown in Figure 2, so the current flowing through both electrodes (104g
, 104s) is less likely to occur.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面を8照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図に一実施例の(jaAsFETを示す0第]図に
おいて従来と変わらない部分には従来と同じ符号を付け
て示し説明を省略する0この発明の一実施例であるC)
aAsFE’l’ではソース電極104Sの剃囲でゲー
ト電極の給電点114gに近接する部分に切欠部11が
設けられている0この形成力法を含むFETの製造力性
につき第3図fa)〜(e)によって説明する。
FIG. 1 shows an embodiment of the present invention (C), which is an embodiment of the present invention, in which parts that are the same as the conventional one are given the same reference numerals as the conventional one, and their explanations are omitted.
In the aAsFE'l', a notch 11 is provided in a portion of the shaving area of the source electrode 104S that is close to the power feeding point 114g of the gate electrode. This is explained by (e).

従来と同様に半絶縁性基鈑】()1上に高純度GaA 
sバラフッ層102を介してna!!でキャリヤ濃度が
1〜3X10cIn 、厚さが0.5μmi度の能動層
103をエピタキシャル成長させたウェーハを用意し、
その上面にSin!層105を形成する(第3図ta)
 ) o次に、前記5i01層】05に光蝕刻によって
ソース、ドレインti形成予定域に開孔を施し、金・ゲ
ルマニウム合金/ニッケルを蒸着し、不要部分を除去し
たのち、水素炉中で400″0,5分間の熱処理を行な
ってオーミック接合を得る(WXB図(b))。次に、
ゲート電極104gを形成するために、光蝕刻により前
記5i01層105に開孔を設けたのち、アルミニウム
な5oool蒸着し不要部分をリフトオフ法によって除
去する。ついで光蝕刻によってソース電極】04Sの周
囲のゲート給電点】】4g近傍の5j01層】05にフ
ォトレジスト106を用い開孔を施したのち、このフォ
トレジスト106をマスクにしてエツチングすることに
より能動層】03の一部を除去し切欠部1】を形成する
(第3図(c) 、 (d) )oσらにソース電極1
04Sとドレインを極104dのボンディング用として
チタン、白金、金をそりフトオフ法により不要な部分を
除去して金机層】07を形成し1ざらに半絶縁性基板1
01の裏面に2000Xの厚さの金層】08を形成し、
ついでダイクングを施して(jaAsFETチップが得
られる。(第3図(?)) 紙上のソース電極にショットキ接合を有する小信号用G
aAsFETが、従来の形状のものよりも耐サージ特性
に優れていることを次のようにしてWk認した。すなわ
ち、従来のGaAsFE’l’チップとこの発明の同チ
ップを夫々外囲器に内装し、第5図に示す電気回路によ
ってn電破壊強度測定試験を行なった。この電気回路に
おけるコンデンサ(Qはその容量が標準的に用いられる
200pFのものとした。なお試験に使用したGaAs
FETは、切欠部11の形状寸法として幅0.5μm、
長さ50μ…、深さ0.2μmで形成し、又ゲート幅を
400μmと800μmに設定した。上記試験の結果を
第5図にゲート幅と静電破壊エネルギとの相関につき、
従来のものを黒丸、破線で、本発明を白丸実線で夫々示
す0この図に示す結果から本発明のものが静電破壊に対
し約3倍も大きいことが明らかとなり、電流分散を目的
とする有効性が確認できた0ところでこの発明では切欠
部]】をゲート電極の給電点114gに近接したソース
電極104Sの周辺の一部に設けているが、ゲート電極
104gと対向するソース電極1045周囲の全てに形
成すると、ゲート電極104gとソース電極1045間
の直列抵抗値が増大し、雑音指数の増加や利得の低減の
原因になるため得策ではない。実験的にはゲート電極1
04gへ対向する切欠部11の長さが、ゲート電極の給
電点114gに近接した一部分であれば、ゲート電極1
04gとソース電極104s間の直列抵抗値の変動には
影響せず、前記悪化要因にを与しないという結果が得ら
れている。
High-purity GaA on the semi-insulating substrate ( ) 1 as before
na! via the s-balance layer 102! ! A wafer on which an active layer 103 having a carrier concentration of 1 to 3×10 cIn and a thickness of 0.5 μm was epitaxially grown was prepared.
Sin! Forming layer 105 (FIG. 3 ta)
)Next, holes were made in the 5i01 layer]05 by photoetching in the regions where the source and drain ti were to be formed, gold-germanium alloy/nickel was deposited, unnecessary parts were removed, and the layer was heated in a hydrogen furnace for 400mm. Heat treatment is performed for 0.5 minutes to obtain ohmic contact (WXB diagram (b)).Next,
In order to form the gate electrode 104g, an opening is formed in the 5i01 layer 105 by photoetching, and then 5OOOL of aluminum is vapor deposited and unnecessary portions are removed by a lift-off method. Then, by photoetching, holes are formed in the 5j01 layer 05 near the gate power supply point 4g around the source electrode 04S using a photoresist 106, and the active layer is etched using the photoresist 106 as a mask. A part of the source electrode 1 is removed to form a notch 1 (FIG. 3(c), (d)).
04S and the drain for bonding to the pole 104d, unnecessary parts of titanium, platinum, and gold were removed by a lift-off method to form a metal layer 07, and a semi-insulating substrate 1 was roughly formed.
A gold layer with a thickness of 2000X]08 is formed on the back side of 01,
Then, die-cutting is performed (a jaAsFET chip is obtained (Fig. 3 (?)).
It was confirmed in the following manner that the aAsFET has better anti-surge characteristics than those of conventional shapes. That is, a conventional GaAsFE'l' chip and the same chip of the present invention were each housed in an envelope, and an n-electrode breakdown strength measurement test was conducted using the electric circuit shown in FIG. The capacitor (Q) in this electric circuit had a capacitance of 200 pF, which is the standard value.The GaAs used in the test
In the FET, the notch 11 has a width of 0.5 μm,
They were formed to have a length of 50 μm and a depth of 0.2 μm, and the gate widths were set to 400 μm and 800 μm. The results of the above test are shown in Figure 5 regarding the correlation between gate width and electrostatic breakdown energy.
The conventional product is shown with a black circle and a broken line, and the present invention is shown with a white circle and a solid line.0 From the results shown in this figure, it is clear that the product of the present invention is about three times more resistant to electrostatic damage, and is intended for current dispersion. Although the effectiveness has been confirmed, in the present invention, a notch] is provided in a part of the periphery of the source electrode 104S close to the power feeding point 114g of the gate electrode, but a If it is formed in all areas, the series resistance value between the gate electrode 104g and the source electrode 1045 will increase, which will cause an increase in the noise figure and a decrease in the gain, which is not a good idea. Experimentally, gate electrode 1
If the length of the notch 11 facing the gate electrode 114g is a portion close to the power feeding point 114g of the gate electrode, the gate electrode 1
The result was obtained that it did not affect the fluctuation of the series resistance value between the source electrode 104g and the source electrode 104s, and did not contribute to the above deterioration factor.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、 GaAsF E
 ’I’においてサージによる破壊が発生しやすいゲー
ト給電点に近接するソース電極の周辺の能動層の一部に
切欠部を設けることで、過剰なサージ入力かあっても、
ソース電極端部に発生するtg集中を緩和させることが
でき、ゲート電極とソース電極との間の焼損が生じず、
信頼性およびスクリーニング試験歩留の高いGaAsF
ET が提供できる顕著な利点がある0
As described above, according to the present invention, GaAsF E
By providing a notch in a part of the active layer around the source electrode near the gate power supply point where damage due to surges is likely to occur in 'I', even if there is an excessive surge input,
The concentration of tg generated at the end of the source electrode can be alleviated, and burnout between the gate electrode and the source electrode does not occur.
GaAsF with high reliability and screening test yield
There are significant advantages that ET can offer0

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にがかる一実施例の(JaAsFET
 を示す図aは上面図、図すは図aのA −A線に沿う
断面図、第2図はこの発明によるGaAsFET のゲ
ート、ソース電極間の!MThを示す断面図、第3図t
a+〜(e)は一実施例のGaAsF’ E T  の
製造方法を工程順に示すいずれも断面図、第4図は1・
” E Tの静電破壊強度測定に用いた電気回路図、第
5図は)’ E ’rの静電破壊強度試験結果を示す線
図、第6図は従来の(J a A s F )Ji’を
示す図aは上面図、図すは図aのA−AIli!に浴う
断面図、第7図はp E、rl+のゲート、ソースを極
間の電流を示す断面図である。 11・・・切欠部、10】・・半絶縁性基板、103・
・・能動1t5.104g・・・ゲート電極+  ] 
04 s・・・ソース電極、]04d・・・ドレイン電
極、114g・・・ゲート給電点。 代理人 弁理士  則 近 慧 佑 同     竹 花 喜久カ )$2回 り、3図 (GaiLwrdd ) Lj図 /24#ゲ;ト1[蔵シト資つ 茎6図 結7I¥1
FIG. 1 shows an embodiment of the present invention (JaAsFET).
Figure a is a top view, Figure a is a cross-sectional view taken along the line A--A in Figure A, and Figure 2 is a diagram showing the area between the gate and source electrodes of the GaAsFET according to the present invention. Cross-sectional view showing MTh, Figure 3 t
a+ to (e) are cross-sectional views showing the manufacturing method of GaAsF' ET of one embodiment in the order of steps, and FIG.
The electrical circuit diagram used to measure the electrostatic breakdown strength of ``ET'', Figure 5 is a diagram showing the electrostatic breakdown strength test results of )' Figure a showing Ji' is a top view, it is a sectional view taken along A-AIli! of figure a, and Figure 7 is a sectional view showing the current between the gate and source of pE, rl+. 11... Notch, 10]... Semi-insulating substrate, 103...
...Active 1t5.104g...Gate electrode +]
04s...Source electrode, ]04d...Drain electrode, 114g...Gate feed point. Agent Patent Attorney Nori Kei Yudo Takehana Kikuka) $2 round, 3 figures (GaiLwrdd) Lj figure/24 #ge;

Claims (1)

【特許請求の範囲】 半絶縁性半導体基板上の能動層にオーミック接合された
ソース電極とドレイン電極及びこれら両電極間にショッ
トキ接合されたゲート電極が設けられたショットキ接合
型電界効果トランジスタにおいて、 前記ゲート電極の給電点に近接した前記ソース電極の周
辺の前記能動層の一部を除去したことを特徴とするショ
ットキ接合型電界効果トランジスタ。
[Scope of Claims] A Schottky junction field effect transistor comprising a source electrode and a drain electrode which are ohmically connected to an active layer on a semi-insulating semiconductor substrate, and a gate electrode which is connected to a Schottky junction between these two electrodes, comprising: A Schottky junction field effect transistor, characterized in that a part of the active layer around the source electrode close to a power feeding point of a gate electrode is removed.
JP3911886A 1986-02-26 1986-02-26 Schottky junction type field effect transistor Pending JPS62198165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3911886A JPS62198165A (en) 1986-02-26 1986-02-26 Schottky junction type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3911886A JPS62198165A (en) 1986-02-26 1986-02-26 Schottky junction type field effect transistor

Publications (1)

Publication Number Publication Date
JPS62198165A true JPS62198165A (en) 1987-09-01

Family

ID=12544168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3911886A Pending JPS62198165A (en) 1986-02-26 1986-02-26 Schottky junction type field effect transistor

Country Status (1)

Country Link
JP (1) JPS62198165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165174A (en) * 1987-12-21 1989-06-29 Nec Corp Field effect transistor
JPH01187978A (en) * 1988-01-22 1989-07-27 Mitsubishi Electric Corp Field-effect transistor
US8841719B2 (en) 2011-01-12 2014-09-23 Denso Corporation Semiconductor device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165174A (en) * 1987-12-21 1989-06-29 Nec Corp Field effect transistor
JPH01187978A (en) * 1988-01-22 1989-07-27 Mitsubishi Electric Corp Field-effect transistor
US8841719B2 (en) 2011-01-12 2014-09-23 Denso Corporation Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH09181093A (en) Field-effect transistor
JPS62198165A (en) Schottky junction type field effect transistor
JPS5879773A (en) Field-effect transistor
JPS61276376A (en) Schottky-junction-type field effect transistor
JP3365380B2 (en) High frequency semiconductor device and manufacturing method thereof
JPH07142731A (en) Power device and method for forming it
JPS5934666A (en) Semiconductor integrated circuit device
JPS6081867A (en) Mos field effect transistor
JPS6357946B2 (en)
JP2707576B2 (en) Semiconductor device
JPS60124872A (en) Vertical type mos field-effect transistor
JP2002043586A (en) Semiconductor device
JPS58131775A (en) Field- effect semiconductor device
JPH01134975A (en) Semiconductor integrated circuit device
JPH05152340A (en) Field-effect transistor
JPS5915390B2 (en) field effect transistor
JPS61292952A (en) Gallium arsenide semiconductor element and manufacture thereof
JPS58102565A (en) Semiconductor device
JPS59117232A (en) Semiconductor device
JPS6395658A (en) Semiconductor device
JPS5931219B2 (en) semiconductor equipment
JPS62291972A (en) Manufacture of semiconductor device
JPH03108729A (en) Field effect type transistor
JPS6155954A (en) Semiconductor integrated circuit device
JPS60245280A (en) Semiconductor device