JPS62193287A - Amorphous photovoltaic device - Google Patents

Amorphous photovoltaic device

Info

Publication number
JPS62193287A
JPS62193287A JP61035677A JP3567786A JPS62193287A JP S62193287 A JPS62193287 A JP S62193287A JP 61035677 A JP61035677 A JP 61035677A JP 3567786 A JP3567786 A JP 3567786A JP S62193287 A JPS62193287 A JP S62193287A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
substrate
uneven
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61035677A
Other languages
Japanese (ja)
Inventor
Kaneo Watanabe
渡邊 金雄
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Tsugifumi Matsuoka
松岡 継文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61035677A priority Critical patent/JPS62193287A/en
Publication of JPS62193287A publication Critical patent/JPS62193287A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form the titled device efficiently without needing a process for forming the surface irregularity of a transparent electrode and so on and get the device to have a high photoelectric conversion efficiency by a method wherein the substrate side surface of an amorphous semiconductor thin film is made smooth and the opposite side surface irregular. CONSTITUTION:A transparent electrode 2 consisting of a light-transmitting conductive oxide is formed on a transparent substrate 1, a PIN junction type amorphous semiconductor thin film 6 is formed thereon and a back electrode 7 consisting of such a metal as Al is formed thereon. This amorphous semiconductor thin film 6 is one bonded a P-type layer 3, an I-type layer 4 and an N-type layer 5 together, the substrate side surface 8 of this thin film 6 is formed into a smooth surface and the opposite side surface 9 is formed into an irregular surface. The semiconductor thin film 6 of such a singular form can be formed by a method that the conditions at the time it is formed by a plasma CVD method are temporarily modified on the en route process and the formation of surface irregularity is performed during the film formation. Thereby, in case a light is incided through the substrate side, the photoelectric conversion efficiency can be improved chiefly by the improvement of the FF and in case the light is incided through the opposite side, the photoelectric conversion efficiency can be improved by the improvement of the Isc along with the improvement of the FF.

Description

【発明の詳細な説明】 産業上の利尻兄駄 本発明は、太陽電池や光センサー等に好適に用いられる
非晶質光起電力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous photovoltaic device suitable for use in solar cells, optical sensors, and the like.

従未傅扱術 非晶質光起電力装置には種々のタイプのものがあるが、
その中の一つに、第4図に示すようなp−1−n接合型
の非晶質半導体薄膜を有する非晶質光起電力装置がある
。このものは、透明基板1の片面の透明電極2の上に、
9層3と1層4と1層5を接合した平らな非晶質半導体
薄膜6を形成し、その上に裏面電極7を形成した構造と
されている。
There are various types of amorphous photovoltaic devices.
One of them is an amorphous photovoltaic device having a p-1-n junction type amorphous semiconductor thin film as shown in FIG. In this case, on the transparent electrode 2 on one side of the transparent substrate 1,
It has a structure in which a flat amorphous semiconductor thin film 6 is formed by bonding nine layers 3, one layer 4, and one layer 5, and a back electrode 7 is formed thereon.

このような構造の光起電力装置では、透明基板1を通し
て光が非晶質半導体薄膜6に入ると、光電効果により1
層4において電子・正孔対が発生し、電子が9層3へ、
正孔が1層5へ移行して起電力を生じる。しかしながら
、半導体薄膜6の基板側表面8も反対側表面9も平滑面
であるため、透明基板1と直角に入射した光は基板側表
面8で屈折することなく直進し、反対側表面9で正反対
に反射して半導体薄膜6より出て行くことになる。従っ
て、半導体薄膜6内における光路長が短く光を充分に吸
収できないため、光電変換効率があまり高くないといっ
た問題がある。
In a photovoltaic device having such a structure, when light enters the amorphous semiconductor thin film 6 through the transparent substrate 1, the photovoltaic device generates 1 due to the photoelectric effect.
Electron-hole pairs are generated in layer 4, and electrons are transferred to layer 3,
The holes move to the first layer 5 and generate an electromotive force. However, since both the substrate-side surface 8 and the opposite-side surface 9 of the semiconductor thin film 6 are smooth, the light incident at right angles to the transparent substrate 1 travels straight without being refracted by the substrate-side surface 8, and is diametrically opposed to the opposite surface 9 by the substrate-side surface 8. The light is reflected and exits the semiconductor thin film 6. Therefore, since the optical path length within the semiconductor thin film 6 is short and light cannot be absorbed sufficiently, there is a problem that the photoelectric conversion efficiency is not very high.

かかる問題に対処するため、第4図に示すように、透明
基板1上の透明電極20表面を凹凸化することによって
、その上のp ’?t 3、iN4、nFj5よりなる
非晶質半導体薄膜6と裏面電極7を凹凸状に形成した構
造の非晶質光起電力装置が開発された。このように非晶
質半導体薄膜6が凹凸状に形成されていると、透明基板
1を通って入射した光が該薄膜6の基板側の凹凸表面8
で屈折し、反対側の凹凸表面9で乱反射し、反射光の一
部が更に基板側の凹凸表面8で全反射する等、薄膜6内
で複雑な光路をとるため、光路長が増大する。
To deal with this problem, as shown in FIG. 4, by making the surface of the transparent electrode 20 on the transparent substrate 1 uneven, p'? An amorphous photovoltaic device having a structure in which an amorphous semiconductor thin film 6 made of t3, iN4, and nFj5 and a back electrode 7 are formed in an uneven manner has been developed. When the amorphous semiconductor thin film 6 is formed in an uneven shape in this way, light incident through the transparent substrate 1 is transmitted to the uneven surface 8 of the thin film 6 on the substrate side.
The light is refracted at the surface of the thin film 6, diffusely reflected on the uneven surface 9 on the opposite side, and a part of the reflected light is further totally reflected on the uneven surface 8 on the substrate side, taking a complicated optical path within the thin film 6, thereby increasing the optical path length.

従って、凹凸状の薄膜6の光吸収量は平坦な薄膜よりも
遥かに多くなり(Iscが向上する)、光電変換効率が
向上する。
Therefore, the amount of light absorbed by the uneven thin film 6 is much greater than that of a flat thin film (Isc is improved), and the photoelectric conversion efficiency is improved.

一口がlしようとする5 声 しかしながら、第4図に示す非晶質光起電力装置によれ
ば、非晶質半導体薄膜6を成膜する前に透明基板1上の
透明電極2の表面を凹凸加工する必要があるため、製造
工程数が増加し生産効率の低下を招くといった問題があ
り、また凹凸加工を行う装置が必要となるため、設備コ
ストも増大するといった問題がある。更に、透明電極2
の表面に明瞭な凹凸を形成しても、非晶質半導体薄膜6
の成膜中に凹凸が徐々に平滑化されるため、該薄膜6の
裏面電極側の表面9に明瞭な凹凸が付きにくいといった
問題もある。この問題は、特に光が基板と反対側から入
射するタイプの光起電力装置の場合、入射光の屈折が不
充分となって光電変換効率の向上を妨げる原因となるの
で望ましくない本発明は上記問題点に鑑みてなされたも
ので、その目的とするところは、透明電極表面等の凹凸
加工が不要で効率よく製造することができ、しかも高い
光電変換効率を有する非晶質光起電力装置を提供するこ
とにある。
However, according to the amorphous photovoltaic device shown in FIG. 4, the surface of the transparent electrode 2 on the transparent substrate 1 is made uneven before forming the amorphous semiconductor thin film 6. Since processing is required, there is a problem that the number of manufacturing steps is increased, leading to a decrease in production efficiency.Also, since a device for performing uneven processing is required, there is a problem that equipment costs also increase. Furthermore, transparent electrode 2
Even if clear unevenness is formed on the surface of the amorphous semiconductor thin film 6,
Since the unevenness is gradually smoothed during film formation, there is also the problem that clear unevenness is difficult to form on the surface 9 of the thin film 6 on the back electrode side. Especially in the case of a type of photovoltaic device in which light enters from the side opposite to the substrate, this problem causes insufficient refraction of the incident light and hinders improvement of photoelectric conversion efficiency. This was done in view of the problem, and its purpose is to create an amorphous photovoltaic device that can be manufactured efficiently without the need for uneven processing on the surface of transparent electrodes, and has high photoelectric conversion efficiency. It is about providing.

5 声を解決するための手 上記目的を達成するため、本発明は、p−1−n接合型
の非晶質半導体薄膜を有する非晶質光起電力装置におい
て、非晶質半導体薄膜の基板側表面を平滑面とし、反対
側表面を凹凸面としたことを要旨とする。
5. Measures to Solve the Problems To achieve the above object, the present invention provides an amorphous photovoltaic device having a p-1-n junction type amorphous semiconductor thin film, in which a substrate of the amorphous semiconductor thin film is used. The gist is that the side surface is a smooth surface and the opposite surface is an uneven surface.

衾皿■庇里 このように非晶質半導体薄膜の基板側表面を平滑面とし
反対側表面を凹凸面とすれば、実施例の中で詳述するよ
うに、プラズマCVD法で成膜するときの条件を途中で
一時変更し成膜中に凹凸化を行うことによって形成する
ことができる。従って、基板上の透明電極表面に凹凸加
工を施す工程が不要となるので、工程数増加による生産
効率低下の問題や、凹凸加工装置導入による設備コスト
増加の問題を解消することができる。また成膜中に凹凸
化するので、非晶質半導体薄膜の反対側表面を明瞭な凹
凸面とすることができ、特に成膜の後半に凹凸化を行え
ば一層明瞭な凹凸面とすることができる。
If the surface of the amorphous semiconductor thin film on the substrate side is smooth and the surface on the opposite side is uneven, as described in detail in the examples, when the film is formed using the plasma CVD method, It can be formed by temporarily changing the conditions during the film formation to make the film uneven. Therefore, there is no need for the step of applying unevenness to the surface of the transparent electrode on the substrate, so it is possible to solve the problem of a decrease in production efficiency due to an increase in the number of steps and an increase in equipment cost due to the introduction of an unevenness processing device. In addition, since the surface is made uneven during film formation, the opposite surface of the amorphous semiconductor thin film can be made to have a clearly uneven surface.Especially, if the surface is made uneven during the latter half of the film formation, it can be made even more clearly uneven. can.

また、以下の作用■■によって光電変換効率が向上する
In addition, the photoelectric conversion efficiency is improved by the following action (■).

■光が基板側から入射する場合。■When light enters from the board side.

この場合、光入射側となる半導体薄膜の基板側表面が平
滑面であるので、光入射側表面が凹凸面となっている第
4図の半導体Fi膜はど光路長は増加しない。従って、
光電変換効率は光吸収口の増加によってはあまり向上す
ることは期待できないが、FF(曲線因子)の向上によ
って増大する。
In this case, since the substrate side surface of the semiconductor thin film on the light incident side is a smooth surface, the optical path length does not increase as compared to the semiconductor Fi film shown in FIG. 4 whose light incident side surface is an uneven surface. Therefore,
Although it is not expected that the photoelectric conversion efficiency will improve much by increasing the number of light absorption holes, it will increase by improving the FF (fill factor).

その理由は、基板と反対側の表面が凹凸しであることに
より半導体薄膜の1層の厚みが膜厚方向と直交する方向
に増減変化している関係上、膜厚よりも9層と0層を斜
めに結ぶ線の方が短い部分ができ、そのため、1層中で
光生成されたキャリアの一部がこの移動距離の短いコー
スをとって斜め方向に移動する結果、平均的な光生成キ
ャリアの移動径路が短くなること、及び半導体薄膜の反
対側凹凸表面と電極との接触面積の増加により接触抵抗
が減少することから、等測的な直列抵抗が減少するため
であると考えられる。
The reason for this is that the thickness of one layer of the semiconductor thin film increases or decreases in the direction perpendicular to the film thickness direction due to the unevenness of the surface opposite to the substrate. The line that connects diagonally creates a shorter part, and as a result, some of the photogenerated carriers in one layer take this shorter course and move in the diagonal direction.As a result, the average photogenerated carrier It is thought that this is because the isometric series resistance decreases because the movement path of the semiconductor thin film becomes shorter and the contact resistance decreases due to an increase in the contact area between the uneven surface of the opposite side of the semiconductor thin film and the electrode.

■光が基板と反対側から入射する場合。■When light enters from the side opposite to the board.

この場合、光入射側となる半導体薄膜の反対側表面が凹
凸面であって入射光の屈折が充分に行われるため第4図
の半導体薄膜の場合と同様、光路長の増加により光吸収
量が増大しくIscが向上)、且つFFも上記と同様な
理由から向上するため、光電変換効率が向上する。
In this case, the surface on the opposite side of the semiconductor thin film, which is the light incident side, is an uneven surface and the incident light is refracted sufficiently, so as in the case of the semiconductor thin film shown in Figure 4, the amount of light absorption increases due to the increase in the optical path length. (Isc increases) and FF also improves for the same reason as above, so the photoelectric conversion efficiency improves.

失施桝 以下、図面を参照しながら本発明の実施例を詳述する。Lost box Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は基板側から光が入射するタイプの非晶質光起電
力装置を示したもので、この光起電力装置は、ガラス等
よりなる透明基板1の上に、In40s 、ITO,5
nOz等の透光性導電酸化物よりなる透明電極2を形成
すると共に、その上にp−1−n接合型の非晶質半導体
薄膜6を形成し、更にその上にA1等の金属よりなる裏
面電極7を形成した構造とされている。
FIG. 1 shows an amorphous photovoltaic device of the type in which light enters from the substrate side. In this photovoltaic device, In40s, ITO, 5
A transparent electrode 2 made of a translucent conductive oxide such as nOz is formed, and a p-1-n junction type amorphous semiconductor thin film 6 is formed thereon, and furthermore, a transparent electrode 2 made of a metal such as A1 is formed. It has a structure in which a back electrode 7 is formed.

この非晶質半導体薄膜6は、ボロン(B)をドープした
a−3iC等のp型非晶質半導体よりなるp Wt 3
と、不純物濃度の極めて低いa−3i等のi型非晶質半
導体よりなる1jilW4と、燐(P)をドープしたa
−3i等のp型非晶質半導体よりなるnJi5を接合し
たもので、この薄膜6の基板側表面8は、粒径lQnm
以上の凹部と凸部を1平方μm当たり0.01個未満の
割合で有する程度の平滑面とされ、反対側表面9が、粒
径Ionm乃至1μmの凹部と凸部を1平方μm当たり
00f([lj乃至10000個の割合で有する程度の
凹凸面とされている。
This amorphous semiconductor thin film 6 is made of a p-type amorphous semiconductor such as a-3iC doped with boron (B).
, 1jilW4 made of i-type amorphous semiconductor such as a-3i with extremely low impurity concentration, and phosphorus (P)-doped a
nJi5 made of a p-type amorphous semiconductor such as -3i is bonded, and the substrate side surface 8 of this thin film 6 has a grain size of lQnm.
The surface is smooth to the extent that it has the above-mentioned concave portions and convex portions at a ratio of less than 0.01 per 1 square μm, and the opposite surface 9 has 00 f ( [It is said that the surface has irregularities at a ratio of 10,000 to 10,000.

このような特異形状の半導体薄膜6は、プラズマCVD
法(高周波グロー放電法)で成膜するときの条件を途中
で一時変更し成膜中に凹凸化を行うことによって形成す
ることができる。
The semiconductor thin film 6 having such a unique shape is produced by plasma CVD.
It can be formed by temporarily changing the conditions during film formation using a method (high frequency glow discharge method) and making the film uneven during film formation.

今、9層3がp型a−3iC,1層4がi型a−3i、
1層5がn型a−3iである半導体薄膜6を形成する場
合を例にとって説明すると、まず、基板1上の透明電極
20表面に、下記第1表に例示のような通常のp層成膜
条性下でp眉3を成膜する。このように通常のp層成膜
条性下に成膜を行えば、第1図に示すような層厚の一定
した平坦な9層3が形成されるが、その場合、p眉3の
透明電極2との接合面、つまり半導体薄膜6の基板側表
面8は、透明電極2の表面がもともと粒径10nm以上
の凹部と凸部を1平方μm当たり0.01個未満の割合
で有する程度の平滑面であるので、自然に上記のような
平滑面となる。
Now, 9th layer 3 is p type a-3iC, 1st layer 4 is i type a-3i,
To explain the case of forming a semiconductor thin film 6 in which the first layer 5 is n-type a-3i, first, a normal p layer is formed on the surface of the transparent electrode 20 on the substrate 1 as shown in Table 1 below. A p-eyebrow 3 film is formed under a film-stripe condition. If the film is formed under the normal p-layer film forming conditions in this way, nine flat layers 3 with a constant layer thickness as shown in Fig. 1 will be formed, but in that case, the transparent p-layer 3 The bonding surface with the electrode 2, that is, the substrate-side surface 8 of the semiconductor thin film 6, is such that the surface of the transparent electrode 2 originally has concave portions and convex portions with a grain size of 10 nm or more at a rate of less than 0.01 per square μm. Since it is a smooth surface, it naturally becomes a smooth surface as shown above.

次いで1層4を成膜するとき、通常のi層成膜条性より
も高圧力で且つ低い高周波電力で最初成膜する。−例と
しては、圧力ITorr、高周波電力10 W (16
mW/cut) 、基板温度200t、ガス流1siH
+  101005e (0,16secm/cJ)、
反応時間2分の条件下に成膜を行う。このような条件で
成膜すると、SiH今は高周波電力が低いため分解不充
分となり、且つ高圧によって分子間距離が短縮されて結
合しやすくなるため、第1図に破線で示すように、粒径
10nm〜1μm程度の多数の島状に成長した1層4′
が形成される。その後、下記第1表に例示するような通
常のi%i成膜条件に戻して成膜を続行し、i M4を
形成する。このように通常の条件に戻すと、島状のi眉
4’の凹凸面にそってほぼ一様な厚みで1層4が成膜さ
れるので、iN4のn F35側の表面は凹凸面となる
Next, when forming the first layer 4, the film is first formed at a higher pressure and lower radio frequency power than in the normal i-layer film forming process. - Examples include pressure I Torr, high frequency power 10 W (16
mW/cut), substrate temperature 200t, gas flow 1siH
+ 101005e (0.16sec/cJ),
Film formation is performed under conditions where the reaction time is 2 minutes. If a film is formed under these conditions, SiH will be insufficiently decomposed due to the low high-frequency power, and the high pressure will shorten the intermolecular distance and facilitate bonding, so the particle size will increase as shown by the broken line in Figure 1. One layer 4' grown in the form of many islands of about 10 nm to 1 μm
is formed. Thereafter, the normal i%i film forming conditions as exemplified in Table 1 below are returned to and film forming is continued to form iM4. When the conditions are returned to normal in this way, one layer 4 is formed with an almost uniform thickness along the uneven surface of the island-shaped i-brow 4', so the surface of the iN4 on the nF35 side becomes an uneven surface. Become.

しかる後、下記第1表に例示するような通常の成膜条件
で1層5を成膜する。このように通常の条件で成膜する
と、i眉4の凹凸面に沿って第1図に示すごとき層厚の
ほぼ一様な凹凸状のnJi#5が形成されるので、該1
層5の表面、つまり半導体薄膜6の基板と反対側表面9
は凹凸面となる。
Thereafter, one layer 5 is formed under normal film forming conditions as exemplified in Table 1 below. When the film is formed under normal conditions as described above, uneven nJi#5 having a substantially uniform layer thickness as shown in FIG. 1 is formed along the uneven surface of the i-eye 4.
The surface of the layer 5, that is, the surface 9 of the semiconductor thin film 6 opposite to the substrate
becomes an uneven surface.

上記の島状の1層4′を形成するための成膜条件として
は、基板温度300℃以下、圧力0. 5〜2TOrr
、高周波電力1〜20 mW/c+J、ガス流10.0
5〜1 s e cm/cdを採用することが望ましく
、かかる成膜条件を採用すれば、最終的に形成される1
層5の表面、部ち半導体薄膜6の基板と反対側表面9が
、前記のような粒径10nm乃至1μmの凹部と凸部を
1平方μm当たり0.01([1乃至10000([1
i1の割合で有する程度の凹凸面となる。
The film forming conditions for forming the above-mentioned island-shaped single layer 4' include a substrate temperature of 300° C. or less, and a pressure of 0.5° C. or less. 5~2 Torr
, high frequency power 1-20 mW/c+J, gas flow 10.0
It is desirable to adopt 5 to 1 sec cm/cd, and if such film formation conditions are adopted, the final
The surface of the layer 5, that is, the surface 9 of the semiconductor thin film 6 opposite to the substrate, has concave and convex portions with a grain size of 10 nm to 1 μm as described above at 0.01 ([1 to 10,000 ([1
The surface has an uneven surface having a ratio of i1.

(以下余白) 」−」ニー表 とのような構造の非晶質光起電力装置は、発明の作用の
項で説明したように、半導体筒lI*6の基板と反対側
表面9の凹凸化により主としてFF(曲線因子)が向上
するため、光電変換効率が向上する。実験によれば、半
導体MIQ’を凹凸化しない点を除き他はすべて上記実
施例と同じ条件で作製した起電力装置については、FF
が0.58、光電変換効率(AM  1. 100mW
/caりが7゜8%であるが、凹凸化した上記実施例の
光起電力装置では、FFが0.65.光電変換効率が8
゜7%と向上することが確認された。
(Left below) An amorphous photovoltaic device having a structure similar to the knee table has an uneven surface 9 on the side opposite to the substrate of the semiconductor cylinder lI*6, as explained in the section of the function of the invention. This mainly improves the FF (fill factor), thereby improving the photoelectric conversion efficiency. According to experiments, an electromotive force device manufactured under the same conditions as in the above example except that the semiconductor MIQ' was not made uneven had a FF
is 0.58, photoelectric conversion efficiency (AM 1. 100mW
/ca is 7°8%, but in the photovoltaic device of the above example with the uneven surface, the FF is 0.65. Photoelectric conversion efficiency is 8
It was confirmed that the improvement was 7%.

第2図は、基板と反対側から光が入射するタイプの非晶
質光起電力装置を示したもので、この光起電力装置は、
電極を兼ねたSUS等よりなる金泥基板10の上に、0
層5と1層4と9層3をこの順で接合した非晶質半導体
薄膜6を形成し、更にその上にI n、03 +  I
 T O+  S n 02等の透光性導電酸化物より
なる透明電極11を形成した構造とされており、この半
導体薄膜6も前記実施例と同様に基板側表面8が平滑面
、反対側表面9が凹凸面とされている。そして、この半
導体薄膜6の0層5はプラズマCVD法によって下記第
2表に示す成膜条件化に成膜したn型a−3iより構成
され、1層4は前記実施例と同様の条件で成膜した島状
の1層4′の上に下記第2表に示す条件で成膜したi型
a−3iより構成され、9層3は下記第2表に示す条件
で成膜したp型a−5iより構成されている。
Figure 2 shows an amorphous photovoltaic device of the type in which light enters from the side opposite to the substrate.
On a gold mud substrate 10 made of SUS etc. which also serves as an electrode,
An amorphous semiconductor thin film 6 is formed by bonding layers 5, 1, 4, and 9 in this order, and furthermore, I n, 03 + I
It has a structure in which a transparent electrode 11 made of a light-transmitting conductive oxide such as T O+ S n 02 is formed, and this semiconductor thin film 6 also has a smooth surface 8 on the substrate side and a surface 9 on the opposite side as in the previous embodiment. is considered to be an uneven surface. The 0th layer 5 of this semiconductor thin film 6 is composed of n-type a-3i formed by the plasma CVD method under the film forming conditions shown in Table 2 below, and the 1st layer 4 is formed under the same conditions as in the previous example. The 9 layers 3 are composed of an i-type a-3i film formed under the conditions shown in Table 2 below on the formed island-like single layer 4', and 9 layers 3 are formed of a p-type film formed under the conditions shown in Table 2 below. It is composed of a-5i.

(以下余白) 」−」L−表 このような構造の非晶質光起電力装置は、発明の作用の
項で説明したように、半導体薄膜6の基板と反対側表面
9の凹凸化によりFFと共にIsCが向上するため、光
電変換効率が向上する。実験によれば、半導体薄膜を凹
凸化しない点を除き他はすべて上記実施例と同じ条件で
作製した起電力装置については、光電変換効率(AM−
1,100mW/cfiI)が6.7%であるが、凹凸
化した上記実施例の光起電力装置では、光電変換効率が
8.0%と向上することが確認された。
(The following is a blank space) ``-''L-Table An amorphous photovoltaic device having such a structure is capable of forming an FF by making the surface 9 of the semiconductor thin film 6 opposite to the substrate uneven, as explained in the section of the function of the invention. At the same time, since IsC is improved, photoelectric conversion efficiency is improved. According to experiments, the photoelectric conversion efficiency (AM-
1,100 mW/cfiI) was 6.7%, but it was confirmed that in the photovoltaic device of the above example with the uneven structure, the photoelectric conversion efficiency was improved to 8.0%.

以上の二つの実施例はいずれも半導体薄膜6のi旧4を
成膜する最初の段階で島状の1層4′を形成して凹凸化
を行っているが、成膜の後半でこのような凹凸化を行う
ようにしてもよい。このように成膜の後半で凹凸化を行
えば、半導体薄膜6の基板と反対側表面9が明瞭な凹凸
を有する凹凸面となるので、FFやiscが更に向上し
、光電変換効率が一層向上することになる。
In both of the above two embodiments, an island-like single layer 4' is formed at the initial stage of forming the i-former 4 of the semiconductor thin film 6 to make it uneven. It is also possible to make the surface uneven. If unevenness is performed in the latter half of film formation in this way, the surface 9 of the semiconductor thin film 6 opposite to the substrate becomes an uneven surface with clear unevenness, which further improves FF and ISC, and further improves photoelectric conversion efficiency. I will do it.

1皿Ω羞来 以上の説明から明らかなように、本発明の非晶質光起電
力装置によれば、非晶質半導体薄膜の基板側表面を平坦
面、反対側表面を凹凸面としたため、光が基板側から入
射する場合は主としてFFの向上によって、また反対側
から入射する場合はFFと共にIscの向上によって、
光電変換効率が高められる。しかも、このような形状の
非晶質半導体薄膜は、プラズマCVD法で成膜するとき
の条件を途中で一時変更し成膜中に凹凸化を行うことに
よって容易に形成されるので、従来のように基板上の透
明電極表面に凹凸加工を施す工程が全く不゛要となり、
従って、工程数増加による生産効率低下の問題や、凹凸
加工装置導入による設備コスト増加の問題を解消するこ
とができる。また成膜工程の後半に凹凸化を行えば、非
晶質半導体薄膜の反対側表面が明瞭な凹凸面となるので
、光電変換効率のより一層の向上を期待できる等、優れ
た効果が得られる。
As is clear from the above description, according to the amorphous photovoltaic device of the present invention, the substrate-side surface of the amorphous semiconductor thin film is a flat surface, and the opposite surface is an uneven surface. When light enters from the substrate side, it mainly improves FF, and when light enters from the opposite side, it improves both FF and Isc.
Photoelectric conversion efficiency is increased. Moreover, an amorphous semiconductor thin film having such a shape can be easily formed by temporarily changing the conditions during film formation using the plasma CVD method and making the film uneven during film formation. The process of applying unevenness to the surface of the transparent electrode on the substrate is completely unnecessary.
Therefore, it is possible to solve the problem of a decrease in production efficiency due to an increase in the number of steps and an increase in equipment cost due to the introduction of an uneven processing device. In addition, if unevenness is performed in the latter half of the film formation process, the opposite surface of the amorphous semiconductor thin film will have a clearly uneven surface, which can be expected to further improve photoelectric conversion efficiency and other excellent effects. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る非晶質光起電力装置の
模式的な断面図、第2図は本発明の他の実施例に係る非
晶質光起電力装置の模式的な断面図、第3図及び第4図
はそれぞれ従来の異なる構造の非晶質光起電力装置の模
式的な断面図である。 1.10・・・基板、3・・・2層、4・・・i層、4
′・・・島状の1石、5・・・nJM、6・・・非晶質
半導体薄膜、8・・・基板側表面、9・・・反対側表面
FIG. 1 is a schematic cross-sectional view of an amorphous photovoltaic device according to one embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of an amorphous photovoltaic device according to another embodiment of the present invention. 3 and 4 are schematic cross-sectional views of conventional amorphous photovoltaic devices having different structures, respectively. 1.10...Substrate, 3...2 layer, 4...i layer, 4
'... Island-shaped single stone, 5... nJM, 6... Amorphous semiconductor thin film, 8... Substrate side surface, 9... Opposite side surface.

Claims (2)

【特許請求の範囲】[Claims] (1)p−i−n接合型の非晶質半導体薄膜を有する非
晶質光起電力装置において、上記非晶質半導体薄膜の基
板側表面が平滑面とされ、反対側表面が凹凸面とされて
いることを特徴とする非晶質光起電力装置。
(1) In an amorphous photovoltaic device having a pin junction type amorphous semiconductor thin film, the substrate-side surface of the amorphous semiconductor thin film is a smooth surface, and the opposite surface is an uneven surface. An amorphous photovoltaic device characterized by:
(2)非晶質半導体薄膜の基板側表面が、粒径10nm
以上の凹部と凸部を1平方μm当たり0.01個未満の
割合で有する程度の平滑面とされ、反対側表面が、粒径
10nm乃至1μmの凹部と凸部を1平方μm当たり0
.01個乃至10000個の割合で有する程度の凹凸面
とされていることを特徴とする特許請求の範囲第(1)
項記載の非晶質光起電力装置。
(2) The substrate side surface of the amorphous semiconductor thin film has a grain size of 10 nm.
The surface is smooth enough to have the above concave and convex portions at a rate of less than 0.01 per square μm, and the opposite surface has 0.01 concave and convex portions with a grain size of 10 nm to 1 μm per square μm.
.. Claim (1) characterized in that the surface has an uneven surface having a ratio of 0.01 to 10,000.
The amorphous photovoltaic device described in .
JP61035677A 1986-02-20 1986-02-20 Amorphous photovoltaic device Pending JPS62193287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035677A JPS62193287A (en) 1986-02-20 1986-02-20 Amorphous photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035677A JPS62193287A (en) 1986-02-20 1986-02-20 Amorphous photovoltaic device

Publications (1)

Publication Number Publication Date
JPS62193287A true JPS62193287A (en) 1987-08-25

Family

ID=12448512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035677A Pending JPS62193287A (en) 1986-02-20 1986-02-20 Amorphous photovoltaic device

Country Status (1)

Country Link
JP (1) JPS62193287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315959A1 (en) * 1993-05-12 1994-11-24 Max Planck Gesellschaft Electronic device with microstructured electrodes and method for producing such a device
JP2015188120A (en) * 2015-07-31 2015-10-29 シャープ株式会社 photoelectric conversion element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224183A (en) * 1983-06-03 1984-12-17 Semiconductor Energy Lab Co Ltd Photoelectric converter device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224183A (en) * 1983-06-03 1984-12-17 Semiconductor Energy Lab Co Ltd Photoelectric converter device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315959A1 (en) * 1993-05-12 1994-11-24 Max Planck Gesellschaft Electronic device with microstructured electrodes and method for producing such a device
US5810945A (en) * 1993-05-12 1998-09-22 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method of fabricating an electronic micropatterned electrode device
JP2015188120A (en) * 2015-07-31 2015-10-29 シャープ株式会社 photoelectric conversion element

Similar Documents

Publication Publication Date Title
US4644091A (en) Photoelectric transducer
CN112382672A (en) PERC double-sided solar cell and manufacturing method thereof
JP2023155871A (en) Solar cell, photovoltaic module, and method for preparing solar cell
EP0099720A2 (en) Photovoltaic device
JPS62234379A (en) Semiconductor device
CN111524982A (en) Solar cell
KR20090078275A (en) Solar cell having uneven insulating layer and method for manufacturing the same
JP2006203056A (en) Photoelectric transfer element
JPH0750793B2 (en) Thin film photoelectric conversion element
JPS62193287A (en) Amorphous photovoltaic device
JP4222910B2 (en) Photovoltaic device manufacturing method
US20150179843A1 (en) Photovoltaic device
KR101115195B1 (en) Silicon heterojunction solar cell and method for fabricating the same
US20110017296A1 (en) Solar cell having light condensing device and larger effective area and the method of the same
JPH0346377A (en) Solar cell
WO2019143241A1 (en) Nano-textured sio2 layer as anti-reflection surface for high- efficient light in-coupling in solar cells
Li et al. Facile fabrication of Si nanowire arrays for solar cell application
JP3241234B2 (en) Thin film solar cell and method of manufacturing the same
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
CN117153911B (en) Solar cell and photovoltaic module
CN107658348A (en) Silicon substrate micro-nano photovoltaic structure and its photon preparation method
KR101612959B1 (en) Solar cell and method for manufacturing the same
JPS6276569A (en) Thin-film photoelectric conversion element
JP4493209B2 (en) Photoelectric conversion device
JPS61228679A (en) Optical generator