JP2002043586A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2002043586A
JP2002043586A JP2000223504A JP2000223504A JP2002043586A JP 2002043586 A JP2002043586 A JP 2002043586A JP 2000223504 A JP2000223504 A JP 2000223504A JP 2000223504 A JP2000223504 A JP 2000223504A JP 2002043586 A JP2002043586 A JP 2002043586A
Authority
JP
Japan
Prior art keywords
region
type
concentration
conductivity type
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000223504A
Other languages
Japanese (ja)
Other versions
JP4029549B2 (en
Inventor
Yutaka Tajima
豊 田島
Toshiaki Shinohara
俊朗 篠原
Yoshio Shimoida
良雄 下井田
Teruyoshi Mihara
輝儀 三原
Masakatsu Hoshi
星  正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Unisia Jecs Corp filed Critical Nissan Motor Co Ltd
Priority to JP2000223504A priority Critical patent/JP4029549B2/en
Publication of JP2002043586A publication Critical patent/JP2002043586A/en
Application granted granted Critical
Publication of JP4029549B2 publication Critical patent/JP4029549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve durability and reliability by preventing a concentration of a surge current. SOLUTION: In a semiconductor device, an n-type region 3 is formed on a surface of a silicon support board via a dielectric film 2, and an n-type high concentration buried region 5 is formed in contact with the film 2 on a bottom of the region 3. A frame-like trench groove type insulating region 4 contacted with the film 2 is formed on the region 3. A p-type region 6 is formed in contact with an n-type high concentration buried region 5 on an inside n-type region 3A in the region 4, and a p-type high concentration region 7 is formed on the region 6. An n-type high concentration region 8 is provided in isolation from the region 6 on the region 3A, and a trench groove type insulating region 9 contacted with a dielectric film is formed between the region 8 and the region 6. The region 7 is connected to a low potential terminal, the region 8 is connected to an input terminal, and a protective diode is formed therebetween.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体支持基板の
表面(主面)上に誘電体を介して半導体領域が形成され
た半導体装置に関する。
The present invention relates to a semiconductor device in which a semiconductor region is formed on a surface (main surface) of a semiconductor support substrate via a dielectric.

【0002】[0002]

【従来の技術】一般に、半導体装置として、例えば半導
体支持基板をなすシリコン基板上にシリコン酸化膜等の
誘電体を介してp形シリコンまたはn形シリコンからな
るシリコン領域を形成したものが知られている(例え
ば、特開平7−312424号公報等)。
2. Description of the Related Art In general, as a semiconductor device, there is known a semiconductor device in which a silicon region made of p-type silicon or n-type silicon is formed on a silicon substrate as a semiconductor support substrate via a dielectric such as a silicon oxide film. (For example, Japanese Patent Application Laid-Open No. 7-313424).

【0003】このような従来技術の半導体装置にあって
は、静電気やサージ電圧による過剰電流によってMOS
トランジスタが破壊されるのを防止するために大電流を
流すことが可能なダイオードが形成されている。そし
て、このダイオードは、シリコン領域の表面にアノード
側高濃度拡散領域とカソード側高濃度拡散領域とを形成
したプレーナ構造を採用している。また、ダイオードの
カソード側高濃度拡散領域は、例えばアノード側高濃度
拡散領域の外周側を取り囲むように配置され、アノード
側高濃度拡散領域とカソード側高濃度拡散領域との間に
は誘電体が設けられると共に、アノード側高濃度拡散領
域とカソード側高濃度拡散領域とはこれらの底面側に設
けられた多結晶シリコンを通じて電気的に接続されてい
る。
[0003] In such a conventional semiconductor device, a MOS device is operated due to an excessive current due to static electricity or a surge voltage.
In order to prevent a transistor from being destroyed, a diode capable of flowing a large current is formed. This diode employs a planar structure in which an anode side high concentration diffusion region and a cathode side high concentration diffusion region are formed on the surface of a silicon region. The cathode-side high-concentration diffusion region of the diode is disposed, for example, so as to surround the outer periphery of the anode-side high-concentration diffusion region. In addition, the anode-side high-concentration diffusion region and the cathode-side high-concentration diffusion region are electrically connected to each other through polycrystalline silicon provided on their bottom surfaces.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した従
来技術による半導体装置では、ダイオードのアノード側
高濃度拡散領域とカソード側高濃度拡散領域とをいずれ
もシリコン領域の表面に形成したプレーナ構造を採用し
ている。このため、サージ印加時には、サージ電流が抵
抗が最小となる最短経路を流れるから、サージ電流はp
n接合の端部をなすアノード側高濃度拡散領域の外周端
側に集中する。この結果、大電流となるサージ電流が微
小なpn接合の端部に集中して流れるから、ダイオード
が損傷し易いという問題がある。
By the way, the semiconductor device according to the prior art described above employs a planar structure in which both the high concentration diffusion region on the anode side and the high concentration diffusion region on the cathode side of the diode are formed on the surface of the silicon region. are doing. For this reason, when a surge is applied, the surge current flows through the shortest path with the minimum resistance.
It is concentrated on the outer peripheral end side of the anode side high concentration diffusion region forming the end of the n-junction. As a result, a surge current that becomes a large current flows intensively at the end of the minute pn junction, which causes a problem that the diode is easily damaged.

【0005】また、プレーナ構造のダイオードでは、破
壊耐量を上げるためには、アノードとカソードとの間隔
を広くし、抵抗成分を大きくする必要がある。しかし、
このようにしてサージ電流の大きさを制限した場合に
は、サージ電流が内部回路に流れ込み、内部回路が損傷
する虞れがある。
In a diode having a planar structure, it is necessary to increase the distance between the anode and the cathode and increase the resistance component in order to increase the breakdown strength. But,
When the magnitude of the surge current is limited in this way, the surge current may flow into the internal circuit and damage the internal circuit.

【0006】さらに、従来技術による半導体装置では、
アノード側高濃度拡散領域とカソード側高濃度拡散領域
との間には誘電体を設けるため、誘電体を形成するため
の工程を追加する必要があり、製造時間が長くなるとい
う問題もある。
Further, in the conventional semiconductor device,
Since a dielectric is provided between the anode-side high-concentration diffusion region and the cathode-side high-concentration diffusion region, it is necessary to add a step for forming the dielectric, and there is a problem that the manufacturing time becomes long.

【0007】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明の目的は、サージ電流の集中を防
ぎ、耐久性、信頼性を向上できるようにした半導体装置
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a semiconductor device capable of preventing surge current concentration and improving durability and reliability. is there.

【0008】[0008]

【課題を解決するための手段】上述した課題を解決する
ために請求項1の発明による半導体装置は、半導体支持
基板主面上に誘電体を介して第2導電形の半導体領域を
形成すると共に、該第2導電形の半導体領域の底面に第
2導電形の高濃度埋込み領域を形成し、前記第2導電形
の半導体領域主面に第1導電形の半導体領域を該第2導
電形の高濃度埋込み領域に接するように設け、該第1導
電形の半導体領域主面に第1導電形の高濃度領域を設け
ると共に、前記第2導電形の半導体領域主面に第2導電
形の高濃度領域を設け、かつ該第1導電形の高濃度領域
と第2導電形の高濃度領域との間に位置して第2導電形
の半導体領域主面には前記誘電体に接するようにトレン
チ溝型絶縁領域を形成し、前記第1導電形の高濃度領域
と第2導電形の高濃度領域とのうちいずれか一方を入力
端子、出力端子、高電位端子、低電位端子のうちいずれ
かの端子に接続すると共に、他方を残余のいずれかの端
子に接続する構成としている。
According to a first aspect of the present invention, there is provided a semiconductor device having a semiconductor region of a second conductivity type formed on a main surface of a semiconductor support substrate via a dielectric. Forming a high-concentration buried region of the second conductivity type on the bottom surface of the semiconductor region of the second conductivity type, and forming a semiconductor region of the first conductivity type on the main surface of the semiconductor region of the second conductivity type; The semiconductor region of the first conductivity type is provided so as to be in contact with the high concentration buried region, and the high concentration region of the first conductivity type is provided on the main surface of the semiconductor region of the first conductivity type. A concentration region provided between the high-concentration region of the first conductivity type and the high-concentration region of the second conductivity type; Forming a groove-type insulating region, wherein the high-concentration region of the first conductivity type and the high-concentration region of the second conductivity type are formed. Input terminal either one of the degree region, the output terminal, the high potential terminal, as well as connected to one of terminals of a low potential terminal, and configured to connect the other to one of the terminals of the remainder.

