JPS6219240B2 - - Google Patents

Info

Publication number
JPS6219240B2
JPS6219240B2 JP58224413A JP22441383A JPS6219240B2 JP S6219240 B2 JPS6219240 B2 JP S6219240B2 JP 58224413 A JP58224413 A JP 58224413A JP 22441383 A JP22441383 A JP 22441383A JP S6219240 B2 JPS6219240 B2 JP S6219240B2
Authority
JP
Japan
Prior art keywords
molded body
titanium oxide
water purification
purification method
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58224413A
Other languages
Japanese (ja)
Other versions
JPS60118289A (en
Inventor
Taro Yokotake
Mitsuo Mizuno
Yasuhiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giken Kogyo Co Ltd
Original Assignee
Giken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giken Kogyo Co Ltd filed Critical Giken Kogyo Co Ltd
Priority to JP58224413A priority Critical patent/JPS60118289A/en
Publication of JPS60118289A publication Critical patent/JPS60118289A/en
Publication of JPS6219240B2 publication Critical patent/JPS6219240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、被処理水中に含まれている汚染物質
を、溶存酸素存在下で、光酸化触媒の存在下にお
いて紫外線を照射し汚染物質を分解除去する、水
の浄化方法に関する。 こゝに本発明による分解除去の対象とする物質
は水に溶解している有機成分であつて、通常
CODcr(化学的酸素要求量)値で表示される物質
を主体とする。 従来、排水規制に基く汚水処理や排水の再利用
のため、凝集沈澱法や生物処理法等が普及してい
るが、さらに高度な浄化処理技術が求められてい
る。高度浄化処理すべき対象の中で、溶解性有機
物の除去は最も困難なもののひとつであり、従来
は活性炭吸着,膜透過,オゾン酸化等による除去
法が行われてきたが、最近は光酸化による除去法
も開発されつつある。 活性炭吸着法は最も一般的に広く実用化されて
いる方法であるが、溶解性有機物の分子量が100
〜10000程度の場合には実用上問題はないが、比
較的低分子の飽和化合物やフミン酸のような高分
子化合物に対しては吸着容量が小さく、除去を完
全に行なうためには大量の活性炭が必要になり、
実際に実行しようとすると莫大な費用がかゝり不
経済となる。膜透過法は消費エネルギーが小さく
優れた処理法であるが、アルコールのような親水
性の低分子化合物は除去しにくゝ、透過膜の目づ
まりおよび微生物繁殖による膜の劣化、あるいは
膜成分の溶出等の難点を有している。オゾン酸化
法は溶解性有機物が炭酸ガスや水まで完全に酸化
されないことから、追加の処理が必要となる。ハ
ロゲン系酸化剤、例えば次亜塩素酸ソーダを併用
した光酸化法は、発癌性があるといわれているト
リハロメタンを生成すると同時に、処理水中に塩
素イオンやナトリウムイオン等を増加させる結果
となり好ましくない。最近、上記のような欠点の
ない、新しい汚染物質除去法として、光酸化触媒
を使用する方法が開発されつゝある。この光酸化
法は被処理水中に含まれる、汚染物質を分解除去
するのに十分な溶存酸素の存在下で、酸化チタン
粒子あるいは白金族金属を担持した酸化チタン粒
子からなる光酸化触媒に、紫外線を照射しながら
接触通水することによつて行なわれる。光酸化法
による汚染物質の除去法においては、光エネルギ
ーによつて光酸化触媒の表面に正孔と電子を生じ
させ、その正孔と電子の反応によつて、生成した
酸化能に富むヒドロキシルラジカル,スパーオキ
シド(O2 -)が汚染物質を酸化する反応を利用し
たものであるから、従来法のように汚染物質を酸
化分解するための酸化剤を加えることなく汚染物
質を酸化分解して、無害な炭酸ガスや水に変える
ことができる。使用する触媒は酸化チタンと白金
族金属とから構成されているため水に不溶であ
り、従来の酸化法のように酸化剤の分解生成物が
残存することなく、溶存酸素を含む被処理水を、
紫外線照射下で、光酸化触媒粒子に接触させるだ
けで汚染物質の除去が可能となる。従つて水の浄
化方法としては極めて有利な方法である。このこ
とから、これまでに光酸化触媒を用いた浄化方法
がいくつか提案されているが、提案された方法に
おける光酸化触媒の使用形態は粉末である。これ
は前述したように光酸化触媒の表面において紫外
線照射によつて生じた電子と正孔の再結合の割合
を少なくするためである。つまり光酸化触媒を粉
末にすることによつて、有機物の酸化効率が大巾
に増加するためである。従つて使用する光酸化触
媒の粉末が細かければ細かいほど酸化効率が良い
といえる。 しかしながら、従来の方法によつて水の浄化に
酸化チタン粉末を使用する場合は、水を浄化した
のちの水と光酸化触媒との分離に問題があり、分
離,回収が困難である。酸化チタン,白金族金属
は高価であり、水の浄化を経済的に行なうために
は触媒の回収,再使用が不可欠であるが、光酸化
触媒が粉末である場合はその完全な回収,再使用
は不可能であり、実用上大きな難点となることが
認められた。 本発明は上記に鑑みてなされたものであり、汚
染物質を含む排水を、十分な溶存酸素の存在下、
紫外線を照射し、光酸化触媒によつて汚染物質を
除去するとき光酸化触媒を成形体の形として使用
し、使用後における光酸化触媒の分離、回収操作
を必要としない水の浄化方法を提供するものであ
る。 以下本発明による水の浄化方法について説明す
る。酸化チタンを触媒として使用するとき、粉末
であることの欠点を回避するためには酸化チタン
を成形体とすればよいが、酸化チタンは低温にお
いては粒子間の焼結が起り難いため充分な機械的
強度を有する成形体を得ることが困難であり、逆
に高温で焼結すると機械的強度のある成形体を得
ることは出来るが有効な光触媒活性が得られなく
なる。本発明者等は酸化チタン光酸化触媒の欠点
を克服すべく鋭意研究を行つた結果、酸化チタン
を後述の無機材料からなる成形体表面に後述の方
法で強固に付着させ、高い光触媒活性を有する成
形体が得られることを見出し、この光酸化触媒を
使用すれば排水中の汚染物質が能率よく除去でき
ることを確めた。 無機材料はガラス,アルミナ,シリカ,酸化チ
タン,ムライト,コージライトの中から選ばれた
いずれかを主体とし、これらを単独もしくは混合
物として使用し、少量の結合材を加えて成形,焼
結して成形体とする。成形体は平板状,円筒状,
円柱状等任意の形状を選び、かつ多孔質とするか
若しくは表面に凹凸を設け光照射部表面積の大き
いもので、用いる装置に適合し、光照射面積が効
率的に利用できるような形のものとすることが好
ましい。なお、無機材料としては上記のほか、長
石,粘土質等よりなる陶器,電解用素焼隔膜,屋
根ガワラ等の土器,レンガ,タイル等の〓器類も
有機チタネートが付着すれば使用可能である。 光酸化触媒は上記の無機材料成形体表面に有機
チタネートを付着させ、一定の焼成条件で処理し
酸化チタンとし、必要な場合は更に白金族金属を
担持させることによつて得られる。次にその製法
を詳述する。無機材料表面に付着させる有機チタ
ネートはアルキルチタネート,アリルチタネー
ト,チタンアシレート,チタンキレートで、これ
らの中から選ばれたいずれかの1種もしくは2種
以上を混合物として使用する。これらチタネート
はメタノール,エタノール,プロパノール,ブタ
ノール,ベンゼン,トルエン,ヘキサン,四塩化
炭素,メチルクロロホルム,酢酸等の希釈剤にと
かし溶液とし、またジヒドロキシビス(ラクタ
ト)チタンモノアンモニウム塩のようなチタンキ
レートを使用する場合は水を希釈剤として水溶液
とし、成形体表面に付着させる。付着させる方法
としては成形体を有機チタネート溶液に浸漬して
取出す方法,刷子等で有機チタネート溶液を塗布
する方法、あるいはスプレーで噴霧する方法等を
とることができる。有機チタネートを付着させた
無機材料成形体は100℃〜110℃で乾燥後、酸化性
ガス雰囲気下で、焼成温度350℃〜700℃の範囲,
好ましくは400℃〜500℃の範囲で焼成処理をす
る。その結果、有機チタネートが酸化分解され
て、高い光酸化触媒活性を有する酸化チタンで覆
われた成形体が得られる。焼成温度としては350
℃より光酸化触媒活性を有する酸化チタンが得ら
れはじめ、700℃以上の高温では光酸化触媒活性
が失われる。なお、無機材料表面への有機チタネ
ートの被覆量が多いと、乾燥あるいは焼成過程で
ひび割れを生じて成形体表面から剥離する恐れが
あるので、これを防ぐために1回当りの有機チタ
ネートの被覆量を少なくして、すなわち、有機チ
タネートの被覆―乾燥―焼成処理を必要な回数だ
け繰り返すことによつて、希望する酸化チタンの
膜厚に調製する。こゝに得られた酸化チタンを付
着した成形体でも水の浄化用光酸化触媒成形体と
して十分使用できるが、この酸化チタン表面に白
金族金属を担持することにより更に効率の良い光
酸化触媒成形体が得られる。担持する金属として
白金、パラジウム,ロジウム,ルテニウム等の中
から選ばれたいずれかの1種もしくは2種以上の
混合物が使用できる。これらの金属を酸化チタン
を付着した成形体に担持させる方法としては、こ
れら金属を水溶性無機化合物の形で含有する水溶
液の中に、成形体を浸漬した状態で紫外線を照射
することによつて金属を担持させる方法、あるい
は還元剤を加えて金属を担持させる方法等によつ
て行なう。金属担持の主なる目的は紫外線の照射
により酸化チタンの表面に生成した電子と正孔の
再結合を防ぐことにある。光照射面積に対する金
属の被覆率を小さく、そして単位光照射面積にお
ける金属のスポツト数が大きいほど光酸化触媒活
性が高くなる。それ故、金属の付着量および付着
状態をコントロールしつゝ金属を担持させる。金
属の量は酸化チタンに対し0.01wt%〜1wt%であ
る。 図は本発明の光酸化触媒を使用する水の浄化装
置の基本的概念を説明する図である。 反応槽3に酸化チタンあるいは白金担持酸化チ
タンで被覆した平板状光酸化触媒成形体2があ
り、その上部に光源1を設置する。光源は波長が
およそ420nm以下の光を発する例えば高圧水銀
灯,低圧水銀灯,ブラツクランプ,キセノンラン
プ等であり、太陽光も光源として使用可能であ
る。光源を浸漬した状態で用いる場合は光源の保
護のため石英管に挿入して用いる。高圧水銀灯を
使用する場合はパイレツクスガラス等も使用でき
る。被処理水はポンプ7により導入口6より反応
槽3に入り、散気管4により空気又は酸素が導入
され、光源1によつて照射され、光酸化触媒によ
り不純物が酸化され、処理水として排水口5より
排出される。必要に応じて排水は再びポンプ7に
より反応槽3に循環される。 この方式の水の浄化方法によれば、酸化チタン
は粉状でないため、分離したり回収したりする必
要はなく、成形体に固く付着しているため長期間
使用しても脱落することがなく、高活性の酸化能
力を維持できるので能率よく汚染水の処理が可能
となり、又照射光として紫外線を含む光源を照射
すれば、カビ,バクテリヤ,ウイルス等の殺菌処
理も同時に行なえるのでその効果は極めて大き
い。 以下に実施例を示す。 実施例 1 ガラス板5×5cmをジ―イソプロポキシ、ビス
(アセチルアセトナタ)チタン10部、イソプロピ
ルアルコール90部、メタノール200部からなる混
合溶液に浸漬し、ついで取出し110℃で30分間乾
燥後、酸素雰囲気下で500℃で30分間焼成を行な
うことによつて、酸化チタンを被覆したガラス板
を得た。ついで硝酸パラジウム水溶液に浸漬した
のち、還元剤としてアスコルビン酸を加えて加温
処理を行なつてパラジウムを担持した。このよう
にして得られた光酸化触媒をデキストラン溶液
100ml(CODcr濃度50mg/)とともに反応槽に
入れ、酸素を吹き込みながら100Wの高圧水銀灯
を12時間照射した。その結果CODcr濃度は14mg/
であつた。 実施例 2 表面にガラスをコーテイングしたアルミナから
なる直径4.3cm,厚さ4mm,長さ20.0cmの多孔性
円筒形成形体(商品名ケラミフイルター)をイソ
プロピルチタネート30部,イソプロピルアルコー
ル130部,および酢酸10部からなる混合溶液に浸
漬し、ついで取出し110℃で1時間乾燥後、空気
雰囲気下で400℃で5時間焼成を行なうことによ
つて、酸化チタンを被覆した成形体を得た。その
後超音波洗浄を行なつて付着強度の弱い酸化チタ
ンを除去し、次いで酢酸,酢酸ナトリウムおよび
塩化白金酸を含む水溶液中に、酸化チタンを被覆
した成形体を浸漬した状態で、内部から100Wの
高圧水銀灯を用いて照射し、白金を担持した。 このようにして得られた光酸化触媒成形体を再
び超音波洗浄を行つたのちデキストラン溶液500
ml(CODcr43mg/)とともに反応槽に入れ、空
気を吹き込みながら100Wの高圧水銀灯を6時間
照射した。その結果、CODcr濃度は7mg/まで
減少した。またこのとき炭酸ガスの発生が認めら
れた。 実施例 3 実施例2で使用した光酸化触媒成形体を使つて
各種の有機物を含む水溶液500mlを反応槽の中で
空気を吹き込みながら6Wの紫外線殺菌灯を用い
て光照射した。その結果を下表に示した。
The present invention relates to a water purification method that decomposes and removes pollutants contained in water to be treated by irradiating them with ultraviolet rays in the presence of dissolved oxygen and a photo-oxidation catalyst. The substances to be decomposed and removed by the present invention are organic components dissolved in water, and are usually
Mainly substances expressed as COD cr (chemical oxygen demand) values. Conventionally, coagulation-sedimentation methods, biological treatment methods, and the like have been popular for sewage treatment and wastewater reuse based on wastewater regulations, but more advanced purification technology is required. Removal of soluble organic matter is one of the most difficult targets to undergo advanced purification treatment, and removal methods such as activated carbon adsorption, membrane permeation, and ozone oxidation have been used in the past, but recently photo-oxidation has been used. Removal methods are also being developed. Activated carbon adsorption is the most common and widely used method, but when the molecular weight of soluble organic matter is 100
~10,000, there is no practical problem, but the adsorption capacity is small for relatively low-molecular saturated compounds and high-molecular compounds such as humic acid, and a large amount of activated carbon is required to completely remove them. is required,
If you try to actually implement it, it will be extremely expensive and uneconomical. Although the membrane permeation method is an excellent treatment method with low energy consumption, it is difficult to remove hydrophilic low-molecular compounds such as alcohol, and it may clog the permeable membrane and cause deterioration of the membrane due to microbial growth, or damage to membrane components. It has problems such as elution. Since the ozone oxidation method does not completely oxidize soluble organic matter to carbon dioxide gas and water, additional treatment is required. A photo-oxidation method that uses a halogen-based oxidizing agent, such as sodium hypochlorite, is not preferred because it produces trihalomethane, which is said to be carcinogenic, and at the same time increases chlorine ions, sodium ions, etc. in the treated water. Recently, a method using a photooxidation catalyst has been developed as a new pollutant removal method that does not have the above-mentioned drawbacks. In this photo-oxidation method, in the presence of sufficient dissolved oxygen to decompose and remove pollutants contained in the water to be treated, a photo-oxidation catalyst consisting of titanium oxide particles or titanium oxide particles supporting platinum group metals is exposed to ultraviolet light. This is done by passing water through contact while irradiating. In the photo-oxidation method for removing pollutants, holes and electrons are generated on the surface of a photo-oxidation catalyst using light energy, and the reaction between the holes and electrons generates hydroxyl radicals with high oxidizing ability. , Since it utilizes the reaction in which superoxide (O 2 - ) oxidizes pollutants, it oxidizes and decomposes pollutants without adding an oxidizing agent to oxidize and decompose pollutants as in conventional methods. It can be converted into harmless carbon dioxide and water. The catalyst used is composed of titanium oxide and platinum group metals, so it is insoluble in water, and unlike conventional oxidation methods, the decomposition products of the oxidant do not remain, and the water to be treated containing dissolved oxygen can be treated. ,
Contaminants can be removed simply by contacting photo-oxidation catalyst particles under ultraviolet irradiation. Therefore, it is an extremely advantageous method for purifying water. For this reason, several purification methods using photo-oxidation catalysts have been proposed, but the photo-oxidation catalyst used in the proposed methods is in the form of powder. This is to reduce the rate of recombination of electrons and holes generated by ultraviolet irradiation on the surface of the photo-oxidation catalyst as described above. In other words, by turning the photooxidation catalyst into powder, the oxidation efficiency of organic matter is greatly increased. Therefore, it can be said that the finer the powder of the photooxidation catalyst used, the better the oxidation efficiency. However, when titanium oxide powder is used to purify water by the conventional method, there is a problem in separating the water and the photo-oxidation catalyst after purifying the water, making separation and recovery difficult. Titanium oxide and platinum group metals are expensive, and recovery and reuse of the catalyst is essential for economical water purification. However, if the photooxidation catalyst is a powder, it is impossible to completely recover and reuse it. It was recognized that this would be impossible and would pose a major practical difficulty. The present invention was made in view of the above, and it is possible to treat wastewater containing pollutants in the presence of sufficient dissolved oxygen.
Provides a water purification method that uses a photooxidation catalyst in the form of a molded body when irradiating ultraviolet rays and removing pollutants using a photooxidation catalyst, and does not require separation or recovery of the photooxidation catalyst after use. It is something to do. The water purification method according to the present invention will be explained below. When using titanium oxide as a catalyst, it is possible to form the titanium oxide into a compact in order to avoid the disadvantages of being a powder, but since titanium oxide does not easily cause sintering between particles at low temperatures, it cannot be It is difficult to obtain a molded body with mechanical strength, and on the other hand, if sintered at a high temperature, a molded body with mechanical strength can be obtained, but effective photocatalytic activity cannot be obtained. The present inventors conducted intensive research to overcome the drawbacks of titanium oxide photooxidation catalysts, and as a result, titanium oxide was firmly attached to the surface of a molded product made of an inorganic material using the method described below, and the result was a high photocatalytic activity. It was discovered that a molded body could be obtained, and it was confirmed that pollutants in wastewater can be efficiently removed by using this photooxidation catalyst. The inorganic material is mainly selected from glass, alumina, silica, titanium oxide, mullite, and cordierite, and these are used alone or as a mixture, and are formed and sintered with the addition of a small amount of binder. Make it into a molded body. The molded object can be flat, cylindrical,
Choose any shape such as a cylinder, and make it porous or have an uneven surface and have a large surface area for the light irradiation part, and be compatible with the equipment used and have a shape that allows efficient use of the light irradiation area. It is preferable that In addition to the above-mentioned inorganic materials, pottery made of feldspar, clay, etc., unglazed diaphragms for electrolysis, earthenware such as roof tiles, and vessels such as bricks and tiles can also be used if organic titanates are attached to them. The photooxidation catalyst can be obtained by depositing an organic titanate on the surface of the above-mentioned inorganic material molding, treating it under certain firing conditions to form titanium oxide, and further supporting a platinum group metal if necessary. Next, the manufacturing method will be explained in detail. The organic titanates to be attached to the surface of the inorganic material are alkyl titanates, allyl titanates, titanium acylates, and titanium chelates, and one or more selected from these are used as a mixture. These titanates can be dissolved in diluents such as methanol, ethanol, propanol, butanol, benzene, toluene, hexane, carbon tetrachloride, methylchloroform, acetic acid, etc., and titanium chelates such as dihydroxybis(lactato)titanium monoammonium salt. When used, it is made into an aqueous solution using water as a diluent and applied to the surface of the molded article. As a method for adhesion, the molded body may be immersed in an organic titanate solution and taken out, the organic titanate solution may be applied with a brush or the like, or the organic titanate solution may be sprayed. The inorganic material molded body to which the organic titanate is attached is dried at 100°C to 110°C, and then fired at a temperature of 350°C to 700°C in an oxidizing gas atmosphere.
Preferably, the firing treatment is performed at a temperature in the range of 400°C to 500°C. As a result, the organic titanate is oxidatively decomposed and a molded body covered with titanium oxide having high photooxidation catalytic activity is obtained. The firing temperature is 350
Titanium oxide with photooxidation catalytic activity begins to be obtained at temperatures above 700°C, and photooxidation catalytic activity is lost at high temperatures of 700°C or higher. In addition, if the amount of organic titanate coated on the surface of the inorganic material is large, cracks may occur during the drying or firing process and there is a risk of peeling from the surface of the molded product. In other words, by repeating the organic titanate coating-drying-baking process as many times as necessary, the desired thickness of the titanium oxide film can be obtained. Although the molded product with titanium oxide adhered to it can be used as a photo-oxidation catalyst molded product for water purification, even more efficient photo-oxidation catalyst molding can be achieved by supporting a platinum group metal on the surface of this titanium oxide. You get a body. As the supported metal, one or a mixture of two or more selected from platinum, palladium, rhodium, ruthenium, etc. can be used. A method for supporting these metals on a molded body to which titanium oxide is attached is to irradiate the molded body with ultraviolet rays while the molded body is immersed in an aqueous solution containing these metals in the form of a water-soluble inorganic compound. This is carried out by a method of supporting a metal or a method of adding a reducing agent to support a metal. The main purpose of supporting metal is to prevent recombination of electrons and holes generated on the surface of titanium oxide by ultraviolet irradiation. The smaller the coverage ratio of metal to the light irradiation area and the larger the number of metal spots per unit light irradiation area, the higher the photooxidation catalyst activity. Therefore, the metal is supported while controlling the amount and state of the metal deposited. The amount of metal is 0.01wt% to 1wt% based on titanium oxide. The figure is a diagram explaining the basic concept of a water purification device using the photo-oxidation catalyst of the present invention. A reaction tank 3 has a flat photooxidation catalyst molded body 2 coated with titanium oxide or platinum-supported titanium oxide, and a light source 1 is installed above it. The light source is a high-pressure mercury lamp, low-pressure mercury lamp, Bratz lamp, xenon lamp, etc. that emits light with a wavelength of about 420 nm or less, and sunlight can also be used as a light source. When using the light source in a immersed state, insert it into a quartz tube to protect the light source. When using a high-pressure mercury lamp, Pyrex glass can also be used. The water to be treated enters the reaction tank 3 through the inlet 6 by the pump 7, air or oxygen is introduced through the aeration tube 4, is irradiated by the light source 1, impurities are oxidized by the photo-oxidation catalyst, and the water is discharged as treated water to the drain port. It is discharged from 5. The waste water is again circulated to the reaction tank 3 by the pump 7 as required. According to this method of water purification, titanium oxide is not in powder form, so there is no need to separate or recover it, and because it is firmly attached to the molded object, it will not fall off even after long-term use. Because it maintains a highly active oxidizing ability, it is possible to efficiently treat contaminated water.Also, by irradiating it with a light source that includes ultraviolet rays, it can simultaneously sterilize mold, bacteria, viruses, etc. Extremely large. Examples are shown below. Example 1 A glass plate of 5 x 5 cm was immersed in a mixed solution consisting of di-isopropoxy, 10 parts of bis(acetylacetonata) titanium, 90 parts of isopropyl alcohol, and 200 parts of methanol, then taken out and dried at 110°C for 30 minutes. A glass plate coated with titanium oxide was obtained by firing at 500°C for 30 minutes in an oxygen atmosphere. After immersing it in an aqueous palladium nitrate solution, ascorbic acid was added as a reducing agent and a heating treatment was performed to support palladium. The photooxidation catalyst thus obtained was added to a dextran solution.
It was placed in a reaction tank with 100ml (COD cr concentration 50mg/) and irradiated with a 100W high pressure mercury lamp for 12 hours while blowing oxygen. As a result, the COD cr concentration was 14mg/
It was hot. Example 2 A porous cylindrical body (trade name: Kerami Filter) made of alumina coated with glass and having a diameter of 4.3 cm, a thickness of 4 mm, and a length of 20.0 cm was mixed with 30 parts of isopropyl titanate, 130 parts of isopropyl alcohol, and acetic acid. A molded article coated with titanium oxide was obtained by immersing it in a mixed solution consisting of 10 parts, taking it out, drying it at 110°C for 1 hour, and then firing it at 400°C for 5 hours in an air atmosphere. After that, ultrasonic cleaning was performed to remove titanium oxide with weak adhesive strength, and then the molded body coated with titanium oxide was immersed in an aqueous solution containing acetic acid, sodium acetate, and chloroplatinic acid, and 100 W was applied from the inside. Platinum was supported by irradiation using a high-pressure mercury lamp. The thus obtained photooxidation catalyst molded body was again subjected to ultrasonic cleaning, and then treated with 500 ml of dextran solution.
ml (COD cr 43 mg/) and irradiated with a 100 W high pressure mercury lamp for 6 hours while blowing air. As a result, the COD cr concentration decreased to 7 mg/. At this time, generation of carbon dioxide gas was also observed. Example 3 Using the photooxidation catalyst molded body used in Example 2, 500 ml of an aqueous solution containing various organic substances was irradiated with light using a 6W ultraviolet germicidal lamp while blowing air into a reaction tank. The results are shown in the table below.

【表】 ーナ〓
実施例 4 ムライト(2Al2O3・5SiO2)からなる直径4.0
cm,厚さ5mm,の円形成形体をヒドロキシチタン
ステアレート20部,フエニルチタネート10部,ト
ルエン130部からなる混合溶液に浸漬し、ついで
取出し110℃で1時間乾燥後、空気雰囲気下で500
℃で1時間焼成を行なうことによつて、酸化チタ
ンを被覆した成形体を得た。この成形体を光酸化
触媒としてデキストラン溶液100ml(CODcr40
mg/)とともに反応槽に入れ、空気を吹き込み
ながら100Wの高圧水銀灯を15時間照射した。そ
の結果、CODcr濃度は20mg/まで減少した。
[Front] Na〓
Example 4 Made of mullite (2Al 2 O 3・5SiO 2 ) with a diameter of 4.0
A circular molded body with a diameter of 5 mm and a thickness of 5 mm was immersed in a mixed solution consisting of 20 parts of hydroxytitanium stearate, 10 parts of phenyl titanate, and 130 parts of toluene, then taken out and dried at 110°C for 1 hour.
A molded body coated with titanium oxide was obtained by firing at a temperature of 1 hour. Using this molded body as a photo-oxidation catalyst, 100 ml of dextran solution (COD cr 40
mg/) and irradiated with a 100W high-pressure mercury lamp for 15 hours while blowing air. As a result, the COD cr concentration decreased to 20mg/.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の光酸化触媒を使用する水の浄化
装置の基本概念説明図である。 1…光源、2…光酸化触媒、3…反応槽、4…
散気管、5…排水口、6…導入口、7…ポンプ。
The drawing is an explanatory diagram of the basic concept of a water purification device using the photo-oxidation catalyst of the present invention. 1...Light source, 2...Photooxidation catalyst, 3...Reaction tank, 4...
Diffuser pipe, 5...drain port, 6...inlet, 7...pump.

Claims (1)

【特許請求の範囲】 1 汚染物質を含む被処理水に、光酸化触媒の存
在下、紫外線もしくは紫外線を含む光を照射し、
汚染物質を酸化除去する方法において、 無機材料よりなる成形体表面に、有機チタネー
トを付着せしめたのち、焼成処理して当該成形体
表面に酸化チタンを形成させ、もしくは更に上記
酸化チタンに白金族金属を担持して得られた光酸
化触媒を使用して、汚染物質を酸化除去すること
を特徴とする水の浄化方法。 2 前記有機チタネートはアルキルチタネート,
アリルチタネート,チタンアシレート,チタンキ
レートの中から選ばれた、いずれかの1種もしく
は2種以上の混合物である、特許請求の範囲第1
項記載の水の浄化方法。 3 前記焼成処理が酸化性ガス雰囲気下で、焼成
温度350℃〜700℃の範囲でおこなわれる、特許請
求の範囲第1項記載の水の浄化方法。 4 前記白金族金属は白金,パラジウム,ロジウ
ム,ルテニウムの中から選ばれた、いずれかの1
種もしくは2種以上の混合物である、特許請求の
範囲第1項記載の水の浄化方法。 5 前記無機材料よりなる成形体はガラス,アル
ミナ,シリカ,酸化チタン,ムライト,コージラ
イトの中から選ばれたいずれかを主体とし、これ
らを単独もしくは混合物とし、少量の結合材を加
えて成形,焼結した成形体である特許請求の範囲
第1項記載の水の浄化方法。
[Claims] 1. Irradiating the water to be treated containing pollutants with ultraviolet rays or light containing ultraviolet rays in the presence of a photo-oxidation catalyst,
In the method of oxidizing and removing contaminants, an organic titanate is attached to the surface of a molded body made of an inorganic material, and then a firing treatment is performed to form titanium oxide on the surface of the molded body, or a platinum group metal is further added to the titanium oxide. A water purification method characterized in that pollutants are oxidized and removed using a photooxidation catalyst obtained by supporting. 2 The organic titanate is an alkyl titanate,
Claim 1 is one or a mixture of two or more selected from allyl titanate, titanium acylate, and titanium chelate.
Water purification method described in section. 3. The water purification method according to claim 1, wherein the firing treatment is performed in an oxidizing gas atmosphere at a firing temperature in the range of 350°C to 700°C. 4. The platinum group metal is any one selected from platinum, palladium, rhodium, and ruthenium.
The method for purifying water according to claim 1, wherein the water purification method is a species or a mixture of two or more species. 5 The molded body made of the inorganic material is mainly made of one selected from glass, alumina, silica, titanium oxide, mullite, and cordierite, and is formed by adding a small amount of a binder to a mixture of these materials, and forming the molded body. The water purification method according to claim 1, wherein the water purification method is a sintered molded body.
JP58224413A 1983-11-30 1983-11-30 Water purifying method Granted JPS60118289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224413A JPS60118289A (en) 1983-11-30 1983-11-30 Water purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224413A JPS60118289A (en) 1983-11-30 1983-11-30 Water purifying method

Publications (2)

Publication Number Publication Date
JPS60118289A JPS60118289A (en) 1985-06-25
JPS6219240B2 true JPS6219240B2 (en) 1987-04-27

Family

ID=16813377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224413A Granted JPS60118289A (en) 1983-11-30 1983-11-30 Water purifying method

Country Status (1)

Country Link
JP (1) JPS60118289A (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193696A (en) * 1986-02-20 1987-08-25 Nomura Micro Sci Kk Production of extremely pure water
JPS63104696A (en) * 1986-10-22 1988-05-10 アクアフアイン・コ−ポレイシヨン Device and method for conditioning water
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JP2739128B2 (en) * 1987-07-27 1998-04-08 ウイスコンシン アラムニ リサーチ ファンデーション Decomposition method of organic chemicals by titanium ceramic membrane
US5032241A (en) * 1987-09-04 1991-07-16 Nutech Energy Systems Inc. Fluid purification
JP2574840B2 (en) * 1988-01-22 1997-01-22 株式会社日立製作所 Deodorizing device
US4861484A (en) * 1988-03-02 1989-08-29 Synlize, Inc. Catalytic process for degradation of organic materials in aqueous and organic fluids to produce environmentally compatible products
IT1239035B (en) * 1989-12-01 1993-09-20 Eniricerche PROCESS FOR THE PURIFICATION OF POLLUTED SOIL
EP0634363B1 (en) * 1993-07-12 1998-12-16 Ishihara Sangyo Kaisha, Ltd. Process for preparing a photocatalyst and process for purifying water
AUPM646094A0 (en) * 1994-06-27 1994-07-21 Arthur, Ronald W. An improved method for the photocatalytic oxidation of water borne chemical species
KR20000072137A (en) * 1999-08-14 2000-12-05 김영웅 apparatus for purification of contaminated water by using rotating member coated with titanium dioxide thin film
KR100392070B1 (en) * 2000-11-27 2003-07-23 주식회사 미래엔지니어링 A waste-water Treatment system using titanium dioxide as catalyst which immobilized with Sol-gel method
KR20010067693A (en) * 2001-03-08 2001-07-13 김현용 Air floatation type photocatalytic water treatment system
JP4723193B2 (en) * 2004-02-27 2011-07-13 富士シリシア化学株式会社 Humic substance removing agent, humic substance removing method, and water purification method
JP4724416B2 (en) * 2004-12-03 2011-07-13 株式会社Dnpファインケミカル Dispersion and coating liquid
US8998884B2 (en) 2005-11-09 2015-04-07 The Invention Science Fund I, Llc Remote controlled in situ reaction method
US8936590B2 (en) 2005-11-09 2015-01-20 The Invention Science Fund I, Llc Acoustically controlled reaction device
US8273071B2 (en) 2006-01-18 2012-09-25 The Invention Science Fund I, Llc Remote controller for substance delivery system
US8992511B2 (en) 2005-11-09 2015-03-31 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US8273075B2 (en) 2005-12-13 2012-09-25 The Invention Science Fund I, Llc Osmotic pump with remotely controlled osmotic flow rate
US9067047B2 (en) 2005-11-09 2015-06-30 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
US20070106271A1 (en) 2005-11-09 2007-05-10 Searete Llc, A Limited Liability Corporation Remote control of substance delivery system
US20080140057A1 (en) 2006-03-09 2008-06-12 Searete Llc, A Limited Liability Corporation Of State Of The Delaware Injectable controlled release fluid delivery system
CN105439241A (en) * 2016-01-06 2016-03-30 江苏大学 Waste water treatment device based on thin-layer water film ultraviolet-light-catalyzed waste water

Also Published As

Publication number Publication date
JPS60118289A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
JPS6219240B2 (en)
JPS6349540B2 (en)
KR100470747B1 (en) Method and apparatus for eliminating the stench and volatile organic compounds in the polluted air
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP2600103B2 (en) Photocatalytic filter and method for producing the same
JPH1043775A (en) Decomposing method of organic matter in water by photocatalyst
JPH07100378A (en) Photocatalyst of titanium oxide thin film and its production
JP2945926B2 (en) Photocatalyst particles and method for producing the same
JP3484470B2 (en) Film material with photocatalytic function
JP4621859B2 (en) Method for producing porous photocatalyst
JP3118558B2 (en) Water treatment catalyst and water treatment method
JP2005329360A (en) Cleaning material and its manufacturing method
JP3175168B2 (en) Ozone water generator
KR100242666B1 (en) Water purifying plant
KR20020050393A (en) A water purification method for removal bad smell compounds
KR20050055650A (en) The process of hybrid system composed of tube-shaped photo-catalytic reactor and biofilter to eliminate vocs and malodor efficiently
CN101306205A (en) Active composite catalyst air cleaning system
JP2002361095A (en) Photocatalyst body, photocatalytically deodorizing device and photocatalytically water-purifying device, using the same
JP2000117271A (en) Water treating device
JP2003001066A (en) Reaction vessel with photocatalyst
JP2004230301A (en) Photocatalyst and production method therefor
JP3900460B2 (en) Water treatment equipment
JP2000317315A (en) Phototransmittable porous film containing dispersed photocatalyst
JP3864223B2 (en) Manufacturing method of environmental materials