JPS6349540B2 - - Google Patents

Info

Publication number
JPS6349540B2
JPS6349540B2 JP58224414A JP22441483A JPS6349540B2 JP S6349540 B2 JPS6349540 B2 JP S6349540B2 JP 58224414 A JP58224414 A JP 58224414A JP 22441483 A JP22441483 A JP 22441483A JP S6349540 B2 JPS6349540 B2 JP S6349540B2
Authority
JP
Japan
Prior art keywords
molded body
titanium oxide
photo
oxidation catalyst
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58224414A
Other languages
Japanese (ja)
Other versions
JPS60118236A (en
Inventor
Taro Yokotake
Mitsuo Mizuno
Yasuhiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giken Kogyo Co Ltd
Original Assignee
Giken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giken Kogyo Co Ltd filed Critical Giken Kogyo Co Ltd
Priority to JP58224414A priority Critical patent/JPS60118236A/en
Publication of JPS60118236A publication Critical patent/JPS60118236A/en
Publication of JPS6349540B2 publication Critical patent/JPS6349540B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、微量の被酸化性物質を含む水に、紫
外線もしくは紫外線を含む光を、溶存酸素の存在
下で照射し、高純度の水を取得する方法に用いる
光酸化触媒成形体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for obtaining highly purified water by irradiating ultraviolet light or light containing ultraviolet light to water containing trace amounts of oxidizable substances in the presence of dissolved oxygen. This invention relates to an oxidation catalyst molded body.

こゝに本発明による被酸化性物質とは水に溶解
している微量有機成分であつて、通常CODcr(化
学的酸素要求量)値で表示される物質を主体とす
る。
The oxidizable substances according to the present invention are trace organic components dissolved in water, and are mainly substances usually expressed by COD cr (chemical oxygen demand) values.

近年、諸産業において技術が高度化するに伴つ
て使用する水も高品質のものが要求され、そのた
め水の高度純化処理技術が求められている。特に
電子工業や医薬品製造業関係においては例えば
TOC値(全有機体炭素)で0.2mg/以下の超純
水と呼ばれる高度処理された水が必要とされてい
る。高度純化処理すべき対象の中で、溶解性有機
物の除去は最も困難なもののひとつであり、従来
からいくつかの有機物除去法が提案されている
が、これらは処理プロセス自体を構成する物質が
微量に溶け出したり、また分解生成物を放出する
ことがあるために、これら微量の溶出物を除去す
る目的で更に処理を行なわなければならないとい
う難点を有していた。
In recent years, as technology has become more sophisticated in various industries, the water used is also required to be of high quality, and therefore there is a need for advanced water purification treatment technology. Especially in the electronic industry and pharmaceutical manufacturing industry, for example,
Highly treated water called ultrapure water with a TOC value (total organic carbon) of 0.2mg/or less is required. Removal of soluble organic matter is one of the most difficult targets to undergo high-level purification treatment, and several organic matter removal methods have been proposed, but these only require trace amounts of the substances that make up the treatment process itself. However, since these substances may be eluted into water or release decomposition products, they have the disadvantage that further treatment must be carried out in order to remove these minute amounts of eluted substances.

一方、汚染排水の処理技術として酸化チタン等
からなる微粉末を懸濁した状態で使用する光酸化
触媒法が提案されている。この光酸化触媒法は汚
染物を含む被処理水を酸化チタン等からなる光酸
化触媒に紫外線を含む光を照射しながら接触通水
することによつて処理するものである。
On the other hand, as a technology for treating contaminated wastewater, a photo-oxidation catalyst method has been proposed in which a fine powder of titanium oxide or the like is used in a suspended state. In this photo-oxidation catalyst method, water to be treated containing pollutants is treated by contacting and passing water through a photo-oxidation catalyst made of titanium oxide or the like while irradiating the water with light including ultraviolet rays.

かゝる光酸化触媒は紫外線照射によりエネルギ
ーを受けると表面において価電子帯の電子が伝導
帯に移行し、その結果、価電子帯に正孔を生ず
る。これら電子および正孔が溶存酸素やヒドロキ
シル基と反応して酸化力の強いスパーオキシド
(O2 -)やヒドロキシラジカルを生成させる、す
なわち光酸化触媒法はこのようにして生成したス
パーオキシドやヒドロキシラジカルが有機物を酸
化して炭酸ガスや水を生成する反応を利用するも
のである。それ故、光酸化触媒法は有機物を酸化
分解するための酸化剤を加える必要がなく、有機
物を無害な炭酸ガスと水に分解でき、また光酸化
触媒が不溶性の白金族金属と酸化チタンとから構
成されているため、従来法のように処理プロセス
自体を構成する物質が溶け出したり、分解生成物
を放出することがないことから、微量の有機物を
除去する水の純化処理技術としては極めて有利な
方法である。
When such a photooxidation catalyst receives energy from ultraviolet irradiation, electrons in the valence band on the surface transfer to the conduction band, and as a result, holes are generated in the valence band. These electrons and holes react with dissolved oxygen and hydroxyl groups to generate strong oxidizing superoxide (O 2 - ) and hydroxyl radicals. In other words, the photooxidation catalyst method It utilizes a reaction in which organic matter is oxidized to produce carbon dioxide gas and water. Therefore, the photo-oxidation catalyst method does not require the addition of an oxidizing agent to oxidize and decompose organic substances, and can decompose organic substances into harmless carbon dioxide gas and water. Because of this structure, unlike conventional methods, the substances that make up the treatment process itself do not leach out or decomposition products are released, so it is extremely advantageous as a water purification treatment technology that removes trace amounts of organic matter. This is a great method.

しかしながら、従来提案されている光酸化触媒
法は有機物の酸化効率に重点がおかれ、光酸化触
媒となる酸化チタンを微粉末で使用している。そ
のため被処理水を処理した後の水と光酸化触媒と
を分離する点に技術的な難点が生ずる。光酸化触
媒は白金族金属を含むので高価であり、水の純化
を経済的に行なうためには完全な分離、回収が必
要となる。しかしながら光酸化触媒が微粉末であ
るため、完全な分離、回収を実施するといたずら
に処理プロセスが複雑になり経済上また処理操作
上極めて不利になる欠点を有している。
However, conventionally proposed photo-oxidation catalyst methods place emphasis on the oxidation efficiency of organic substances, and use titanium oxide as a photo-oxidation catalyst in the form of fine powder. Therefore, a technical difficulty arises in separating the water and the photo-oxidation catalyst after the water to be treated is treated. Photooxidation catalysts are expensive because they contain platinum group metals, and complete separation and recovery is required to economically purify water. However, since the photooxidation catalyst is a fine powder, complete separation and recovery would unnecessarily complicate the treatment process, which would be extremely disadvantageous economically and in terms of treatment operation.

本発明は上記に鑑みてなされたものであり、微
量の被酸化性物質を含む水を、十分な溶存酸素の
存在下、紫外線を照射し光酸化触媒と接触させ純
化するとき、無機材料よりなる成形体上に酸化チ
タンあるいは酸化チタンに白金族金属を担持させ
た光酸化触媒を使用し、分離、回収を必要としな
い光酸化触媒成形体を提供するものである。
The present invention has been made in view of the above, and when purifying water containing a trace amount of oxidizable substances by irradiating it with ultraviolet rays and contacting it with a photooxidation catalyst in the presence of sufficient dissolved oxygen, it is possible to purify water containing a trace amount of oxidizable substances. The present invention uses a photooxidation catalyst in which titanium oxide or a platinum group metal is supported on titanium oxide on a molded product, and provides a photooxidation catalyst molded product that does not require separation or recovery.

以下本発明による水の純化に使用する光酸化触
媒について説明する。光酸化触媒となる酸化チタ
ンは低温においては粒子間の焼結がおこりにくい
ため、十分な機械的強度を有する成形体を得るこ
とが困難であり、逆に高温で焼結すると機械的強
度は得られるが有効な光酸化触媒としての活性が
得られない。本発明者等は酸化チタン光酸化触媒
の欠点を克服すべく鋭意研究を行なつた結果、酸
化チタンを後述の無機材料からなる成形体表面に
後述の方法で強固に付着させ、高い光触媒活性を
有する成形体が得られることを見出し、この光酸
化触媒成形体は高純度の水を能率よく製造するの
に最適であることを確めた。光酸化触媒成形体を
得るために使用する無機材料はガラス、アルミ
ナ、シリカ、酸化チタン、ムライト、コージライ
ト等の中から選ばれたいずれかを主体とし、これ
らを単独もしくは混合物として使用し、少量の結
合材を加えて成形、焼結して成形体とする。成形
体は平板状、円筒状、円柱状等任意の形状を選び
かつ多孔質とするかもしくは表面に凹凸を設け、
光照射部表面積の大きいもので、用いる装置に適
合し、光照射面積が効率的に利用できるような形
のものとすることが好ましい。なお無機材料とし
ては上記のほか、長石、粘土質等よりなる陶器、
電解用素焼隔膜、屋根ガワラ等の土器、レンガ、
タイル等の〓器類も有機チタネートが付着すれば
使用可能である。光酸化触媒は上記の無機材料成
形体表面に有機チタネートを付着させ、一定の焼
成条件で処理し、酸化チタンとし、必要な場合は
更に白金族金属を担持させることによつて得られ
る。
The photooxidation catalyst used for water purification according to the present invention will be explained below. Titanium oxide, which serves as a photo-oxidation catalyst, is difficult to sinter between particles at low temperatures, making it difficult to obtain molded bodies with sufficient mechanical strength; However, the activity as an effective photooxidation catalyst cannot be obtained. The present inventors conducted intensive research to overcome the drawbacks of titanium oxide photooxidation catalysts, and as a result, titanium oxide was firmly attached to the surface of a molded article made of an inorganic material by the method described below, and high photocatalytic activity was achieved. It was confirmed that this photooxidation catalyst molded product is optimal for efficiently producing high-purity water. The inorganic material used to obtain the photooxidation catalyst molded body is mainly one selected from glass, alumina, silica, titanium oxide, mullite, cordierite, etc., and these are used alone or as a mixture, and in small amounts. A binder is added, and the product is molded and sintered to form a molded body. The molded body can be of any shape such as a flat plate, a cylinder, or a cylinder, and is porous or has an uneven surface.
It is preferable that the light irradiation part has a large surface area, is compatible with the device used, and has a shape that allows efficient use of the light irradiation area. In addition to the above, examples of inorganic materials include pottery made of feldspar, clay, etc.
Unglazed diaphragms for electrolysis, earthenware for roofing, bricks,
Tableware such as tiles can also be used if organic titanates are attached to them. The photooxidation catalyst can be obtained by attaching an organic titanate to the surface of the above-mentioned inorganic material molded body, treating it under certain firing conditions to form titanium oxide, and further supporting a platinum group metal if necessary.

次にその製法を詳述する。 Next, the manufacturing method will be explained in detail.

無機材料表面に付着させる有機チタネートはア
ルキルチタネート、アリルチタネート、チタンア
シレート、チタンキレートで、これらの中から選
ばれたいずれかの1種もしくは2種以上を混合物
として使用する。これらチタネートはメタノー
ル、エタノール、プロパノール、ブタノール、ベ
ンゼン、トルエン、ヘキサン、四塩化炭素、メチ
ルクロロホルム、酢酸等の希釈剤にとかし溶液と
し、またジヒドロキシビス(ラクタト)チタンモ
ノアンモニウム塩のようなチタンキレートを使用
する場合は水を希釈剤として水溶液とし、成形体
表面に付着させる。付着させる方法としては成形
体を有機チタネート溶液に浸漬して取出す方法、
刷子等で有機チタネート溶液を塗布する方法、あ
るいはスプレーで噴霧する方法等をとることがで
きる。有機チタネートを付着させた無機材料成形
体は100℃〜110℃で乾燥後、酸化性ガス雰囲気下
で焼成温度350℃〜700℃の範囲、好ましくは400
℃〜500℃の範囲で焼成処理する。その結果有機
チタネートが酸化分解されて、高い光酸化触媒活
性を有する酸化チタンで覆われた成形体が得られ
る。焼成温度としては350℃より光酸化触媒活性
を有する酸化チタンが得られはじめ、700℃以上
の高温では光酸化触媒活性が失われる。なお、無
機材料表面への有機チタネートの被覆量が多い
と、乾燥あるいは焼成過程でひび割れを生じて成
形体表面から剥離する恐れがあるので、これを防
ぐために1回当りの有機チタネートの被覆量を少
くして、すなわち、有機チタネートの被覆―乾燥
―焼成処理を必要な回数だけ繰り返すことによつ
て、希望する酸化チタンの膜厚に調製する。
The organic titanate to be attached to the surface of the inorganic material is an alkyl titanate, an allyl titanate, a titanium acylate, or a titanium chelate, and one or more selected from these are used as a mixture. These titanates can be dissolved in diluents such as methanol, ethanol, propanol, butanol, benzene, toluene, hexane, carbon tetrachloride, methylchloroform, acetic acid, etc., and titanium chelates such as dihydroxybis(lactato)titanium monoammonium salt can be prepared. When used, it is made into an aqueous solution using water as a diluent and applied to the surface of the molded article. The method of attachment is to immerse the molded body in an organic titanate solution and take it out;
A method of applying the organic titanate solution with a brush or the like, or a method of spraying it, etc. can be used. The inorganic material molded body to which the organic titanate is attached is dried at 100°C to 110°C, and then fired in an oxidizing gas atmosphere at a temperature in the range of 350°C to 700°C, preferably 400°C.
Calcination treatment is performed in the range of ℃~500℃. As a result, the organic titanate is oxidatively decomposed and a molded body covered with titanium oxide having high photooxidation catalytic activity is obtained. As for the firing temperature, titanium oxide having photooxidation catalyst activity begins to be obtained from 350°C, and photooxidation catalyst activity is lost at high temperatures of 700°C or higher. In addition, if the amount of organic titanate coated on the surface of the inorganic material is large, cracks may occur during the drying or firing process and there is a risk of peeling from the surface of the molded product. To prevent this, the amount of organic titanate coated per coat may be The desired thickness of the titanium oxide film can be adjusted by reducing the amount of titanium oxide, that is, by repeating the coating-drying-baking process of organic titanate as many times as necessary.

こゝに得られた酸化チタンを付着した成形体で
も水の純化用光酸化触媒成形体として十分使用で
きるが、この酸化チタン表面に白金族金属を担持
することにより、更に効率の良い光酸化触媒成形
体が得られる。担持する金属として白金、パラジ
ウム、ロジウム、ルテニウム等の中から選ばれた
いずれかの1種もしくは2種以上の混合物が使用
できる。これらの金属を酸化チタンを付着した成
形体に担持させる方法としては、これらの金属を
水溶性無機化合物の形で含有する水溶液の中に、
成形体を浸漬した状態で紫外線を照射することに
よつて金属を担持させる方法、あるいは還元剤を
加えて金属を担持させる方法等によつて行なう。
Although the molded product with titanium oxide adhered to it can be used as a photo-oxidation catalyst molded product for water purification, it is possible to create an even more efficient photo-oxidation catalyst by supporting a platinum group metal on the surface of this titanium oxide. A molded body is obtained. As the supported metal, one selected from platinum, palladium, rhodium, ruthenium, etc. or a mixture of two or more thereof can be used. As a method for supporting these metals on a molded body to which titanium oxide is attached, an aqueous solution containing these metals in the form of a water-soluble inorganic compound,
This is carried out by irradiating the molded body with ultraviolet rays while it is immersed to support the metal, or by adding a reducing agent to support the metal.

金属担持の主なる目的は、紫外線の照射により
酸化チタンの表面に生成した電子と正孔の再結合
を防ぐことにある。光照射面積に対する金属の被
覆率を小さく、そして単位光照射面積における金
属のスポツト数が大きいほど光酸化触媒活性が高
くなる。それ故、金属の付着量、および付着状態
をコントロールしつゝ金属を担持させる。金属の
量は酸化チタンに対し0.01wt%〜1wt%である。
The main purpose of supporting metal is to prevent recombination of electrons and holes generated on the surface of titanium oxide by ultraviolet irradiation. The smaller the coverage ratio of metal to the light irradiation area and the larger the number of metal spots per unit light irradiation area, the higher the photooxidation catalyst activity. Therefore, the metal is supported while controlling the amount and state of the metal deposited. The amount of metal is 0.01wt% to 1wt% based on titanium oxide.

図は本発明の光酸化触媒を水の純化に使用する
場合の基本的概念を説明する図である。
The figure is a diagram explaining the basic concept when the photooxidation catalyst of the present invention is used for water purification.

反応槽4の中央部に酸化チタンあるいは白金担
持酸化チタンで被覆した多孔性の円筒状光酸化触
媒成形体3があり、その内側に光源1を内蔵した
石英管2がある。光源は波長がおよそ420nm以下
の光を発する例えば高圧水銀灯、低圧水銀灯、ブ
ラツクランプ、キセノンランプ等であり、太陽光
も光源として使用可能である。光源は保護のため
石英管2に挿入されているが、高圧水銀灯を使用
する場合はパイレツクスガラス等も使用できる。
A porous cylindrical photo-oxidation catalyst molded body 3 coated with titanium oxide or platinum-supported titanium oxide is located in the center of the reaction tank 4, and inside thereof is a quartz tube 2 containing a light source 1. The light source may be a high-pressure mercury lamp, a low-pressure mercury lamp, a Bratz lamp, a xenon lamp, etc. that emit light with a wavelength of about 420 nm or less, and sunlight can also be used as a light source. The light source is inserted into a quartz tube 2 for protection, but if a high-pressure mercury lamp is used, Pyrex glass or the like can also be used.

被処理水はポンプ8により導入口7より反応槽
4に入り、散気管5により空気または酸素が導入
され、光源1によつて照射され、光酸化触媒3に
より微量の被酸化物質が酸化され、高純度水とし
て排水口6より取り出せる。必要に応じ処理水を
ポンプ8により循環しつつ照射を行なうこともで
きる。
The water to be treated enters the reaction tank 4 through the inlet 7 by the pump 8, air or oxygen is introduced through the aeration tube 5, and is irradiated by the light source 1. A trace amount of the substance to be oxidized is oxidized by the photo-oxidation catalyst 3. It can be taken out from the drain port 6 as high purity water. Irradiation can also be performed while circulating the treated water using the pump 8, if necessary.

この光酸化触媒成形体を使用すれば、酸化チタ
ンは粉末でないため、分離したり回収したりする
必要はなく、成形体に固く付着しているため長時
間使用しても脱落することがなく、高活性の酸化
能力を維持できるのみならず、不純物が溶け込む
おそれもないので極めて高純度の水が得られ、又
このとき紫外線を含む光源を用いると、カビ、バ
クテリヤ、ウイルス等の殺菌処理も同時に行なえ
るので、その効果は極めて大きい。
If this photo-oxidation catalyst molded body is used, titanium oxide is not a powder, so there is no need to separate or recover it, and since it is firmly attached to the molded body, it will not fall off even after long-term use. Not only can highly active oxidizing ability be maintained, but there is no fear of impurities being dissolved, so extremely high purity water can be obtained.In addition, if a light source containing ultraviolet rays is used at this time, mold, bacteria, viruses, etc. can be sterilized at the same time. Because it can be done, the effect is extremely large.

以下に実施例を示す。 Examples are shown below.

実施例 1 表面にガラスをコーテイングしたアルミナから
なる直径4.3cm、厚さ4mm、長さ20.0cmの多孔性
円筒形成形体(商品名ケラミフイルター)をイソ
プロピルチタネート30部、イソプルピルアルコー
ル130部、および酢酸10部からなる混合溶液に浸
漬し、ついで取出し110℃で1時間乾燥後空気雰
囲気下で400℃で5時間焼成を行なうことによつ
て、酸化チタンを被覆した成形体を得た。その
後、超音波洗浄を行なつて付着強度の弱い酸化チ
タンを除去し、次いで酢酸、酢酸ナトリウムおよ
び塩化白金酸を含む水溶液中に、酸化チタンを被
覆した成形体を浸漬した状態で6Wの低圧水銀灯
を用いて内部照射し白金を担持した。このように
して得られた光酸化触媒成形体を再び超音波洗浄
を行なつたのちデキストラン水溶液500ml
(CODcr6.8mg/)とともに反応槽に入れ、空気
を吹き込みながら、光源として6Wの紫外線殺菌
灯を使用し20時間照射したところCODcr濃度は0
mg/となつた。
Example 1 A porous cylindrical body (trade name: Kerami Filter) made of alumina coated with glass and having a diameter of 4.3 cm, thickness of 4 mm, and length of 20.0 cm was mixed with 30 parts of isopropyl titanate, 130 parts of isopropyl alcohol, and 10 parts of acetic acid, then taken out, dried at 110°C for 1 hour, and then calcined at 400°C for 5 hours in an air atmosphere to obtain a titanium oxide coated molded body. After that, the titanium oxide with weak adhesion strength was removed by ultrasonic cleaning, and then the molded body coated with titanium oxide was immersed in an aqueous solution containing acetic acid, sodium acetate, and chloroplatinic acid using a 6W low-pressure mercury lamp. Platinum was supported by internal irradiation. After ultrasonically cleaning the photooxidation catalyst molded body thus obtained, 500 ml of dextran aqueous solution was added.
(COD cr 6.8mg/) was placed in a reaction tank and irradiated for 20 hours using a 6W ultraviolet germicidal lamp as a light source while blowing air, the COD cr concentration was 0.
It became mg/.

実施例 2 シリカ繊維を素材とした内径6.0cm、長さ20.0
cmの透水性円筒型成形体をジ―イソプロポキシ、
ビス(アセチルアセトナタ)チタン10部、イソプ
ロピルアルコール90部、メタノール400部からな
る混合溶液に浸漬し、ついで取出し110℃で乾燥
後、空気雰囲気下で500℃で3時間焼成を行なつ
てシリカ表面に酸化チタンを被覆させる。この処
理(浸漬―乾燥―焼成)を3回くり返したのち超
音波洗浄を行い、その後酢酸、炭酸ナトリウムお
よび塩化白金酸を加えた混合液に浸漬しながら成
形体の内側に低圧水銀灯を挿入して光照射を行な
い、内側の壁に白金を担持させた。
Example 2 Made of silica fiber, inner diameter 6.0cm, length 20.0cm
cm water-permeable cylindrical molded body with di-isopropoxy,
The silica surface was immersed in a mixed solution consisting of 10 parts of bis(acetylacetonata) titanium, 90 parts of isopropyl alcohol, and 400 parts of methanol, then taken out, dried at 110°C, and fired at 500°C for 3 hours in an air atmosphere to form a silica surface. coated with titanium oxide. After repeating this process (immersion-drying-firing) three times, ultrasonic cleaning was performed, and then a low-pressure mercury lamp was inserted inside the molded body while it was immersed in a mixture of acetic acid, sodium carbonate, and chloroplatinic acid. Platinum was supported on the inner wall by light irradiation.

得られた白金担持酸化チタン被覆成形体を、超
音波洗浄を行なつたのち、デキストラン溶液
(CODcr濃度6.8mg/)700mlを流量100ml/min
で8.0時間空気を吹き込みながらポンプで循環し
6Wの紫外線殺菌灯によつて照射したところ、
CODcr濃度は0mg/となつた。
After ultrasonically cleaning the obtained platinum-supported titanium oxide coated molded body, 700 ml of dextran solution (COD cr concentration 6.8 mg/) was added at a flow rate of 100 ml/min.
Circulate with a pump while blowing air for 8.0 hours.
When irradiated with a 6W ultraviolet germicidal lamp,
The COD cr concentration was 0 mg/.

実施例 3 ガラス管(内径4.8cm、厚さ2mm、長さ30.0cm)
をイソプロピルチタネート20部、ジ―イソプロポ
キシ、ビス(アセチルアセトナタ)チタン10部、
イソプロピルアルコール130部、および酢酸10部
からなる混合溶液に浸漬し、ついで取出し110℃
で1時間乾燥後、空気雰囲気下で400℃で1時間
焼成を行なうことによつて酸化チタンを被覆した
成形体を得た。次いで硝酸パラジウム水溶液に浸
漬したのち、還元剤としてアスコルビン酸を加
え、加熱処理を行なつてパラジウムを担持した。
このようにして得られた光酸化触媒成形体を超音
波洗浄を行なつたのち、デキストラン溶液800ml
(CODcr5.5mg/)とともに反応槽に入れ、酸素
を吹き込みながら10Wの紫外線殺菌灯を2.0時間
照射した。その結果CODcr濃度は0mg/となつ
た。
Example 3 Glass tube (inner diameter 4.8cm, thickness 2mm, length 30.0cm)
20 parts of isopropyl titanate, 10 parts of di-isopropoxy, bis(acetylacetonata) titanium,
Immerse in a mixed solution consisting of 130 parts of isopropyl alcohol and 10 parts of acetic acid, then remove and heat at 110°C.
After drying for 1 hour, the molded body was fired at 400° C. for 1 hour in an air atmosphere to obtain a titanium oxide coated molded body. Next, after immersing in a palladium nitrate aqueous solution, ascorbic acid was added as a reducing agent, and a heat treatment was performed to support palladium.
After ultrasonically cleaning the photooxidation catalyst molded article obtained in this way, 800 ml of dextran solution was added.
(COD cr 5.5mg/) and irradiated with a 10W ultraviolet germicidal lamp for 2.0 hours while blowing oxygen. As a result, the COD cr concentration was 0 mg/.

実施例 4 表面にガラスをコーテイングしたアルミナ粒子
からなる内径4.3cm、長さ20.0cmの多孔性円筒型
成形体(商品名ケラミフイルター)の内側に刷子
を用いてイソプロピルチタネート30部、イソプロ
ピルアルコール130部および酢酸10部からなる混
合溶液を塗布したのち110℃で乾燥後、空気雰囲
気下500℃で3時間焼成を行なつて表面に酸化チ
タンを被覆させた。この処理(浸漬―乾燥―焼
成)を3回くり返したのち超音波洗浄を行い、そ
の後、酢酸、炭酸ナトリウムおよび塩化白金酸塩
を加えた混合液に浸漬しながら成形体の内側に低
圧水銀灯を挿入して光照射を行ない、内側の壁に
白金を担持させた。得られた白金担持酸化チタン
被覆成形体を、再び超音波洗浄を行なつたのちデ
キストラン溶液(CODcr濃度6.8mg/)700mlを
流量100ml/minで2.0時間、空気を吹き込みなが
らポンプで循環し、100Wの高圧水銀灯によつて
照射したところCODcr濃度は0mg/となつた。
Example 4 Using a brush, 30 parts of isopropyl titanate and 130 parts of isopropyl alcohol were applied to the inside of a porous cylindrical molded body (trade name: Kerami Filter) made of alumina particles coated with glass and having an inner diameter of 4.3 cm and a length of 20.0 cm. After drying at 110°C, baking was performed at 500°C for 3 hours in an air atmosphere to coat the surface with titanium oxide. After repeating this process (immersion-drying-calcination) three times, ultrasonic cleaning was performed, and then a low-pressure mercury lamp was inserted inside the molded body while it was immersed in a mixture of acetic acid, sodium carbonate, and chloroplatinate. Platinum was deposited on the inner wall by irradiation with light. The obtained platinum-supported titanium oxide coated molded body was again subjected to ultrasonic cleaning, and then 700 ml of dextran solution (COD cr concentration 6.8 mg/min) was circulated with a pump at a flow rate of 100 ml/min for 2.0 hours while blowing air. When irradiated with a 100W high-pressure mercury lamp, the COD cr concentration was 0mg/.

実施例 5 コージエライト(2MgO・2Al2O3・5SiO2)か
らなる直径4.0cm、厚さ5mm、長さ20.0cmの円筒
形成形体をヒドロキシチタンステアレート30部、
フエニルチタネート20部、トルエン130部からな
る混合溶液に浸漬し、乾燥処理後500℃で1時間
焼成を行なうことによつて酸化チタンを被覆した
成形体を得た。この成形体を、超音波洗浄を行な
つたのち光酸化触媒としてデキストラン溶液500
ml(CODcr4.0mg/)とともに反応槽に入れ、
空気を吹き込みながら6Wの低圧水銀灯を2.0時間
照射した。その結果、CODcr濃度は0mg/とな
つた。
Example 5 A cylindrical shaped body made of cordierite (2MgO・2Al 2 O 3・5SiO 2 ) with a diameter of 4.0 cm, a thickness of 5 mm, and a length of 20.0 cm was mixed with 30 parts of hydroxytitanium stearate and
A molded body coated with titanium oxide was obtained by immersing it in a mixed solution consisting of 20 parts of phenyl titanate and 130 parts of toluene, drying it, and then firing it at 500°C for 1 hour. This molded body was subjected to ultrasonic cleaning and then treated with 500% dextran solution as a photooxidation catalyst.
ml (COD cr 4.0mg/) into a reaction tank,
A 6W low-pressure mercury lamp was irradiated for 2.0 hours while blowing air. As a result, the COD cr concentration was 0 mg/.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の光酸化触媒による高純度水製造
の基本概念説明図である。 1…光源、2…石英管、3…光酸化触媒、4…
反応槽、5…散気管、6…排水口、7…導入口、
8…ポンプ。
The drawing is an explanatory diagram of the basic concept of producing high purity water using the photooxidation catalyst of the present invention. 1...Light source, 2...Quartz tube, 3...Photooxidation catalyst, 4...
Reaction tank, 5... Diffusion pipe, 6... Drain port, 7... Inlet port,
8...Pump.

Claims (1)

【特許請求の範囲】 1 微量の被酸化性物質を含む水に紫外線もしく
は紫外線を含む光を照射し水を純化する方法に用
いる光酸化触媒において、 無機材料よりなる成形体表面に有機チタネート
を付着せしめたのち焼成処理して、当該成形体表
面に酸化チタンを形成させ、もしくは更に上記酸
化チタンに白金族金属を担持させることを特徴と
する光酸化触媒成形体。 2 前記有機チタネートはアルキルチタネート、
アリルチタネート、チタンアシレート、チタンキ
レートの中から選ばれたいずれかの1種もしくは
2種以上の混合物である、特許請求の範囲第1項
記載の光酸化触媒成形体。 3 前記焼成処理が酸化性ガス雰囲気下で焼成温
度350℃〜700℃の範囲で行なわれる、特許請求の
範囲第1項記載の光酸化触媒成形体。 4 前記白金族金属は白金、パラジウム、ロジウ
ム、ルテニウムの中から選ばれたいずれかの1種
もしくは2種以上の混合物である、特許請求の範
囲第1項記載の光酸化触媒成形体。 5 前記無機材料よりなる成形体はガラス、アル
ミナ、シリカ、酸化チタン、ムライト、コージラ
イトの中から選ばれたいずれかを主体とし、これ
らを単独もしくは混合物とし、少量の結合材を加
えて成形、焼結した成形体である、特許請求の範
囲第1項記載の光酸化触媒成形体。
[Scope of Claims] 1. A photo-oxidation catalyst used in a method for purifying water by irradiating ultraviolet rays or light containing ultraviolet rays to water containing trace amounts of oxidizable substances, in which an organic titanate is attached to the surface of a molded body made of an inorganic material. 1. A photo-oxidation catalyst molded body, characterized in that the molded body is subjected to a firing treatment to form titanium oxide on the surface of the molded body, or further has a platinum group metal supported on the titanium oxide. 2 The organic titanate is an alkyl titanate,
The photooxidation catalyst molded article according to claim 1, which is one or a mixture of two or more selected from allyl titanate, titanium acylate, and titanium chelate. 3. The photo-oxidation catalyst molded article according to claim 1, wherein the firing treatment is performed at a firing temperature in the range of 350°C to 700°C in an oxidizing gas atmosphere. 4. The photooxidation catalyst molded article according to claim 1, wherein the platinum group metal is one or a mixture of two or more selected from platinum, palladium, rhodium, and ruthenium. 5 The molded body made of the inorganic material is mainly made of one selected from glass, alumina, silica, titanium oxide, mullite, and cordierite, and is formed by adding a small amount of a binder to a mixture of these, The photo-oxidation catalyst molded body according to claim 1, which is a sintered molded body.
JP58224414A 1983-11-30 1983-11-30 Molded photo-oxidation catalyst body Granted JPS60118236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224414A JPS60118236A (en) 1983-11-30 1983-11-30 Molded photo-oxidation catalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224414A JPS60118236A (en) 1983-11-30 1983-11-30 Molded photo-oxidation catalyst body

Publications (2)

Publication Number Publication Date
JPS60118236A JPS60118236A (en) 1985-06-25
JPS6349540B2 true JPS6349540B2 (en) 1988-10-05

Family

ID=16813395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224414A Granted JPS60118236A (en) 1983-11-30 1983-11-30 Molded photo-oxidation catalyst body

Country Status (1)

Country Link
JP (1) JPS60118236A (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266861A (en) * 1985-09-19 1987-03-26 松永 是 Sterilizing reactor
JPS62193696A (en) * 1986-02-20 1987-08-25 Nomura Micro Sci Kk Production of extremely pure water
JPS6342793A (en) * 1986-08-08 1988-02-23 Hosokawa Micron Kk Method for cleaning fluid by utilizing titanium oxide
JPS6354992A (en) * 1986-08-27 1988-03-09 Oji Paper Co Ltd Photochemical treatment of pulp waste water
JPS63104696A (en) * 1986-10-22 1988-05-10 アクアフアイン・コ−ポレイシヨン Device and method for conditioning water
US5244811A (en) * 1987-03-02 1993-09-14 Commonwealth Scientific And Industrial Research Organization Method and system for determining organic matter in an aqueous solution
US4892712A (en) * 1987-09-04 1990-01-09 Nutech Energy Systems Inc. Fluid purification
CA1316666C (en) * 1987-10-22 1993-04-27 Robert E. Duthie, Jr. Sterilization method and apparatus
JP2574840B2 (en) * 1988-01-22 1997-01-22 株式会社日立製作所 Deodorizing device
JPH06102155B2 (en) * 1988-02-29 1994-12-14 株式会社日立製作所 Deodorant, deodorant manufacturing method, deodorizing method, deodorizing device, and refrigeration cycle device equipped with this deodorizing device
JPH01284385A (en) * 1988-05-10 1989-11-15 Iwasaki Electric Co Ltd Process and apparatus for producing pure water and superpure water
JP2669039B2 (en) * 1989-03-22 1997-10-27 松下電器産業株式会社 Photocatalytic device manufacturing method
JP2578749Y2 (en) * 1991-10-28 1998-08-13 株式会社日本フォトサイエンス Liquid photochemical reaction processing equipment
SG43801A1 (en) * 1993-07-12 1997-11-14 Ishihara Sangyo Kaisha Photocatalyst and process for purifying water with same
AUPM646094A0 (en) * 1994-06-27 1994-07-21 Arthur, Ronald W. An improved method for the photocatalytic oxidation of water borne chemical species
JPH08309202A (en) * 1995-05-22 1996-11-26 Bridgestone Corp Photocatalytic body
ATE391553T1 (en) 1995-06-19 2008-04-15 Nippon Soda Co SUPPORT STRUCTURE WITH PHOTOCATALYST AND PHOTOCATALYTIC COATING MATERIAL
TW473400B (en) 1998-11-20 2002-01-21 Asahi Chemical Ind Modified photocatalyst sol
CN1301795C (en) 2002-06-03 2007-02-28 旭化成株式会社 Photocatalyst composition
JP4169557B2 (en) * 2002-09-19 2008-10-22 旭化成ケミカルズ株式会社 Photocatalyst
JP3944094B2 (en) * 2003-02-24 2007-07-11 株式会社サンデコール Photocatalyst production method, photocatalyst and gas purification device
JP2010234355A (en) * 2009-01-20 2010-10-21 Shin-Etsu Chemical Co Ltd Photocatalyst coating solution having excellent response to visible light

Also Published As

Publication number Publication date
JPS60118236A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
JPS6349540B2 (en)
JPS6219240B2 (en)
EP0634363B1 (en) Process for preparing a photocatalyst and process for purifying water
JP3326836B2 (en) Catalyst body and method for producing catalyst body
CN108178619A (en) A kind of porous adsorption filtration ceramics and preparation method with photocatalytic activity
JP2945926B2 (en) Photocatalyst particles and method for producing the same
JP3484470B2 (en) Film material with photocatalytic function
JP3776263B2 (en) NOx removal material
JPH01262944A (en) Deodorization catalyst
JP2005329360A (en) Cleaning material and its manufacturing method
KR100719974B1 (en) Water Purification Housing Using a Photocatalyst Titanium Dioxide Coated Three-dimensional Ceramic Filter and Water Purification System Using the Same
JP3118558B2 (en) Water treatment catalyst and water treatment method
JPH08175887A (en) Structural material of ceramic or pottery-based having photocatalyst function and its production
JP4182209B2 (en) Fine cell porcelain structure, porcelain filter, photocatalytic porcelain filter, method for producing the same, and purification device
EP0402122A2 (en) Method for treating exhaust gas
JP2004130156A (en) Photocatalyst carrying granule and its manufacturing method
JP2004313973A (en) Photocatalyst filter, its manufacturing method, and photocatalyst treatment apparatus
JP4066041B2 (en) Water purification equipment
JP2005211781A (en) Photocatalytic filter, manufacturing method therefor, and photocatalytic treatment apparatus
JP2004230301A (en) Photocatalyst and production method therefor
CN107043277A (en) Many sky formula photocatalyst ceramic wafers
JPH08105178A (en) Tile having light catalytic function
JPH08215563A (en) Photocatalyst and removing material for environmental pollutant using the same
JP2006075696A (en) Photocatalyst supported silica soot body, its manufacturing method, air cleaner, exhaust gas treatment apparatus, wastewater treatment apparatus and water purifying apparatus
JP2003225574A (en) Photocatalyst carrying granule and production method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees