JPS62188175A - Inorganic nonaqueous electrolyte battery - Google Patents

Inorganic nonaqueous electrolyte battery

Info

Publication number
JPS62188175A
JPS62188175A JP61030169A JP3016986A JPS62188175A JP S62188175 A JPS62188175 A JP S62188175A JP 61030169 A JP61030169 A JP 61030169A JP 3016986 A JP3016986 A JP 3016986A JP S62188175 A JPS62188175 A JP S62188175A
Authority
JP
Japan
Prior art keywords
acetylene black
surface area
positive electrode
battery
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030169A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasama
笹間 拓
Osamu Kajii
梶井 修
Futayasu Iwamaru
岩丸 二康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61030169A priority Critical patent/JPS62188175A/en
Publication of JPS62188175A publication Critical patent/JPS62188175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase discharge performance in high rate discharge by widening the surface area of acetylene black by crushing. CONSTITUTION:A molded porous carbon positive electrode is mainly comprised with acetylene black whose surface area is widened by crushing. Acetylene black has highly developed chain structure and the secondary particles formed by continuously bonding the primary particles compared with other carbon black. When acetylen black is crushed, the chain structure is broken to form the primary particles, and the surface area of acetylene black is widened. Since the fresh surfaces are developed by crushing, active sites are increased. Thereby, the catalytic function of acetylene black is enhanced, and reaction of positive active material is efficiently advanced even in high rate discharge, and discharge performance is increased. The crushing of acetylene black is performed with a vibration ball mill.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオキシハロゲン化物を正極活物質および電解液
の溶媒とし、アルカリ金属からなる負極に対してセパレ
ータを介して対向させた炭素多孔質成形体正極を備えた
無機非水電解液電池に係わり、さらに詳しくはその炭素
多孔質成形体正極の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a carbon porous molded material in which an oxyhalide is used as a positive electrode active material and a solvent for an electrolytic solution, and is opposed to a negative electrode made of an alkali metal with a separator interposed therebetween. The present invention relates to an inorganic non-aqueous electrolyte battery equipped with a body positive electrode, and more specifically to improvements in the carbon porous molded positive electrode.

〔従来の技術〕[Conventional technology]

塩化チオニル、塩化スルフリル、塩化ホスホリルなどの
常温で液体のオキシハロゲン化物を正極活物質および電
解液の溶媒とし、リチウム、ナトリウムなどのアルカリ
金属を負極とする無機非水電解液電池では、正極にはア
セチレンブラックを主成分として形成された炭素多孔質
成形体が用いられ、該正極をセパレータを介して負極に
対向させて配置して、いる(例えば特開昭58−121
563号公報)。
In inorganic non-aqueous electrolyte batteries, in which oxyhalides that are liquid at room temperature such as thionyl chloride, sulfuryl chloride, and phosphoryl chloride are used as the positive electrode active material and the electrolyte solvent, and alkali metals such as lithium and sodium are used as the negative electrode, the positive electrode A carbon porous molded body made of acetylene black as a main component is used, and the positive electrode is placed opposite to the negative electrode with a separator in between (for example, Japanese Patent Laid-Open No. 58-121
Publication No. 563).

上記炭素多孔質成形体正極の主成分をなすアセチレンブ
ラックは正極活物質であるオキシハロゲン化物を還元す
るための触媒として働くものであり、また、炭素多孔質
成形体正極の作製にあたってアセチレンブラックを主成
分として用いるのは、アセチレンブラックが不純物が少
なくオキシハロゲン化物などの活物質と反応して放電容
量を低下させることが少ないことによるものである。
Acetylene black, which is the main component of the above carbon porous molded positive electrode, acts as a catalyst to reduce the oxyhalide, which is the positive electrode active material. Acetylene black is used as a component because it contains few impurities and is less likely to react with active materials such as oxyhalides to reduce discharge capacity.

しかしながら、アセチレンブラックは表面積が約60r
tr/gと小さいために活性度が小さく、そのため大電
流放電では濃度分極が大きくなり、作動電圧が不安定に
なったり、放電容量が大幅に減少するという問題があっ
た。
However, acetylene black has a surface area of about 60r.
Since the tr/g is small, the activity is low, and therefore, concentration polarization becomes large in large current discharge, leading to problems such as unstable operating voltage and a significant decrease in discharge capacity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来の無機非水電解液電池がアセチレンブラッ
クの表面積が小さいために活性度が不充分で、大電流放
電に適さなかったという問題点を解決し、大電流放電で
も作動電圧が安定し、かつ放電容量が大きいなど、優れ
た放電特性を示す無機非水電解液電池を提供することを
目的とする。
The present invention solves the problem that conventional inorganic non-aqueous electrolyte batteries have insufficient activity due to the small surface area of acetylene black and are not suitable for large current discharge, and the operating voltage is stable even during large current discharge. An object of the present invention is to provide an inorganic non-aqueous electrolyte battery that exhibits excellent discharge characteristics such as a high discharge capacity and a large discharge capacity.

c問題点を解決するための手段〕 本発明はアセチレンブラックを粉砕処理することによっ
てアセチレンブラックの鎮状構造を破壊し、アセチレン
ブラックの表面積を増加させて活性度を大きくし、大電
流放電でも優れた放電特性を示す無機非水電解液電池を
提供したものである。
Means for Solving Problems c] The present invention destroys the aqueous structure of acetylene black by pulverizing the acetylene black, increases the surface area of acetylene black, increases its activity, and makes it excellent even in large current discharge. The present invention provides an inorganic non-aqueous electrolyte battery that exhibits excellent discharge characteristics.

すなわち、アセチレンブラックは他のカーボンブランク
に比べて鎖状構造が非常に発達していて、−欠粒子が連
鎖的に結合して二次粒子化しているが、アセチレンブラ
ックを粉砕処理すると、その鎖状構造が破壊されて一次
粒子化され、アセチレンブラックの表面積が増加し、粉
砕前には表面に現れていなかった部分が表面に現れるよ
うになり、この新鮮な面の生成によって、活性点の増大
が起こり、アセチレンブラックの触媒機能が増加して、
大電流放電でも正極活物質の反応が効率よく進行し、放
電特性が向上するのである。
In other words, acetylene black has a highly developed chain structure compared to other carbon blanks, and missing particles are linked in a chain to form secondary particles, but when acetylene black is pulverized, the chains are broken down. The spherical structure is destroyed and becomes primary particles, the surface area of acetylene black increases, and parts that did not appear on the surface before pulverization appear on the surface, and by the generation of this fresh surface, the number of active points increases. occurs, and the catalytic function of acetylene black increases,
Even during high-current discharge, the reaction of the positive electrode active material proceeds efficiently and the discharge characteristics are improved.

アセチレンブラックの粉砕処理は、通常、振動ボールミ
ルで行われる。ただし、他の手段で粉砕処理してもよい
、この粉砕処理によって、アセチレンブラックは、処理
前、窒素吸着表面積が約60rd/g、活性度を示す沃
度吸着量が約105mg/gであったものが、窒素吸着
表面積が最大200d/g、沃度吸着量が最大170e
+g/g程度まで向上する0表面積の向上度合や沃度吸
着量の向上度合は粉砕処理の度合によって変わるが、通
常、窒素吸着表面積が70mT2/g以上、好ましくは
100 nf /g以上、沃度吸着量が110mg/g
以上、好ましくは125 mg / g以上になると粉
砕処理前のアセチレンブラックに比べて、大電流放電に
おいて顕著な放電特性の差が生じるようになる。
Acetylene black is usually ground in a vibrating ball mill. However, pulverization treatment may be carried out by other means. By this pulverization treatment, acetylene black had a nitrogen adsorption surface area of approximately 60rd/g and an iodine adsorption amount indicating activity of approximately 105mg/g before treatment. The nitrogen adsorption surface area is up to 200d/g and the iodine adsorption amount is up to 170e.
The degree of improvement in the zero surface area and the degree of improvement in the amount of iodine adsorption, which improves to about Adsorption amount is 110mg/g
As mentioned above, when the amount is preferably 125 mg/g or more, a noticeable difference in discharge characteristics occurs in large current discharge compared to acetylene black before pulverization treatment.

炭素多孔質成形体正極の形成は、例えば、上記のように
粉砕処理して表面積を増大させたアセチレンブラックを
主成分とし、これに例えばポリテトラフルオロエチレン
などの結着剤と好ましくは強度付与のための黒鉛を加え
、さらに水、アルコールなどの液成分などを”加えて、
混練し、該混線物を押出成形機などで所望の形状に成形
し、乾燥して液成分を蒸発させることにより多孔質化す
ることによって行われる。そして、強度付与のために黒
鉛を添加する場合、アセチレンブラックと黒鉛との使用
比は通常、重量比で95〜85:5〜15にするのが好
ましい、なお、炭素多孔質成形体正極の形成にあたって
使用されたアセチレンブラックが粉砕処理したものであ
るか否かは、アセチレンブラックの鎖状構造の有無を電
子顕@鏡で調べることによって判断できる。もとより、
この電子顕微鏡による確認は、成形後の成形体からアセ
チレンブラックを採取して行うことができる。
The carbon porous molded positive electrode is formed by using, for example, acetylene black as a main component which has been pulverized to increase the surface area as described above, and adding a binder such as polytetrafluoroethylene and preferably a strength-imparting agent to the acetylene black. Add graphite for the purpose, and then add liquid ingredients such as water and alcohol.
This is done by kneading, molding the mixture into a desired shape using an extruder or the like, and drying it to evaporate the liquid component to make it porous. When graphite is added to impart strength, the ratio of acetylene black and graphite used is usually preferably 95 to 85:5 to 15 by weight. Furthermore, forming a carbon porous molded positive electrode Whether or not the acetylene black used in the process has been pulverized can be determined by examining the presence or absence of a chain structure in the acetylene black using an electron microscope. Of course,
This confirmation using an electron microscope can be performed by collecting acetylene black from the molded product after molding.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例1 窒素吸着表面[60n’r / g、沃度吸着量105
清g/gのアセチレンブランクを振動ボールミルで10
時間粉砕処理した。この粉砕により、アセチレンブラッ
クの窒素吸着表面積は85mT2/gに増加し、沃度吸
着量は120mg/gに増加した。
Example 1 Nitrogen adsorption surface [60n'r/g, iodine adsorption amount 105
An acetylene blank of 10 g/g was milled using a vibrating ball mill.
Pulverized for hours. As a result of this pulverization, the nitrogen adsorption surface area of acetylene black increased to 85 mT2/g, and the iodine adsorption amount increased to 120 mg/g.

上記のように粉砕処理して表面積を増大させ、活性度を
増加させたアセチレンブラック90重量%と黒鉛10重
量%との混合物100重量部に対し、ポリテトラフルオ
ロエチレンの水分散体(固形分濃度60i量%)、メチ
ルアルコール120ffi量部および水250重量部を
加えて混練し、該混練物を油圧式の押出成形機で直径1
0 、6mmの円柱状に押出成形し、長さ33nu++
に切断したのら、130℃で5時間真空乾燥した。この
ようにして得られた空隙率85容量%の炭素多孔質成形
体を正極に用い、第1図に示す構造のリチウム−塩化チ
オニル系の単3形無機非水電解液電池を作製した。
An aqueous dispersion of polytetrafluoroethylene (solid content concentration 60i% by weight), 120ffi parts of methyl alcohol, and 250 parts by weight of water were added and kneaded, and the kneaded product was molded using a hydraulic extruder into a diameter of 1.
0, extruded into a 6mm cylindrical shape, length 33nu++
After cutting, it was vacuum dried at 130°C for 5 hours. A lithium-thionyl chloride type AA inorganic non-aqueous electrolyte battery having the structure shown in FIG. 1 was prepared using the thus obtained carbon porous molded body having a porosity of 85% by volume as a positive electrode.

第1図において、1は負極端子を兼ねるステンレス鋼製
の電池ケースで、2は金属リチウムからなる負極、3は
ガラス繊維不織布からなるセパレータである。4は上記
負極2に対してセパレータ3を介して対向するように配
置した炭素多孔質成形体正極で、その構成材料の主成分
は前記のように粉砕処理して表面積を増大させ、活性度
を増加させたアセチレンブラックである。5はステンレ
ス鋼製の集電棒であり、6は電池蓋で、この電池蓋6の
本体部分はステンレス鋼で形成されており、その外周部
は前記電池ケースの開口端部と溶接されている。そして
、電池蓋6の中央部にはガラスシール7を介して正極端
子8が設けられており、この正極端子8はステンレス鋼
製のパイプの上端を封止したもので、電池組立時にはパ
イプ状をしており、電解液注入口として使用され、電解
液注入後に前記の集電棒5を挿入して該パイプの上端部
と集電棒5の上端部とを溶接することによって封止され
ている。9は電解液で、この電解液は塩化チオニルに支
持電解質としてリチウムテトラクロロアルミネート(L
iAlCl4)を1.2モル/l溶解させたものであり
、塩化チオニルは電解液の溶媒であると共に、この電池
では正極活物質でもある。 10は底紙、11は上紙で
、これらは前記セパレータ3と同様にガラス繊維不織布
からなるものである。
In FIG. 1, 1 is a stainless steel battery case which also serves as a negative electrode terminal, 2 is a negative electrode made of metallic lithium, and 3 is a separator made of glass fiber nonwoven fabric. Reference numeral 4 denotes a carbon porous molded positive electrode arranged to face the negative electrode 2 with a separator 3 interposed therebetween, the main component of which is pulverized as described above to increase the surface area and increase the activity. Increased acetylene black. Reference numeral 5 indicates a current collector rod made of stainless steel, and reference numeral 6 indicates a battery cover. The main body of the battery cover 6 is made of stainless steel, and its outer circumference is welded to the open end of the battery case. A positive terminal 8 is provided in the center of the battery lid 6 through a glass seal 7. This positive terminal 8 is made by sealing the upper end of a stainless steel pipe, and when assembling the battery, it is shaped like a pipe. The pipe is used as an electrolyte injection port, and after the electrolyte is injected, the current collector rod 5 is inserted and the upper end of the pipe is welded to the upper end of the current collector rod 5 to seal it. 9 is an electrolytic solution containing thionyl chloride and lithium tetrachloroaluminate (L) as a supporting electrolyte.
1.2 mol/l of iAlCl4) is dissolved therein, and thionyl chloride is not only the solvent of the electrolyte but also the positive electrode active material in this battery. 10 is a bottom paper, and 11 is a top paper, which, like the separator 3, are made of glass fiber nonwoven fabric.

実施例2 実施例1と同様の窒素吸着表面積60mT2/g、沃度
吸着量105mg/gのアセチレンブラックを振動ボー
ルミルで15時間粉砕処理した。この粉砕処理により、
アセチレンブラックの窒素吸着表面積は140イ/gに
増加し、沃度吸着量は135mg/gに増加した。
Example 2 Acetylene black having a nitrogen adsorption surface area of 60 mT2/g and an iodine adsorption amount of 105 mg/g as in Example 1 was pulverized in a vibrating ball mill for 15 hours. Through this crushing process,
The nitrogen adsorption surface area of acetylene black increased to 140 i/g, and the iodine adsorption amount increased to 135 mg/g.

上記のように粉砕処理して表面積を増大させ、活性度を
増加させたアセチレンブラックを用いたほかは実施例1
と同様にして第1図に示す構造のリチウム−塩化チオニ
ル系の単3形電池を作製した。
Example 1 except that acetylene black which had been pulverized to increase its surface area and increase its activity as described above was used.
In the same manner as above, a lithium-thionyl chloride type AA battery having the structure shown in FIG. 1 was prepared.

実施例3 実施例1と同様の窒素吸着表面積60nf/g、沃度吸
着量105mg/Hのアセチレンブラックを振動ボール
ミルで20時間粉砕処理した。この粉砕処理により、ア
セチレンブランクの窒素吸着表面積は180rrf/g
に増加し、沃度吸着量は155mg/gに増加した。
Example 3 Acetylene black having a nitrogen adsorption surface area of 60 nf/g and an iodine adsorption amount of 105 mg/H as in Example 1 was pulverized in a vibrating ball mill for 20 hours. Through this pulverization treatment, the nitrogen adsorption surface area of the acetylene blank was 180rrf/g.
The amount of iodine adsorbed increased to 155 mg/g.

上記のように粉砕処理して表面積を増大させ、活性度を
増加させたアセチレンブラックを用いたほかは実施例1
と同様にして第1図に示す構造のりチウム−塩化チオニ
ル系の単3形電池を作製した。
Example 1 except that acetylene black which had been pulverized to increase its surface area and increase its activity as described above was used.
In the same manner as above, a lithium-thionyl chloride type AA battery having the structure shown in FIG. 1 was prepared.

実施例4 実施例1と同様の窒素吸着表面積60n(/g、法度吸
着11105mg/gのアセチレンブラックを振動ボー
ルミルで25時間粉砕処理した。この粉砕処理により、
アセチレンブラックの窒素吸着表面積は200rrf/
gに増加し、沃度吸着量は170mg/gに増加した。
Example 4 Acetylene black with a nitrogen adsorption surface area of 60 n (/g, legal adsorption of 11,105 mg/g) as in Example 1 was pulverized in a vibrating ball mill for 25 hours. Through this pulverization treatment,
The nitrogen adsorption surface area of acetylene black is 200rrf/
g, and the iodine adsorption amount increased to 170 mg/g.

上記のように粉砕処理して表面積を増大させ、活性度を
増加させたアセチレンブラックを用いたほかは実施例1
と同様にして第1図に示す構造のリチウム−塩化チオニ
ル系の単3形電池を作製した。
Example 1 except that acetylene black which had been pulverized to increase its surface area and increase its activity as described above was used.
In the same manner as above, a lithium-thionyl chloride type AA battery having the structure shown in FIG. 1 was prepared.

比較例1 実施例1と同様の窒素吸着表面積60nf/g、沃度吸
着量105mg/gのアセチレンブラック90重量%と
黒鉛10重量%との混合物100重量部に対してポリテ
トラフルオロエチレンの水分散体(固形分濃度60重量
%)20重量部、メチルアルコール120重量部および
水250重量部を加えて混練し、該混練物を油圧押出成
形機で直径10.6mmの円柱状に成形し、長さ33m
mに切断したのち、130℃で5時間真空乾燥した。こ
のようにして得られた空隙率85容量%の炭素多孔質成
形体を正極として用いたほかは実施例1と同様にして第
1図に示す構造のりチウム−塩化チオニル系の単3形電
池を作製した。
Comparative Example 1 Aqueous dispersion of polytetrafluoroethylene in 100 parts by weight of a mixture of 90% by weight of acetylene black and 10% by weight of graphite having a nitrogen adsorption surface area of 60 nf/g and an iodine adsorption amount of 105 mg/g as in Example 1. 20 parts by weight of solids (solid content concentration 60% by weight), 120 parts by weight of methyl alcohol and 250 parts by weight of water were added and kneaded, and the kneaded product was molded into a cylindrical shape with a diameter of 10.6 mm using a hydraulic extruder. 33m
After cutting into pieces of m, vacuum drying was performed at 130°C for 5 hours. A lithium-thionyl chloride type AA battery having the structure shown in FIG. Created.

上記のように得られた実施例1〜4の電池および比較例
1の電池を連続放電させ、放電特性を調べた。本発明の
実施例1〜4の電池はいずれも平坦な放電特性を示し、
放電途中での電圧低下は認められなかった0本発明の実
施例1〜4の電池のうち実施例1の電池をそれらの代表
として、その放電特性を従来電池である比較例1の電池
の放電特性と対比して第2図に示す、また、上記放電時
の実施例1〜4の電池および比較例1の電池の2.5V
終止までの放電持続時間を第1表に示す。
The batteries of Examples 1 to 4 and the battery of Comparative Example 1 obtained as described above were continuously discharged and their discharge characteristics were examined. All of the batteries of Examples 1 to 4 of the present invention exhibited flat discharge characteristics,
No voltage drop was observed during discharge. Among the batteries of Examples 1 to 4 of the present invention, the battery of Example 1 was taken as a representative, and its discharge characteristics were compared to the discharge characteristics of the battery of Comparative Example 1, which is a conventional battery. In comparison with the characteristics, the 2.5V of the batteries of Examples 1 to 4 and the battery of Comparative Example 1 at the time of discharge are shown in FIG.
Table 1 shows the discharge duration at the end.

第   1   表 第1表に示すように、本発明の実施例1〜4の電池はい
ずれも、比較例1の電池に比べて放電持続時間が長(,
10Ωという重負荷の大電流放電においても放電容量が
大きかった。
Table 1 As shown in Table 1, the batteries of Examples 1 to 4 of the present invention all had longer discharge durations (,
The discharge capacity was large even when discharging a large current under a heavy load of 10Ω.

また、第2図に示すように、本発明の実施例1の電池は
従来電池である比較例1の電池のような放電途中での電
圧低下がな(、作動電圧が安定しており、もとより放電
持続時間も長かった。
In addition, as shown in FIG. 2, the battery of Example 1 of the present invention does not have a voltage drop during discharge unlike the battery of Comparative Example 1, which is a conventional battery, and has a stable operating voltage. The discharge duration was also long.

なお、上記実施例では円柱状の正極を用いたが、本発明
はそれに限られるものではなく、渦巻状にした正極でも
上記と同様の効果が得られる。
Note that although a cylindrical positive electrode was used in the above embodiment, the present invention is not limited thereto, and the same effects as described above can be obtained even with a spiral positive electrode.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明ではアセチレンブラックを
粉砕処理して表面積を増大させることによって、大電流
放電における放電特性を向上させることができた。
As explained above, in the present invention, by pulverizing acetylene black to increase its surface area, it was possible to improve the discharge characteristics in large current discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る無機亦水電解液電池の一例を示す
断面図であり、第2図は本発明の実施例1の電池と従来
電池である比較例1の電池の10Ω放電特性図である。 2・・・負極、 3・・・セパレータ、 4・・・炭素
多孔質成形体、 9・・・電解液 第1図
FIG. 1 is a sectional view showing an example of an inorganic/aqueous electrolyte battery according to the present invention, and FIG. 2 is a 10Ω discharge characteristic diagram of the battery of Example 1 of the present invention and the battery of Comparative Example 1, which is a conventional battery. It is. 2... Negative electrode, 3... Separator, 4... Carbon porous molded body, 9... Electrolyte solution Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)常温で液体のオキシハロゲン化物を正極活物質お
よび電解液の溶媒とし、アルカリ金属からなる負極に対
してセパレータを介して対向させた炭素多孔質成形体正
極を備えた無機非水電解液電池において、上記炭素多孔
質成形体正極が粉砕処理することにより表面積を増大さ
せたアセチレンブラックを主成分として形成されている
ことを特徴とする無機非水電解液電池。
(1) An inorganic non-aqueous electrolyte that uses an oxyhalide that is liquid at room temperature as a positive electrode active material and as a solvent for the electrolyte, and has a carbon porous molded positive electrode that faces an alkali metal negative electrode with a separator interposed therebetween. An inorganic non-aqueous electrolyte battery, characterized in that the carbon porous molded positive electrode is formed mainly of acetylene black whose surface area has been increased by pulverization.
(2)粉砕処理したアセチレンブラックの窒素吸着表面
積が70mT^2/g以上、沃度吸着量が110mg/
g以上である特許請求の範囲第1項記載の無機非水電解
液電池。
(2) Nitrogen adsorption surface area of pulverized acetylene black is 70 mT^2/g or more, and iodine adsorption amount is 110 mg/g.
The inorganic non-aqueous electrolyte battery according to claim 1, wherein the inorganic non-aqueous electrolyte battery has an electrolyte of at least 100 g.
JP61030169A 1986-02-13 1986-02-13 Inorganic nonaqueous electrolyte battery Pending JPS62188175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030169A JPS62188175A (en) 1986-02-13 1986-02-13 Inorganic nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030169A JPS62188175A (en) 1986-02-13 1986-02-13 Inorganic nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS62188175A true JPS62188175A (en) 1987-08-17

Family

ID=12296250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030169A Pending JPS62188175A (en) 1986-02-13 1986-02-13 Inorganic nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS62188175A (en)

Similar Documents

Publication Publication Date Title
JP4319253B2 (en) Electrochemical battery zinc anode
JP2000195512A (en) Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof
JPS62188175A (en) Inorganic nonaqueous electrolyte battery
JPH09180736A (en) Alkaline manganese battery
JPH10228899A (en) Electrode electrode mix for alkaline battery
JP2001514437A (en) Alkaline battery with a gel-type negative electrode in which a gelling agent as an absorbent is provided in the center
JPH09180708A (en) Alkaline dry cell
JPH02239572A (en) Polyaniline battery
JPH0355770A (en) Lithium secondary battery
JPS5990364A (en) Manufacture of positive electrode for battery
JPS614162A (en) Lithium battery
JPH02148654A (en) Nonaqueous electrolytic battery
JPS5914269A (en) Alkali manganese cell
JPH0318308B2 (en)
JPS58163166A (en) Argentic oxide cell
JPS6247952A (en) Alkaline battery
JPH02267871A (en) Nonaqueous electrolyte secondary cell
JPS5999660A (en) Silver oxide cell
JPH0374055A (en) Alkaline manganese battery
JPH02262262A (en) Nonaqueous electrolyte liquid battery
JPS62249355A (en) Inorganic nonaqueous electrolyte battery
JPH02195647A (en) Dry cell
JPS59171470A (en) Nonaqueous solvent battery
JPH04366549A (en) Zinc alkaline battery
JPS62206769A (en) Inorganic nonaqueous electrolyte cell