【0009】このように構成することにより、第1導電
形の半導体領域と第2導電形の半導体領域との間には第
1のダイオードを形成することができると共に、第1導
電形の半導体領域と第2導電形の高濃度埋込み領域との
間には第2のダイオードを形成することができ、これら
2つのダイオードを保護ダイオードとして作用させるこ
とができる。このとき、第2導電形の高濃度埋込み領域
は第2導電形の半導体領域よりも不純物濃度が高く、第
1導電形の半導体領域と第2導電形の高濃度埋込み領域
とは曲率の小さい面接触状態にできるから、第1のダイ
オードに比べて第2のダイオードのブレークダウン電圧
を低くすることができる。
With this configuration, a first diode can be formed between the semiconductor region of the first conductivity type and the semiconductor region of the second conductivity type, and the semiconductor region of the first conductivity type can be formed. A second diode can be formed between the second conductive type and the high-concentration buried region of the second conductivity type, and these two diodes can function as protection diodes. At this time, the high concentration buried region of the second conductivity type has a higher impurity concentration than the semiconductor region of the second conductivity type, and the semiconductor region of the first conductivity type and the high concentration buried region of the second conductivity type have a small curvature. Since the contact state can be established, the breakdown voltage of the second diode can be lower than that of the first diode.

【0010】また、第1導電形の半導体領域と第2導電
形の高濃度領域との間にはトレンチ溝型絶縁領域を形成
したから、これらの間を流れる電流はトレンチ溝型絶縁
領域を迂回して流れる。このため、第1のダイオードか
ら第2導電形の半導体領域を通じて第2導電形の高濃度
領域に至る第1の電流経路、第2のダイオードから第2
導電形の高濃度埋込み領域を通じて第2導電形の高濃度
領域に至る第2の電流経路は、いずれもトレンチ溝型絶
縁領域を迂回する分だけ長くなる。また、第2導電形の
高濃度埋込み領域は第2導電形の半導体領域よりも不純
物濃度が高くなっているから、第1,第2の電流経路が
長くなるほど第1の電流経路の寄生抵抗は第2の電流経
路の寄生抵抗よりも顕著に大きくなる。
Further, since a trench-type insulating region is formed between the semiconductor region of the first conductivity type and the high-concentration region of the second conductivity type, a current flowing between these regions bypasses the trench-type insulating region. And flow Therefore, the first current path from the first diode to the high-concentration region of the second conductivity type through the semiconductor region of the second conductivity type;
Each of the second current paths extending from the high-concentration buried region of the conductivity type to the high-concentration region of the second conductivity type becomes longer by an amount that bypasses the trench-type insulating region. Further, since the high-concentration buried region of the second conductivity type has a higher impurity concentration than the semiconductor region of the second conductivity type, the longer the first and second current paths, the smaller the parasitic resistance of the first current path. It is significantly larger than the parasitic resistance of the second current path.

【0011】この結果、正負いずれの過電圧サージが印
加されるときであっても、サージ電流の大部分を、ブレ
ークダウン電圧が低く、かつ寄生抵抗が小さい第2のダ
イオードに流すことができる。そして、第2のダイオー
ドは第1導電形の半導体領域と第2導電形の高濃度埋込
み領域とを面接触させることによって形成できるから、
サージ電流が微小な端部に集中するのを防ぐことができ
る。
As a result, even when the positive or negative overvoltage surge is applied, most of the surge current can flow to the second diode having a low breakdown voltage and a small parasitic resistance. The second diode can be formed by bringing the semiconductor region of the first conductivity type into high-concentration buried region of the second conductivity type by surface contact.
It is possible to prevent surge current from concentrating on a minute end.

【0012】また、請求項2の発明は、前記第1導電形
の高濃度領域主面上にパッド電極を設け、第1導電形の
高濃度領域と該パッド電極とを接続したことにある。
A second aspect of the present invention is that a pad electrode is provided on the main surface of the high-concentration region of the first conductivity type, and the high-concentration region of the first conductivity type is connected to the pad electrode.

【0013】これにより、パッド電極下にダイオードを
形成することができるから、半導体装置の集積度を損な
うことなく、高集積度を保持することができる。また、
サージ電流は互いに面接触するパッド電極と第1導電形
の高濃度領域との間で流れるから、サージ電流を第1導
電形の高濃度領域の全体に略均一に流すことができる。
この結果、第1導電形の高濃度領域と第2導電形の高濃
度埋込み領域との間に形成されるダイオードのpn接合
部分にも、電流密度がより均一な状態でサージ電流を流
すことができ、ダイオードの耐量を高めることができ
る。
Thus, a diode can be formed below the pad electrode, so that a high degree of integration can be maintained without impairing the degree of integration of the semiconductor device. Also,
Since the surge current flows between the pad electrode and the high-concentration region of the first conductivity type that are in surface contact with each other, the surge current can flow substantially uniformly throughout the high-concentration region of the first conductivity type.
As a result, a surge current with a more uniform current density can flow through the pn junction of the diode formed between the high-concentration region of the first conductivity type and the high-concentration buried region of the second conductivity type. As a result, the withstand capacity of the diode can be increased.

【0014】さらに、請求項3の発明は、前記第1導電
形の高濃度領域を挟んで前記一の第2導電形の高濃度領
域とは反対側に位置して第2導電形の半導体領域主面に
は他の第2導電形の高濃度領域を設け、かつ前記第1導
電形の高濃度領域と他の第2導電形の高濃度領域との間
に位置して第2導電形の半導体領域主面には前記誘電体
に接するように、かつ前記一のトレンチ溝型絶縁領域と
コ字形状をなして他のトレンチ溝型絶縁領域を形成し、
前記他の第2導電形高濃度領域を前記一の第2導電形の
高濃度領域に接続する構成としたことにある。
Further, according to a third aspect of the present invention, the semiconductor region of the second conductivity type is located on the side opposite to the high concentration region of the one second conductivity type with the high concentration region of the first conductivity type interposed therebetween. A high concentration region of another second conductivity type is provided on the main surface, and the high concentration region of the second conductivity type is located between the high concentration region of the first conductivity type and the high concentration region of the other second conductivity type. On the main surface of the semiconductor region, another trench-shaped insulating region is formed so as to be in contact with the dielectric and in a U-shape with the one trench-shaped insulating region,
Another high conductivity region of the second conductivity type is connected to the high concentration region of the one second conductivity type.

【0015】これにより、2つの第2導電形の高濃度領
域を設けるから、単一の第2導電形の高濃度領域を設け
たときに比べて第2導電形の高濃度領域全体の面積を大
きくすることができる。このため、第1導電形の半導体
領域と第2導電形の半導体領域との間に形成される第1
のダイオード、第1導電形の半導体領域と第2導電形の
高濃度埋込み領域との間に形成される第2のダイオード
は、いずれも抵抗成分が小さくなる。従って、第1,第
2のダイオード全体のインピーダンスが小さくなり、サ
ージ印加時の入力端子電圧等の電位上昇をより確実に抑
えることができ、内部回路に注入されるサージ電流を抑
制することができる。
Thus, since two high-concentration regions of the second conductivity type are provided, the area of the entire high-concentration region of the second conductivity type is reduced as compared with the case where a single high-concentration region of the second conductivity type is provided. Can be bigger. Therefore, the first conductive type semiconductor region formed between the first conductive type semiconductor region and the second conductive type semiconductor region is formed.
And the second diode formed between the semiconductor region of the first conductivity type and the high-concentration buried region of the second conductivity type have small resistance components. Therefore, the impedance of the entire first and second diodes is reduced, and a potential increase such as an input terminal voltage at the time of applying a surge can be more reliably suppressed, and a surge current injected into an internal circuit can be suppressed. .

【0016】また、第1導電形の高濃度領域と2つの第
2導電形の高濃度領域との間にはコ字形状のトレンチ溝
型絶縁領域をそれぞれ設けたから、第1導電形の高濃度
領域から第2導電形の半導体領域を通じて第2導電形の
高濃度領域に至る第1の電流経路、第1導電形の高濃度
領域から第2導電形の高濃度埋込み領域を通じて第2導
電形の高濃度領域に至る第2の電流経路は、いずれもコ
字形状のトレンチ溝型絶縁領域を迂回する分だけより一
層長くなる。このため、第1の電流経路の寄生抵抗と第
2の電流経路の寄生抵抗との抵抗差を大きくすることが
でき、第1の電流経路の寄生抵抗を第2の電流経路の寄
生抵抗よりも一層大きくすることができる。従って、サ
ージ電流のほとんどは第1導電形の高濃度領域と第2導
電形の高濃度埋込み領域との間に形成されるダイオード
を通じて流れるから、半導体装置の損傷を防ぐことがで
きる。
Further, since a U-shaped trench groove type insulating region is provided between the high-concentration region of the first conductivity type and the two high-concentration regions of the second conductivity type, respectively, the high-concentration region of the first conductivity type is provided. A first current path from the region through the semiconductor region of the second conductivity type to the high-concentration region of the second conductivity type, from the high-concentration region of the first conductivity type to the high-concentration buried region of the second conductivity type; Each of the second current paths leading to the high-concentration region is much longer than that of the U-shaped trench-shaped insulating region. For this reason, the resistance difference between the parasitic resistance of the first current path and the parasitic resistance of the second current path can be increased, and the parasitic resistance of the first current path is larger than the parasitic resistance of the second current path. It can be even larger. Therefore, most of the surge current flows through the diode formed between the high-concentration region of the first conductivity type and the high-concentration buried region of the second conductivity type, so that damage to the semiconductor device can be prevented.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態による
半導体装置を図1ないし図8を参照して詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a semiconductor device according to an embodiment of the present invention will be described in detail with reference to FIGS.

【0018】まず、図1ないし図3は本発明の第1の実
施の形態を示し、図において、1は例えばシリコン材料
からなるシリコン支持基板で、該シリコン支持基板1の
表面上には、シリコン酸化膜等の誘電体膜2が設けられ
ると共に、該誘電体膜2を介してn形シリコンからなる
n形領域3が形成されている。これにより、シリコン支
持基板1、誘電体膜2、n形領域3はSOI(Sili
con On Insulator)構造をなすと共
に、n形領域3は、例えば単結晶シリコン材料に砒素等
の不純物を低濃度(例えば1015〜1016cm-3程度)
に添加することによって形成されている。
First, FIGS. 1 to 3 show a first embodiment of the present invention. In the drawings, reference numeral 1 denotes a silicon support substrate made of, for example, a silicon material. A dielectric film 2 such as an oxide film is provided, and an n-type region 3 made of n-type silicon is formed via the dielectric film 2. As a result, the silicon support substrate 1, the dielectric film 2, and the n-type region 3 are SOI (Sili)
The n-type region 3 has a low concentration (for example, about 10 15 to 10 16 cm −3 ) of an impurity such as arsenic in a single-crystal silicon material while having a con-on-insulator structure.
Formed by adding

【0019】4はn形領域3に設けられた枠状トレンチ
溝型絶縁領域で、該枠状トレンチ溝型絶縁領域4は、略
四角形の枠状に形成され、その底部は誘電体膜2に達し
ている。そして、枠状トレンチ溝型絶縁領域4は、n形
領域3をその内側に位置する内側n形領域3Aと外側に
位置する外側n形領域3Bとに区切り、これらを絶縁状
態に分離している。また、内側n形領域3Aには後述の
p形領域6等からなる保護ダイオードが形成されると共
に、外側n形領域3Bには例えば各種の処理を行う内部
回路(図示せず)等が形成されている。
Reference numeral 4 denotes a frame-shaped trench-groove-type insulating region provided in the n-type region 3. The frame-shaped trench-groove-type insulating region 4 is formed in a substantially rectangular frame shape. Has reached. The frame-shaped trench-type insulating region 4 divides the n-type region 3 into an inner n-type region 3A located inside and an outer n-type region 3B located outside, and separates them into an insulating state. . In the inner n-type region 3A, a protection diode including a p-type region 6 described later is formed, and in the outer n-type region 3B, for example, an internal circuit (not shown) for performing various processes is formed. ing.

【0020】5はn形領域3の底面全体に設けられたn
形高濃度埋込み領域で、該n形高濃度埋込み領域5は、
n形領域3と誘電体膜2との間に配設され、砒素等の不
純物を高濃度(例えば1018〜1019cm-3程度)に添
加することによって形成されている。また、n形高濃度
埋込み領域5も枠状トレンチ溝型絶縁領域4に区切ら
れ、枠状トレンチ溝型絶縁領域4の内側に位置する内側
n形高濃度埋込み領域5Aと外側に位置する外側n形高
濃度埋込み領域5Bとは絶縁状態に分離されている。
Reference numeral 5 denotes n provided on the entire bottom surface of the n-type region 3.
The n-type high-concentration buried region 5 is:
It is provided between the n-type region 3 and the dielectric film 2 and is formed by adding an impurity such as arsenic at a high concentration (for example, about 10 18 to 10 19 cm −3 ). Further, the n-type high-concentration buried region 5 is also divided into the frame-shaped trench-groove-type insulating region 4, and the inside n-type high-concentration buried region 5 A located inside the frame-shaped trench-groove-type insulating region 4 and the outside n located outside. It is isolated from the high-concentration buried region 5B in an insulating state.

【0021】6は内側n形領域3Aの表面に設けられた
p形領域で、該p形領域6は、略四角形状をなして内側
n形領域3Aの中央に配置され、その底面が内側n形高
濃度埋め込み領域5Aに面接触している。また、p形領
域6は、内側n形領域3Aの表面側から硼素等の不純物
を低濃度(例えば1015〜1016cm-3程度)に拡散す
ることによって形成されている。
Reference numeral 6 denotes a p-type region provided on the surface of the inner n-type region 3A. The p-type region 6 has a substantially quadrangular shape and is disposed at the center of the inner n-type region 3A, and has a bottom surface which corresponds to the inner n-type region 3A. Is in surface contact with the high-concentration buried region 5A. The p-type region 6 is formed by diffusing impurities such as boron to a low concentration (for example, about 10 15 to 10 16 cm −3 ) from the surface side of the inner n-type area 3A.

【0022】7はp形領域6の表面に設けられたp形高
濃度領域で、該p形高濃度領域7は、略四角形状をなし
てp形領域6の中央に配置されている。また、p形高濃
度領域7は、p形領域6に硼素等の不純物を高濃度に拡
散することによって形成されている。そして、p形高濃
度領域7は、例えば接地端子等の低電位端子に接続され
ている。
Reference numeral 7 denotes a p-type high-concentration region provided on the surface of the p-type region 6. The p-type high-concentration region 7 has a substantially square shape and is arranged at the center of the p-type region 6. The p-type high concentration region 7 is formed by diffusing impurities such as boron into the p-type region 6 at a high concentration. The p-type high concentration region 7 is connected to a low potential terminal such as a ground terminal.

【0023】8は内側n形領域3Aの表面に設けられた
n形高濃度領域で、該n形高濃度領域8は、略四角形状
をなすp形領域6の一辺に対して略中央側に位置し、p
形領域6から離間してp形領域6と枠状トレンチ溝型絶
縁領域4との間に配置されている。また、n形高濃度領
域8は、内側n形領域3Aに砒素等の不純物を高濃度に
拡散することによって形成されている。そして、n形高
濃度領域8は、低電位端子とは異なる端子として例えば
入力端子に接続されている。
Reference numeral 8 denotes an n-type high-concentration region provided on the surface of the inner n-type region 3A. The n-type high-concentration region 8 is located substantially at the center with respect to one side of the substantially square p-type region 6. Located, p
It is arranged between the p-type region 6 and the frame-shaped trench-groove type insulating region 4 so as to be spaced from the p-type region 6. The n-type high-concentration region 8 is formed by diffusing impurities such as arsenic into the inner n-type region 3A at a high concentration. The n-type high concentration region 8 is connected to, for example, an input terminal as a terminal different from the low potential terminal.

【0024】9はp形領域6とn形高濃度領域8との間
に位置して内側n形領域3Aの表面に設けられたトレン
チ溝型絶縁領域で、該トレンチ溝型絶縁領域9は、p形
領域6の一辺に対して略平行に延びた直線状に形成さ
れ、その長さ寸法はp形領域6の一辺よりも長くなって
いる。また、トレンチ溝型絶縁領域9は、その底部が全
長に亘って誘電体膜2に接するものの、直線状に延びる
両端は枠状トレンチ溝型絶縁領域4に接触せず、枠状ト
レンチ溝型絶縁領域4との間に隙間が形成されている。
Reference numeral 9 denotes a trench-type insulating region provided between the p-type region 6 and the n-type high-concentration region 8 and provided on the surface of the inner n-type region 3A. It is formed in a straight line extending substantially parallel to one side of the p-type region 6, and has a length dimension longer than one side of the p-type region 6. Although the trench groove type insulating region 9 has its bottom portion in contact with the dielectric film 2 over the entire length, both ends extending linearly do not contact the frame trench type insulating region 4, A gap is formed between the region 4.

【0025】本実施の形態による半導体装置は上述の如
き構成を有するもので、次にその作動について説明す
る。
The semiconductor device according to the present embodiment has the above-described configuration, and its operation will now be described.

【0026】まず、p形領域6は内側n形領域3Aの中
央側に設けられているから、その外周側にはpn接合に
よる第1のダイオード10が形成されている。また、p
形領域6の底面は略全面に亘って内側n形高濃度埋込み
領域5Aに接触しているから、p形領域6の底面側にも
pn接合による第2のダイオード11が形成されてい
る。このため、これらのダイオード10,11は、半導
体装置の保護ダイオードとして作用する。
First, since the p-type region 6 is provided on the center side of the inner n-type region 3A, the first diode 10 of a pn junction is formed on the outer peripheral side. Also, p
Since the bottom surface of the p-type region 6 is almost entirely in contact with the inner n-type high-concentration buried region 5A, the second diode 11 is also formed on the bottom surface side of the p-type region 6 by a pn junction. Therefore, these diodes 10 and 11 function as protection diodes of the semiconductor device.

【0027】ここで、内側n形高濃度埋込み領域5Aの
不純物濃度は内側n形領域3Aよりも高く設定されてい
る。このため、第1のダイオード10に比べて第2のダ
イオード11のブレークダウン電圧は、低く設定されて
いる。
Here, the impurity concentration of the inner n-type high concentration buried region 5A is set higher than that of the inner n-type region 3A. For this reason, the breakdown voltage of the second diode 11 is set lower than that of the first diode 10.

【0028】また、以下の理由によって第2のダイオー
ド11の抵抗成分は、第1のダイオード10の抵抗成分
よりも小さい値となる。即ち、p形領域6とn形高濃度
領域8との間には、第1のダイオード10のカソード側
にてpn接合から内側n形領域3Aを通る第1の電流経
路と第2のダイオード10のカソード側にてpn接合か
ら内側n形高濃度埋込み領域5Aを通る第2の電流経路
とが形成される。ここで、p形領域6とn形高濃度領域
8との間にはトレンチ溝型絶縁領域9を形成したから、
これらの間を流れる電流は、トレンチ溝型絶縁領域9を
迂回して、トレンチ溝型絶縁領域9の長さ方向の両端側
を通じて流れる。このため、第1,第2の電流経路は、
トレンチ溝型絶縁領域9を設けないときに比べてトレン
チ溝型絶縁領域9の長さ寸法に応じた分だけ長くなる。
また、内側n形高濃度埋込み領域5Aの不純物濃度は1
18〜1019cm-3に設定され内側n形領域3Aの不純
物濃度である1015〜1016cm-3よりも高くなってい
るから、第2の電流経路(第2のダイオード11のカソ
ード側)の寄生抵抗は、第1の電流経路(第1のダイオ
ード10のカソード側)の寄生抵抗と比較して10-3
程度になる。このため、第1,第2の電流経路が長くな
るほど第2のダイオード11の寄生抵抗成分は、第1の
ダイオード10の寄生抵抗成分よりも顕著に小さくな
る。
Further, the resistance component of the second diode 11 has a smaller value than the resistance component of the first diode 10 for the following reason. That is, between the p-type region 6 and the n-type high-concentration region 8, a first current path passing through the inner n-type region 3 </ b> A from the pn junction on the cathode side of the first diode 10 and the second diode 10 And a second current path from the pn junction to the inner n-type high-concentration buried region 5A on the cathode side. Here, since the trench type insulating region 9 was formed between the p-type region 6 and the n-type high concentration region 8,
The current flowing between them bypasses the trench insulating region 9 and flows through both ends in the longitudinal direction of the trench insulating region 9. Therefore, the first and second current paths are:
Compared to the case where the trench groove type insulating region 9 is not provided, the length is longer by an amount corresponding to the length dimension of the trench groove type insulating region 9.
The impurity concentration of the inner n-type high concentration buried region 5A is 1
0 18 to 10 19 cm −3 , which is higher than the impurity concentration of the inner n-type region 3A of 10 15 to 10 16 cm −3, so that the second current path (the cathode of the second diode 11) The parasitic resistance of the first current path (the cathode side of the first diode 10) is about 10 −3 times as large as the parasitic resistance of the first current path (the cathode side of the first diode 10). Therefore, as the first and second current paths become longer, the parasitic resistance component of the second diode 11 becomes significantly smaller than the parasitic resistance component of the first diode 10.

【0029】この結果、入力端子に正の過電圧サージが
印加された場合には、サージ電流の大部分は、ブレーク
ダウン電圧が低く、寄生抵抗も小さい第2のダイオード
11を流れる。即ち、サージ電圧の立ち上がり時に第1
のダイオード10よりも先に第2のダイオード11がブ
レークダウンし、その後も寄生抵抗の小さい第2のダイ
オード11にほとんどの電流が流れることになる。
As a result, when a positive overvoltage surge is applied to the input terminal, most of the surge current flows through the second diode 11 having a low breakdown voltage and a small parasitic resistance. That is, when the surge voltage rises, the first
The second diode 11 breaks down earlier than the diode 10, and most of the current thereafter flows through the second diode 11 having a small parasitic resistance.

【0030】また、第2のダイオード11のpn接合は
p形領域6と内側n形高濃度埋込み領域5Aとの間に形
成されるから、ダイオード11のpn接合は平面接合と
みなすことができる。また、内側n形高濃度埋込み領域
5Aの抵抗は小さい値となっている。このため、ダイオ
ード11を流れる電流(ダイオード電流)は近似的に一
元的に流れ、pn接合の全体に亘って略均一な電流密度
となる。従って、ダイオード電流がpn接合の一部に集
中することがないから、ダイオードの損傷を防ぐことが
できる。
Since the pn junction of the second diode 11 is formed between the p-type region 6 and the inner n-type high-concentration buried region 5A, the pn junction of the diode 11 can be regarded as a planar junction. The resistance of the inner n-type high-concentration buried region 5A has a small value. Therefore, the current flowing through the diode 11 (diode current) flows approximately unitarily, and the current density becomes substantially uniform over the entire pn junction. Therefore, since the diode current does not concentrate on a part of the pn junction, damage to the diode can be prevented.

【0031】さらに、ダイオード11自体の寄生抵抗成
分が小さいので、サージによる入力端子電圧の上昇を抑
えることができ、サージ電流が入力端子に接続された内
部回路に流れ込むのを防ぐことができる。このため、内
部回路の損傷も防ぐことができる。
Furthermore, since the parasitic resistance component of the diode 11 itself is small, it is possible to suppress an increase in the input terminal voltage due to a surge, and to prevent a surge current from flowing into an internal circuit connected to the input terminal. Therefore, damage to the internal circuit can be prevented.

【0032】また、ダイオード11から内側n形高濃度
埋込み領域5Aを通じて大部分のサージ電流を流すこと
ができるから、サージ電流の上昇を抑制することがで
き、p形領域6とn形高濃度領域8との間の間隔を拡げ
ることによってダイオードの破壊耐量を大きくする必要
がない。このため、半導体装置の集積度を損なうことが
なく、高集積度を保持することができる。
Further, since most of the surge current can flow from the diode 11 through the inner n-type high-concentration buried region 5A, the surge current can be suppressed from increasing, and the p-type region 6 and the n-type high-concentration region can be suppressed. It is not necessary to increase the breakdown strength of the diode by increasing the distance between the diodes. Therefore, a high degree of integration can be maintained without impairing the degree of integration of the semiconductor device.

【0033】さらに、トレンチ溝型絶縁領域9は枠状ト
レンチ溝型絶縁領域4と同様に誘電体膜2に接触する構
成としたから、トレンチ溝型絶縁領域9を枠状トレンチ
溝型絶縁領域4と同時に加工、形成することができる。
このため、半導体装置の製造時にトレンチ溝型絶縁領域
9を加工するための工程を独立して設ける必要がないか
ら、追加の加工工程が必要となる従来技術に比べて製造
時間を短縮でき、生産性を向上することができる。
Further, since the trench type insulating region 9 is configured to be in contact with the dielectric film 2 in the same manner as the frame type trench type insulating region 4, the trench type insulating region 9 is divided into the frame type trench type insulating region 4. At the same time, it can be processed and formed.
For this reason, it is not necessary to separately provide a process for processing the trench-shaped insulating region 9 during the manufacture of the semiconductor device, so that the manufacturing time can be reduced as compared with the conventional technology that requires an additional processing step, and Performance can be improved.

【0034】また、トレンチ溝型絶縁領域9が第1,第
2のダイオード10,11のpn接合箇所に接触するこ
とがない。このため、pn接合がトレンチ溝型絶縁領域
9に接触したときにトレンチ溝型絶縁領域9に沿って流
れるリーク電流が発生することがないから、ダイオード
10,11の整流特性等が劣化することがなく、高特性
を維持することができる。
Further, the trench type insulating region 9 does not contact the pn junction of the first and second diodes 10 and 11. For this reason, when the pn junction comes into contact with the trench type insulating region 9, no leak current flows along the trench type insulating region 9, so that the rectification characteristics and the like of the diodes 10 and 11 are deteriorated. And high characteristics can be maintained.

【0035】一方、入力端子に負の過電圧サージが印加
された場合には、第1,第2のダイオード10,11は
順バイアスされる。このとき、第1のダイオード10に
比べて第2のダイオード11の方が抵抗成分が顕著に小
さいから、正の過電圧サージが印加された場合と同様に
サージ電流の大部分は、ダイオード11を流れる。ま
た、ダイオード11を流れるダイオード電流は、近似的
に一元的に流れ、pn接合の全体に亘って略均一な電流
密度となるから、ダイオード電流の集中を防ぐことがで
きる。このように、サージ電流が流れる方向以外は正の
過電圧サージが印加された場合と変わることがないた
め、負の過電圧サージが印加された場合であっても前述
と同様の作用効果を得ることができる。
On the other hand, when a negative overvoltage surge is applied to the input terminal, the first and second diodes 10 and 11 are forward-biased. At this time, since the resistance component of the second diode 11 is significantly smaller than that of the first diode 10, most of the surge current flows through the diode 11 as in the case where a positive overvoltage surge is applied. . Further, the diode current flowing through the diode 11 flows approximately unitarily and has a substantially uniform current density over the entire pn junction, so that concentration of the diode current can be prevented. As described above, since there is no difference from the case where the positive overvoltage surge is applied except in the direction in which the surge current flows, even if the negative overvoltage surge is applied, the same operation and effect as described above can be obtained. it can.

【0036】かくして、本実施の形態では、p形領域6
を内側n形高濃度埋込み領域5Aに面接触状態で設ける
と共に、p形領域6(p形高濃度領域7)とn形高濃度
領域8との間にはトレンチ溝型絶縁領域9を設けたか
ら、正負いずれの過電圧サージが印加されるときであっ
ても、サージ電流の大部分を、ブレークダウン電圧が低
く、かつ寄生抵抗が小さい第2のダイオード11に流す
ことができる。このとき、ダイオード電流がpn接合の
一部に集中することがないから、半導体装置の損傷を防
ぐことができ、信頼性、耐久性を高めることができる。
また、p形領域6とn形高濃度領域8との間隔を狭くす
ることができるから、半導体装置の高集積度を維持でき
る。さらに、従来技術に比べて製造時間を短縮でき、生
産性を向上できる等の種々の効果を奏する。
Thus, in the present embodiment, the p-type region 6
Is provided in surface contact with the inner n-type high-concentration buried region 5A, and a trench-groove-type insulating region 9 is provided between the p-type region 6 (p-type high-concentration region 7) and the n-type high-concentration region 8. Irrespective of whether a positive or negative overvoltage surge is applied, most of the surge current can flow to the second diode 11 having a low breakdown voltage and a small parasitic resistance. At this time, since the diode current does not concentrate on a part of the pn junction, damage to the semiconductor device can be prevented, and reliability and durability can be improved.
Further, since the distance between the p-type region 6 and the n-type high-concentration region 8 can be reduced, a high degree of integration of the semiconductor device can be maintained. Further, various effects such as a reduction in manufacturing time and an improvement in productivity as compared with the related art can be achieved.

【0037】次に、図4は本発明の第2の実施の形態を
示し、本実施の形態の特徴は、p形高濃度領域の表面上
にパッド電極を設け、p形高濃度領域と該パッド電極と
を接続したことにある。なお、本実施の形態では、前述
した第1の実施の形態と同一の構成要素に同一の符号を
付し、その説明を省略するものとする。
Next, FIG. 4 shows a second embodiment of the present invention. The feature of this embodiment is that a pad electrode is provided on the surface of a p-type high-concentration region, That is, it is connected to the pad electrode. In the present embodiment, the same components as those in the above-described first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0038】21はn形領域3の表面に設けられた酸化
膜で、該酸化膜21はフィールド酸化膜をなし、p形高
濃度領域7の表面側が開口している。
Reference numeral 21 denotes an oxide film provided on the surface of the n-type region 3. The oxide film 21 forms a field oxide film, and the surface of the p-type high-concentration region 7 is open.

【0039】22はp形高濃度領域7の表面上に設けら
れたパッド電極で、該パッド電極は導電性金属材料から
なり、p形高濃度領域7に電気的に接続されると共に、
低電圧端子に接続されている。
Reference numeral 22 denotes a pad electrode provided on the surface of the p-type high-concentration region 7. The pad electrode is made of a conductive metal material and is electrically connected to the p-type high-concentration region 7.
Connected to low voltage terminal.

【0040】かくして、本実施の形態でも第1の実施の
形態と同様の作用効果を得ることができる。しかし、本
実施の形態では、パッド電極22の直下にダイオード1
1を形成することができるから、他の部位にパッド電極
22を設けた場合に比べて半導体装置の集積度を損なう
ことがなく、高集積度を保持することができる。
Thus, in the present embodiment, the same operation and effect as in the first embodiment can be obtained. However, in the present embodiment, the diode 1 is located immediately below the pad electrode 22.
Since 1 can be formed, a high degree of integration can be maintained without impairing the degree of integration of the semiconductor device as compared with the case where the pad electrode 22 is provided in another portion.

【0041】また、サージ電流はパッド電極22から下
方向(n形領域3の厚さ方向)に均一に流れていくか
ら、p形領域6内部の電流も均一に分布し、ダイオード
11のpn接合部分の電流密度もより一層均一化するこ
とができる。
Since the surge current flows uniformly downward from the pad electrode 22 (in the thickness direction of the n-type region 3), the current inside the p-type region 6 is also uniformly distributed, and the pn junction of the diode 11 The current density of the portion can be made even more uniform.

【0042】然るに、サージ電流のような大きな電流が
流れる場合、パッド電極22等の金属配線領域の抵抗も
大きく影響してくる。ここで、パッド電極22がダイオ
ード11の上以外の位置に設けられていると、サージ電
流は酸化膜21上の配線領域を経てp形高濃度領域7に
注入される。このとき、配線領域中の抵抗によって配線
領域内部に電位分布が生じているため、サージ電流は最
短経路として配線領域からp形高濃度領域7の端部(外
周部)に流れ込む割合が多くなる。このため、ダイオー
ド11のpn接合に流れる電流密度も完全に均一化する
ことは難しい。
However, when a large current such as a surge current flows, the resistance of the metal wiring region such as the pad electrode 22 also greatly affects. Here, if the pad electrode 22 is provided at a position other than on the diode 11, the surge current is injected into the p-type high concentration region 7 via the wiring region on the oxide film 21. At this time, since the potential distribution occurs inside the wiring region due to the resistance in the wiring region, the ratio of the surge current flowing from the wiring region to the end (outer peripheral portion) of the p-type high concentration region 7 as the shortest path increases. Therefore, it is difficult to completely uniform the current density flowing through the pn junction of the diode 11.

【0043】これに対し、本実施の形態では、ダイオー
ド11のpn接合部分の電流密度をより一層完全に近い
形で均一化することができるから、正負いずれの過電圧
サージが印加されるときであってもダイオード11等の
損傷が生じにくくでき、ダイオード11の耐圧を高め、
信頼性、耐久性をさらに向上することができる。
On the other hand, in the present embodiment, the current density at the pn junction of the diode 11 can be made more nearly uniform, so that either positive or negative overvoltage surge is applied. Therefore, damage to the diode 11 and the like can be hardly caused, and the withstand voltage of the diode 11 can be increased.
Reliability and durability can be further improved.

【0044】次に、図5および図6は本発明の第3の実
施の形態を示し、本実施の形態の特徴は、n形領域の表
面上にp形高濃度領域を挟んで2つのn形高濃度領域を
設けると共に、p形高濃度領域と各n形高濃度領域との
間にはコ字形状のトレンチ溝型絶縁領域をそれぞれ設け
たことにある。なお、本実施の形態では、前述した第1
の実施の形態と同一の構成要素に同一の符号を付し、そ
の説明を省略するものとする。
Next, FIGS. 5 and 6 show a third embodiment of the present invention. The feature of this embodiment is that two n-type regions are provided on the surface of an n-type region with a p-type high-concentration region interposed therebetween. A high-concentration region is provided, and a U-shaped trench-type insulating region is provided between the p-type high-concentration region and each of the n-type high-concentration regions. Note that, in the present embodiment, the first
The same reference numerals are given to the same components as those of the embodiment, and the description thereof will be omitted.

【0045】31は内側n形領域3Aの表面に設けられ
た第1のn形高濃度領域で、該n形高濃度領域31は、
第1の実施の形態によるn形高濃度領域8と同様に内側
n形領域3Aに砒素等の不純物を高濃度に拡散すること
によって形成されている。また、n形高濃度領域31
は、略四角形状をなすp形領域6の一辺に対して略中央
側に位置し、p形領域6から離間してp形領域6と枠状
トレンチ溝型絶縁領域4との間に配置されている。そし
て、n形高濃度領域31は、低電位端子とは異なる端子
として例えば入力端子に接続されている。
Reference numeral 31 denotes a first n-type high-concentration region provided on the surface of the inner n-type region 3A.
Like the n-type high-concentration region 8 according to the first embodiment, it is formed by diffusing impurities such as arsenic into the inner n-type region 3A at a high concentration. Further, the n-type high concentration region 31
Is located substantially on the center side with respect to one side of the p-type region 6 having a substantially rectangular shape, and is arranged between the p-type region 6 and the frame-shaped trench-type insulating region 4 at a distance from the p-type region 6. ing. The n-type high concentration region 31 is connected to, for example, an input terminal as a terminal different from the low potential terminal.

【0046】32は内側n形領域3Aの表面に設けられ
た第2のn形高濃度領域で、該n形高濃度領域32は、
n形高濃度領域8と同様に内側n形領域3Aに砒素等の
不純物を高濃度に拡散することによって形成されてい
る。また、n形高濃度領域32は、p形高濃度領域7
(p形領域6)を挟んでn形高濃度領域8とは反対側に
位置し、p形領域6から離間してp形領域6と枠状トレ
ンチ溝型絶縁領域4との間に配置されている。そして、
n形高濃度領域32は、図6中に一点鎖線で示すように
配線等によってn形高濃度領域31に接続されている。
Reference numeral 32 denotes a second n-type high-concentration region provided on the surface of the inner n-type region 3A.
Like the n-type high-concentration region 8, the inner n-type region 3A is formed by diffusing impurities such as arsenic at a high concentration. The n-type high-concentration region 32 is a p-type high-concentration region 7.
It is located on the opposite side of the n-type high-concentration region 8 with the (p-type region 6) interposed therebetween, and is spaced apart from the p-type region 6 and arranged between the p-type region 6 and the frame-shaped trench-type insulating region 4. ing. And
The n-type high-concentration region 32 is connected to the n-type high-concentration region 31 by a wiring or the like as shown by a dashed line in FIG.

【0047】33はp形領域6と第1のn形高濃度領域
31との間に位置して内側n形領域3Aの表面に設けら
れた第1のトレンチ溝型絶縁領域で、該トレンチ溝型絶
縁領域33は、p形領域6の一辺に対して略平行な直線
状に延びると共に、その両端がp形領域6に向けて屈曲
したコ字形状に形成されている。これにより、トレンチ
溝型絶縁領域33は、p形領域6の外周に沿って延び、
p形領域6を部分的に取り囲んでいる。また、トレンチ
溝型絶縁領域33は、その底部が全長に亘って誘電体膜
2に接するものの、その両端は枠状トレンチ溝型絶縁領
域4に接触せず、枠状トレンチ溝型絶縁領域4との間に
隙間が形成されている。
Reference numeral 33 denotes a first trench-type insulating region provided between the p-type region 6 and the first n-type high-concentration region 31 and provided on the surface of the inner n-type region 3A. The mold insulating region 33 extends in a straight line substantially parallel to one side of the p-type region 6, and has both ends formed in a U-shape bent toward the p-type region 6. Thereby, the trench type insulating region 33 extends along the outer periphery of the p-type region 6,
The p-type region 6 is partially surrounded. Although the trench groove type insulating region 33 has its bottom portion in contact with the dielectric film 2 over the entire length, both ends thereof do not contact the frame trench type insulating region 4, and the trench groove type insulating region 4 A gap is formed between them.

【0048】34はp形領域6と第2のn形高濃度領域
32との間に位置して内側n形領域3Aの表面に設けら
れた第2のトレンチ溝型絶縁領域で、該トレンチ溝型絶
縁領域34は、p形領域6を挟んでトレンチ溝型絶縁領
域33と反対側の位置に配設され、その両端がp形領域
6に向けて屈曲したコ字形状に形成されている。これに
より、トレンチ溝型絶縁領域34は、p形領域6の外周
に沿って延び、p形領域6を部分的に取り囲んでいる。
また、トレンチ溝型絶縁領域34は、その底部が全長に
亘って誘電体膜2に接するものの、その両端は枠状トレ
ンチ溝型絶縁領域4、トレンチ溝型絶縁領域33には接
触せず、枠状トレンチ溝型絶縁領域4、トレンチ溝型絶
縁領域33との間に隙間が形成されている。
Numeral 34 denotes a second trench-type insulating region provided between the p-type region 6 and the second n-type high-concentration region 32 and provided on the surface of the inner n-type region 3A. The mold insulating region 34 is provided at a position opposite to the trench-shaped insulating region 33 with the p-type region 6 interposed therebetween, and has both ends formed in a U-shape bent toward the p-type region 6. As a result, the trench-type insulating region 34 extends along the outer periphery of the p-type region 6 and partially surrounds the p-type region 6.
Although the trench-groove-type insulating region 34 has its bottom portion in contact with the dielectric film 2 over the entire length, both ends do not contact the frame-like trench-groove-type insulating region 4 and the trench-groove-type insulating region 33, A gap is formed between the trench-shaped insulating region 4 and the trench-shaped insulating region 33.

【0049】かくして、本実施の形態でも第1の実施の
形態と同様の作用効果を得ることができる。しかし、本
実施の形態では、内側n形領域3Aの表面上にp形高濃
度領域7を挟んで2つのn形高濃度領域31,32を設
けたから、第1の実施の形態のように単一のn形高濃度
領域8を設けたときに比べてn形高濃度領域31,32
全体の面積を大きくすることができる。このため、p形
領域6と内側n形領域3Aとの間に形成される第1のダ
イオード35、p形領域6と内側n形高濃度埋込み領域
5Aとの間に形成される第2のダイオード36は、いず
れも抵抗成分が小さくなる。従って、第1,第2のダイ
オード35,36全体のインピーダンスが小さくなり、
サージ印加時の入力端子電圧の電位上昇をより確実に抑
えることができるから、内部回路に注入されるサージ電
流をより一層抑制することができ、半導体装置の損傷を
防ぎ、信頼性等を向上することができる。
Thus, in the present embodiment, the same functions and effects as those of the first embodiment can be obtained. However, in the present embodiment, since two n-type high-concentration regions 31 and 32 are provided on the surface of the inner n-type region 3A with the p-type high-concentration region 7 interposed therebetween, as in the first embodiment. Compared to the case where one n-type high-concentration region 8 is provided, n-type high-concentration regions 31 and 32 are provided.
The entire area can be increased. Therefore, the first diode 35 formed between the p-type region 6 and the inner n-type region 3A, and the second diode formed between the p-type region 6 and the inner n-type high-concentration buried region 5A Each of the samples 36 has a small resistance component. Accordingly, the overall impedance of the first and second diodes 35 and 36 is reduced,
Since the potential rise of the input terminal voltage at the time of applying a surge can be suppressed more reliably, the surge current injected into the internal circuit can be further suppressed, the damage of the semiconductor device can be prevented, and the reliability and the like can be improved. be able to.

【0050】また、トレンチ溝型絶縁領域33,34は
両端が屈曲したコ字形状に形成したから、p形高濃度領
域7から内側n形領域3Aを通じてn形高濃度領域3
1,32に至る第1の電流経路、p形高濃度領域7から
内側n形高濃度埋込み領域5Aを通じてn形高濃度領域
31,32の高濃度領域に至る第2の電流経路は、いず
れも第1の実施の形態に比べてコ字形状のトレンチ溝型
絶縁領域を迂回する分だけより一層長くなる。このた
め、第1の電流経路の寄生抵抗と第2の電流経路の寄生
抵抗との抵抗差を大きくすることができ、第1の電流経
路の寄生抵抗を第2の電流経路の寄生抵抗よりも一層大
きくすることができる。従って、保護ダイオード全体の
抵抗成分を小さくしつつ、サージ電流の大部分を内側n
形高濃度埋込み領域5Aを通る第2のダイオード36を
通じて流すことができる。この結果、p形高濃度領域7
とn形高濃度領域31,32との間隔を拡げることな
く、半導体装置の損傷をより確実に防ぐことができ、高
集積度を保持しつつ信頼性等の向上を図ることができ
る。
Since the trench-type insulating regions 33 and 34 are formed in a U-shape with both ends bent, the n-type high-concentration region 3 extends from the p-type high-concentration region 7 through the inner n-type region 3A.
The first current path leading to the high-concentration regions 31 and 32 from the p-type high-concentration region 7 to the high-concentration regions of the n-type high-concentration regions 31 and 32 are all provided. In comparison with the first embodiment, the length is further increased by the amount of bypassing the U-shaped trench-shaped insulating region. For this reason, the resistance difference between the parasitic resistance of the first current path and the parasitic resistance of the second current path can be increased, and the parasitic resistance of the first current path is larger than the parasitic resistance of the second current path. It can be even larger. Therefore, most of the surge current is reduced to the inside n while reducing the resistance component of the entire protection diode.
It can flow through the second diode 36 passing through the high-concentration buried region 5A. As a result, the p-type high concentration region 7
Without increasing the distance between the semiconductor device and the n-type high concentration regions 31 and 32, damage to the semiconductor device can be more reliably prevented, and reliability and the like can be improved while maintaining high integration.

【0051】なお、前記第3の実施の形態ではトレンチ
溝型絶縁領域33,34の両端はp形領域6の外周に沿
って屈曲させたコ字形状に形成するものとしたが、図7
に示す第1の変形例のようにn形高濃度領域31,32
を取り囲むようにn形高濃度領域31,32の外周に沿
って屈曲したコ字形状のトレンチ溝型絶縁領域33′,
34′としてもよい。
In the third embodiment, both ends of the trench-shaped insulating regions 33 and 34 are formed in a U-shape bent along the outer periphery of the p-type region 6.
As shown in a first modification shown in FIG.
, Which are bent along the outer periphery of the n-type high-concentration regions 31 and 32 to surround the n-type high-concentration regions 31 and 32.
34 '.

【0052】また、前記第1の実施の形態ではトレンチ
溝型絶縁領域9は直線状の形成するものとしたが、図8
に示す第2の変形例のように両端が屈曲したコ字形状の
トレンチ溝型絶縁領域9′としてもよい。また、n形高
濃度領域8はトレンチ溝型絶縁領域9′と離間している
必要はなく、図8中に二点鎖線で示すようにトレンチ溝
型絶縁領域9′に接触した状態でn形高濃度領域8′を
設ける構成としてもよい。
In the first embodiment, the trench-type insulating region 9 is formed in a straight line.
As in the second modified example shown in FIG. 7, a trench-shaped insulating region 9 'having a U-shape with both ends bent may be used. The n-type high-concentration region 8 does not need to be separated from the trench-groove-type insulating region 9 ', and is in contact with the trench-groove-type insulating region 9' as shown by a two-dot chain line in FIG. A configuration in which the high concentration region 8 'is provided may be employed.

【0053】また、前記各実施の形態ではn形高濃度領
域8,31,32は半導体装置の入力端子に接続するも
のとしたが、半導体装置の出力端子に接続する構成とし
てもよい。この場合、出力端子に印加されるサージに対
して同様な作用効果を得ることができる。
In each of the above embodiments, the n-type high-concentration regions 8, 31, and 32 are connected to the input terminals of the semiconductor device. However, the n-type high-concentration regions may be connected to the output terminals of the semiconductor device. In this case, a similar effect can be obtained for a surge applied to the output terminal.

【0054】また、p形高濃度領域7を入力端子または
出力端子に接続し、n形高濃度領域8,31,32を高
電位端子に接続してもよい。この場合、半導体装置に印
加されたサージを高電位となる電源側等にバイパスする
ことができると共に、前述した各実施の形態と同様の作
用効果を得ることができる。
Further, the p-type high-concentration region 7 may be connected to an input terminal or an output terminal, and the n-type high-concentration regions 8, 31, and 32 may be connected to high-potential terminals. In this case, the surge applied to the semiconductor device can be bypassed to the power supply side or the like that has a high potential, and the same operation and effect as the above-described embodiments can be obtained.

【0055】さらに、p形高濃度領域7を低電位端子
(低電位電源端子)に接続し、n形高濃度領域8,3
1,32を高電位端子(高電位電源端子)に接続しても
よい。この場合には、電源端子に印加されたサージをす
ることができると共に、前述した各実施の形態と同様の
作用効果を得ることができる。
Further, the p-type high-concentration region 7 is connected to a low-potential terminal (low-potential power supply terminal), and the n-type high-concentration regions 8 and 3 are connected.
1, 32 may be connected to a high potential terminal (high potential power supply terminal). In this case, a surge applied to the power supply terminal can be generated, and the same operation and effect as those of the above-described embodiments can be obtained.

【0056】また、前記各実施の形態では、誘電体膜2
の表面にn形高濃度埋込み領域5とn形領域3とを形成
するものとしたが、誘電体膜2の表面にp形高濃度埋込
み領域とn形領域とを形成する構成としてもよい。この
場合、各実施の形態中に記載したn形とp形とを入れ替
え、かつ低電位端子(低電位電源端子)と高電位端子
(高電位電源端子)とを入れ替えれば、前述と同様の作
用効果を得ることができる。
In each of the above embodiments, the dielectric film 2
Although the n-type high-concentration buried region 5 and the n-type region 3 are formed on the surface of the dielectric film 2, a p-type high-concentration buried region and the n-type region may be formed on the surface of the dielectric film 2. In this case, if the n-type and the p-type described in each embodiment are interchanged, and the low-potential terminal (low-potential power supply terminal) and the high-potential terminal (high-potential power supply terminal) are interchanged, the same operation as described above is performed. The effect can be obtained.

【0057】[0057]

【発明の効果】以上詳述した通り、請求項1の発明によ
れば、第1導電形の半導体領域を第2導電形の高濃度埋
込み領域に接して設けると共に、第1導電形の高濃度領
域と第2導電形の高濃度領域との間にはトレンチ溝型絶
縁領域を設けたから、第1導電形の半導体領域を第2導
電形の高濃度埋込み領域にはブレークダウン電圧が低
く、かつ寄生抵抗が小さいダイオードを形成することが
できる。このため、正負いずれの過電圧サージが印加さ
れるときであっても、サージ電流の大部分をこのダイオ
ードに流すことができる。このとき、ダイオード電流が
pn接合の一部に集中することがないから、半導体装置
の損傷を防ぐことができ、信頼性、耐久性を高めること
ができる。また、第1導電形の半導体領域と第2導電形
の高濃度領域との間隔を狭くすることができるから、半
導体装置の高集積度を維持できる。さらに、従来技術に
比べて製造時間を短縮でき、生産性を向上できる等の種
々の効果を奏する。
As described above in detail, according to the first aspect of the present invention, the semiconductor region of the first conductivity type is provided in contact with the high-concentration buried region of the second conductivity type, and the high-concentration semiconductor region of the first conductivity type is provided. Since the trench type insulating region is provided between the region and the high-concentration region of the second conductivity type, the breakdown voltage of the semiconductor region of the first conductivity type is low in the high-concentration buried region of the second conductivity type, and A diode having a small parasitic resistance can be formed. Therefore, most of the surge current can flow through the diode regardless of whether a positive or negative overvoltage surge is applied. At this time, since the diode current does not concentrate on a part of the pn junction, damage to the semiconductor device can be prevented, and reliability and durability can be improved. In addition, since the distance between the semiconductor region of the first conductivity type and the high-concentration region of the second conductivity type can be reduced, high integration of the semiconductor device can be maintained. Further, various effects such as a reduction in manufacturing time and an improvement in productivity as compared with the related art can be achieved.

【0058】また、請求項2の発明は、第1導電形の高
濃度領域主面上にパッド電極を設け、第1導電形の高濃
度領域と該パッド電極とを接続したから、半導体装置の
高集積度を保持できると共に、サージ電流を第1導電形
の高濃度領域の全体に略均一に流すことができる。これ
により、第1導電形の高濃度領域と第2導電形の高濃度
埋込み領域との間に形成されるダイオードのpn接合部
分にも、電流密度がより均一な状態でサージ電流を流す
ことができ、ダイオードの耐圧を高め、信頼性、耐久性
をさらに向上することができる。
According to a second aspect of the present invention, a pad electrode is provided on the main surface of the high-concentration region of the first conductivity type, and the high-concentration region of the first conductivity type is connected to the pad electrode. A high degree of integration can be maintained, and a surge current can be made to flow substantially uniformly throughout the high-concentration region of the first conductivity type. This allows a surge current to flow through the pn junction of the diode formed between the high-concentration region of the first conductivity type and the high-concentration buried region of the second conductivity type with a more uniform current density. As a result, the breakdown voltage of the diode can be increased, and the reliability and durability can be further improved.

【0059】さらに、請求項3の発明は、第2導電形の
半導体領域主面には第1導電形の高濃度領域を挟んで一
の第2導電形の高濃度領域と反対側に他の第2導電形の
高濃度領域を設け、かつ第1導電形の高濃度領域と各第
2導電形の高濃度領域との間にはコ字形状のトレンチ溝
型絶縁領域をそれぞれ形成したから、第2導電形の高濃
度領域全体の面積を増加させることができる。このた
め、保護ダイオード全体のインピーダンスを減少させる
ことができるから、内部回路等に注入させるサージ電流
を小さく抑制でき、半導体装置の損傷を防止できる。
Further, according to the present invention, the second conductive type semiconductor region has, on the main surface, a second conductive type high-concentration region opposite to the second conductive type high-concentration region with the other first conductive type high-concentration region interposed therebetween. Since a high-concentration region of the second conductivity type is provided, and a U-shaped trench type insulating region is formed between the high-concentration region of the first conductivity type and the high-concentration region of each second conductivity type, The area of the entire high-concentration region of the second conductivity type can be increased. For this reason, since the impedance of the whole protection diode can be reduced, a surge current injected into an internal circuit or the like can be suppressed small, and damage to the semiconductor device can be prevented.

【0060】また、第1導電形の高濃度領域と2つの第
2導電形の高濃度領域との間にはコ字形状のトレンチ溝
型絶縁領域をそれぞれ設けたから、保護ダイオード全体
の抵抗成分を小さくしつつ、サージ電流の大部分を第1
導電形の高濃度領域と第2導電形の高濃度埋込み領域と
の間に形成されるダイオードを通じて流すことができ
る。これにより、半導体装置の第1導電形の高濃度領域
と第2導電形の高濃度領域との間隔を拡げることなく、
半導体装置の損傷をより確実に防ぐことができ、高集積
度を保持しつつ信頼性等の向上を図ることができる。
Further, since a U-shaped trench type insulating region is provided between the high-concentration region of the first conductivity type and the two high-concentration regions of the second conductivity type, the resistance component of the entire protection diode is reduced. Most of the surge current is
The current can flow through a diode formed between the high-concentration region of the conductivity type and the high-concentration buried region of the second conductivity type. Thereby, without increasing the distance between the high-concentration region of the first conductivity type and the high-concentration region of the second conductivity type of the semiconductor device,
Damage to the semiconductor device can be more reliably prevented, and reliability and the like can be improved while maintaining a high degree of integration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による半導体装置を
示す平面図である。
FIG. 1 is a plan view showing a semiconductor device according to a first embodiment of the present invention.

【図2】図1中の矢示II−II方向からみた断面図であ
る。
FIG. 2 is a cross-sectional view as seen from the direction of arrows II-II in FIG.

【図3】図1中の矢示 III−III 方向からみた断面図で
ある。
FIG. 3 is a cross-sectional view as seen from the direction of arrows III-III in FIG.

【図4】第2の実施の形態による半導体装置を図3と同
様位置からみた断面図である。
FIG. 4 is a cross-sectional view of the semiconductor device according to the second embodiment as viewed from the same position as in FIG. 3;

【図5】第3の実施の形態による半導体装置を示す平面
図である。
FIG. 5 is a plan view showing a semiconductor device according to a third embodiment.

【図6】図5中の矢示VI−VI方向からみた断面図であ
る。
6 is a cross-sectional view as seen from the direction of arrows VI-VI in FIG. 5;

【図7】第1の変形例による半導体装置を示す平面図で
ある。
FIG. 7 is a plan view showing a semiconductor device according to a first modification.

【図8】第2の変形例による半導体装置を示す平面図で
ある。
FIG. 8 is a plan view showing a semiconductor device according to a second modification.

【符号の説明】[Explanation of symbols]

1 シリコン支持基板(半導体支持基板) 2 誘電体膜(誘電体) 3 n形領域(第2導電形の半導体領域) 3A 内側n形領域 5 n形高濃度埋込み領域(第2導電形の高濃度埋込み
領域) 5A 内側n形高濃度埋込み領域 6 p形領域(第1導電形の半導体領域) 7 p形高濃度領域(第1導電形の高濃度領域) 8,8′ n形高濃度領域(第2導電形の高濃度領域) 9,9′ トレンチ溝型絶縁領域 31 第1のn形高濃度領域(一の第2導電形の高濃度
領域) 32 第2のn形高濃度領域(他の第2導電形の高濃度
領域) 33,33′ 第1のトレンチ溝型絶縁領域(一のトレ
ンチ溝型絶縁領域) 34,34′ 第2のトレンチ溝型絶縁領域(他のトレ
ンチ溝型絶縁領域)
Reference Signs List 1 silicon support substrate (semiconductor support substrate) 2 dielectric film (dielectric) 3 n-type region (semiconductor region of second conductivity type) 3A inner n-type region 5 n-type high concentration buried region (second conductivity type high concentration) 5A Inside n-type high-concentration buried region 6 P-type region (semiconductor region of first conductivity type) 7 P-type high-concentration region (high-concentration region of first conductivity type) 8,8 'N-type high-concentration region ( 9, 9 'Trench-groove-type insulating region 31 First n-type high-concentration region (high-concentration region of one second-conductivity-type) 32 Second n-type high-concentration region (others) 33, 33 'First trench type insulating region (one trench type insulating region) 34, 34' Second trench type insulating region (other trench type insulating region) region)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 俊朗 神奈川県厚木市恩名1370番地 株式会社ユ ニシアジェックス内 (72)発明者 下井田 良雄 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 三原 輝儀 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 星 正勝 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5F038 AV04 BH05 BH13 EZ20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiro Shinohara 1370 Onna, Atsugi-shi, Kanagawa Prefecture Inside Unisia Gex Co., Ltd. 72) Inventor Teruyuki Mihara 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Pref. Nissan Motor Co., Ltd. (72) Inventor Masakatsu Hoshi 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Pref. BH13 EZ20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体支持基板主面上に誘電体を介して
第2導電形の半導体領域を形成すると共に、該第2導電
形の半導体領域の底面に第2導電形の高濃度埋込み領域
を形成し、 前記第2導電形の半導体領域主面に第1導電形の半導体
領域を該第2導電形の高濃度埋込み領域に接するように
設け、 該第1導電形の半導体領域主面に第1導電形の高濃度領
域を設けると共に、前記第2導電形の半導体領域主面に
第2導電形の高濃度領域を設け、 かつ該第1導電形の高濃度領域と第2導電形の高濃度領
域との間に位置して第2導電形の半導体領域主面には前
記誘電体に接するようにトレンチ溝型絶縁領域を形成
し、 前記第1導電形の高濃度領域と第2導電形の高濃度領域
とのうちいずれか一方を入力端子、出力端子、高電位端
子、低電位端子のうちいずれかの端子に接続すると共
に、他方を残余のいずれかの端子に接続する構成として
なる半導体装置。
1. A semiconductor region of a second conductivity type is formed on a main surface of a semiconductor support substrate via a dielectric, and a high-concentration buried region of the second conductivity type is formed on a bottom surface of the semiconductor region of the second conductivity type. Forming a semiconductor region of the first conductivity type on the main surface of the semiconductor region of the second conductivity type so as to be in contact with the high-concentration buried region of the second conductivity type; Providing a high-concentration region of one conductivity type, a high-concentration region of the second conductivity type on a main surface of the semiconductor region of the second conductivity type, and a high-concentration region of the first conductivity type and a high-concentration region of the second conductivity type; Forming a trench type insulating region on the main surface of the semiconductor region of the second conductivity type located between the high concentration region of the first conductivity type and the second conductivity type; One of the input terminal, output terminal, high potential terminal and low potential terminal While connected to Chiizure of terminals, the semiconductor device comprising the other as configuration of connecting to one of the terminals of the remainder.
【請求項2】 前記第1導電形の高濃度領域主面上にパ
ッド電極を設け、第1導電形の高濃度領域と該パッド電
極とを接続してなる請求項1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein a pad electrode is provided on the main surface of the high-concentration region of the first conductivity type, and the high-concentration region of the first conductivity type is connected to the pad electrode.
【請求項3】 前記第1導電形の高濃度領域を挟んで前
記一の第2導電形の高濃度領域とは反対側に位置して第
2導電形の半導体領域主面には他の第2導電形の高濃度
領域を設け、 かつ前記第1導電形の高濃度領域と他の第2導電形の高
濃度領域との間に位置して第2導電形の半導体領域主面
には前記誘電体に接するように、かつ前記一のトレンチ
溝型絶縁領域とコ字形状をなして他のトレンチ溝型絶縁
領域を形成し、 前記他の第2導電形高濃度領域を前記一の第2導電形の
高濃度領域に接続してなる請求項1または2に記載の半
導体装置。
3. The semiconductor device according to claim 1, wherein the first conductive type high-concentration region is located on the opposite side of the one second conductive type high-concentration region, and the second conductive type semiconductor region has another main region. A second conductivity type high concentration region is provided, and the second conductivity type semiconductor region is located between the first conductivity type high concentration region and another second conductivity type high concentration region. Forming another trench-shaped insulating region in contact with a dielectric and in a U-shape with the one trench-shaped insulating region; and forming the other second-conductivity-type high-concentration region into the second conductive-type high-concentration region. 3. The semiconductor device according to claim 1, wherein the semiconductor device is connected to a high-concentration region of a conductivity type.
JP2000223504A 2000-07-25 2000-07-25 Semiconductor device Expired - Fee Related JP4029549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223504A JP4029549B2 (en) 2000-07-25 2000-07-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223504A JP4029549B2 (en) 2000-07-25 2000-07-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002043586A true JP2002043586A (en) 2002-02-08
JP4029549B2 JP4029549B2 (en) 2008-01-09

Family

ID=18717585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223504A Expired - Fee Related JP4029549B2 (en) 2000-07-25 2000-07-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4029549B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179823A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Surge protecting semiconductor device and its manufacturing method
JP2006319072A (en) * 2005-05-11 2006-11-24 Denso Corp Semiconductor device and its design method
JP2008098479A (en) * 2006-10-13 2008-04-24 Toyota Central R&D Labs Inc Semiconductor device for electrostatic protection
JP7368121B2 (en) 2019-06-20 2023-10-24 ローム株式会社 Semiconductor device and semiconductor device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179823A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Surge protecting semiconductor device and its manufacturing method
JP2006319072A (en) * 2005-05-11 2006-11-24 Denso Corp Semiconductor device and its design method
JP2008098479A (en) * 2006-10-13 2008-04-24 Toyota Central R&D Labs Inc Semiconductor device for electrostatic protection
JP7368121B2 (en) 2019-06-20 2023-10-24 ローム株式会社 Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP4029549B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP3949251B2 (en) ESD protection circuit
US8030730B2 (en) Semiconductor device and manufacturing method thereof
KR960009180A (en) Electrostatic discharge protection device and its manufacturing method
JPH06349849A (en) High-breakdown-strength thin- film semiconductor device
EP1022785A1 (en) Electronic semiconductor power device with integrated diode
US20210384361A1 (en) Semiconductor structure and method for manufacturing the same
US6388276B1 (en) Reverse conducting thyristor
US6914270B2 (en) IGBT with PN insulation and production method
KR100960738B1 (en) Semiconductor device for surge protection
CN219497800U (en) TVS device
JP4029549B2 (en) Semiconductor device
US20100084684A1 (en) Insulated gate bipolar transistor
JP3275850B2 (en) High breakdown voltage diode and its manufacturing method
JP2001345376A (en) Semiconductor device
JPH049378B2 (en)
US6248639B1 (en) Electrostatic discharge protection circuit and transistor
JP2003092414A (en) Semiconductor device
JP2005026434A (en) Semiconductor device
JPH07142731A (en) Power device and method for forming it
JPH1117198A (en) Protection of logic well of component including integrated mos power transistor
JPS59100570A (en) Mos transistor
US11824084B2 (en) Power semiconductor device
JPS6327865B2 (en)
JP2881907B2 (en) Power semiconductor device
JP2001144097A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees