JPS62249355A - Inorganic nonaqueous electrolyte battery - Google Patents

Inorganic nonaqueous electrolyte battery

Info

Publication number
JPS62249355A
JPS62249355A JP61091026A JP9102686A JPS62249355A JP S62249355 A JPS62249355 A JP S62249355A JP 61091026 A JP61091026 A JP 61091026A JP 9102686 A JP9102686 A JP 9102686A JP S62249355 A JPS62249355 A JP S62249355A
Authority
JP
Japan
Prior art keywords
positive electrode
carbon
battery
carbon black
stiffness value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61091026A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasama
笹間 拓
Tomio Kitamura
富夫 北村
Osamu Kajii
梶井 修
Takeya Kazehara
風原 健也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61091026A priority Critical patent/JPS62249355A/en
Publication of JPS62249355A publication Critical patent/JPS62249355A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase electron conductivity of a positive electrode to increase discharge capacity by forming a porous molding carbon positive electrode with a mix mainly comprising specific carbon black whose volatile matter content is small, graphitization degree is large, and having large chain structure. CONSTITUTION:A porous molding carbon positive electrode is formed with a mix mainly comprising carbon black whose volatile matter content is 0.2wt% or less, half width of carbon (002) near 26.9 deg. of diffraction angle in X-ray diffraction with CuKalpharay is 4.9 deg., absorption stifness value is 33-40cm<3>/5g. Since decrease in electron conductivity caused by kneading for preparing the positive electrode is prevented, the positive electrode having high electron conductivity is obtained. Thereby, increase in the internal resistance of the battery is prevented, and discharge capacity is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無機非水電解液電池に係わり、さらに詳しく
はその正極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to inorganic non-aqueous electrolyte batteries, and more particularly to improvements in positive electrodes thereof.

〔従来の技術〕[Conventional technology]

従来、リチウム、ナトリウムなどのアルカリ金属を負極
とし、塩化チオニル、塩化スルフリル、塩化ホスホリル
などのオキシハロゲン化物を正極活物質および電解液の
溶媒とする無機非水電解液電池においては、正極にはア
セチレンブラックを主成分とし、このアセチレンブラッ
クとポリテトラフルオロエチレンと黒鉛を混練した配合
剤で作製した炭素多孔質成形体が用いられていた(たと
えば特願昭58−121563号公報)。
Conventionally, in inorganic nonaqueous electrolyte batteries in which alkali metals such as lithium and sodium are used as the negative electrode and oxyhalides such as thionyl chloride, sulfuryl chloride, and phosphoryl chloride are used as the positive electrode active material and the electrolyte solvent, acetylene is used as the positive electrode. A carbon porous molded body made of a mixture of black as a main component and acetylene black, polytetrafluoroethylene, and graphite has been used (for example, Japanese Patent Application No. 121563/1982).

上記炭素多孔質成形体正極の炭素質は正極活物質である
オキシハロゲン化物を還元するための触媒として働くも
のであるが、炭素多孔質成形体正極の作製にあたって、
炭素質としてアセチレンブラックを用いるのは、アセチ
レンブラックは一般のカーボンブラックに比べて揮発性
物質などの不純物が少なく、不純物が正極活物質のオキ
シハロゲン化物と反応して電池容量を低下させることが
少ないからである。
The carbon material of the above-mentioned carbon porous molded positive electrode acts as a catalyst for reducing the oxyhalide which is the positive electrode active material, but in preparing the carbon porous molded positive electrode,
Acetylene black is used as the carbon material because it contains fewer impurities such as volatile substances than ordinary carbon black, and impurities are less likely to react with the oxyhalide of the positive electrode active material and reduce battery capacity. It is from.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記正極の主成分であるアセチレンブラ
ックは、機械的強度が弱く、混練によってその鎖状構造
が破壊されて、正極内の電子伝導性が低下し、その結果
、電池の内部抵抗が大き(なって放電容量が低下すると
いう問題があった。
However, acetylene black, which is the main component of the positive electrode, has weak mechanical strength, and its chain structure is destroyed by kneading, reducing the electronic conductivity within the positive electrode. As a result, the internal resistance of the battery increases ( Therefore, there was a problem that the discharge capacity decreased.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した従来技術の問題点を解決するもので、
炭素多孔質成形体正極を、揮発性物質が少なく、黒鉛化
度が太き(、かつ大きな鎮状構造を有するカーボンブラ
ックを主成分とする配合剤で作製することによって目的
を達成したものである。
The present invention solves the problems of the prior art described above.
This goal was achieved by creating a carbon porous molded positive electrode with a compound containing carbon black as the main component, which contains less volatile substances, has a high degree of graphitization (and has a large slag structure). .

すなわち、本発明は、揮発性物質が0.2重量%以下で
、CuKα線によるX線回折で回折角26.9’付近の
炭素(002)の半価幅が4.9°であり、アブソープ
シジンスティフネス(^bsorption 5tif
finess )値が33cd/ 5 g 〜40aJ
/ 5 gのカーボンブラックを主成分とする配合剤で
炭素多孔質成形体正極を作製することによって、正極作
製にあたっての混練による電子伝導性の低下を防止して
、電子伝導性が高い正極を得たものである。
That is, in the present invention, the volatile substance is 0.2% by weight or less, the half-width of carbon (002) near the diffraction angle of 26.9' is 4.9° in X-ray diffraction using CuKα rays, and the Soapsygin Stiffness (^bsorption 5tif)
finess) value is 33cd/5g ~ 40aJ
By producing a carbon porous molded positive electrode with a compounding material containing / 5 g of carbon black as a main component, a decrease in electronic conductivity due to kneading during positive electrode production can be prevented, and a positive electrode with high electronic conductivity can be obtained. It is something that

本発明で用いるカーボンブラックは、上記のように、揮
発性物質が0.2重量%以下で、揮発性物質の含有量が
アセチレンブラックと同程度であって、通常のカーボン
ブランク(揮発性物質の含有量は通常0.5〜17.0
重量%)より少ないので、正極とした場合に不純物によ
る副反応が少な(、またCuKα線によるX線回折で回
折角26.9°付近の炭素(002)の半価幅が4.9
°と通常のカーボンブラックよりも小さく、結晶性が良
好で黒鉛化度が大きく、かつアブソーブションスティフ
ネス値(アブソーブションスティフネス値とは、試料5
gにアセトンを10%含有するアセトン水溶液を加え団
塊状になった時の液量をいう)が33cd/5g〜40
cd15gでアセチレンブラックのアブソーブションス
ティフネス値31cm3/5gより大きく、アセチレン
ブラックと同様に鎖状構造ををし、かつその鎖状構造が
上記アブソープションスティフネス値からも明らかなよ
うにアセチレンブラックより発達している。したがって
、このカーボンブラックを用いて正極を作製した場合は
、不純物による副反応が少なく、またアセチレンブラッ
クと同様に鎖状構造を有しており、かつ、後に第3図に
基づいて詳述するように、同じ時間粉砕した場合のアブ
ソープションスティフネス値が常にアセチレンブラック
より大きく、したがって同時間の粉砕では常にアセチレ
ンブランクより大きな鎖状構造を有しているので、アセ
チレンブラックを用いる場合に比べて電子伝導性の高い
正極を得ることができる。また、同様に第31)i!l
に示されるように、このカーボンブラックは、アセチレ
ンブランクに比べて混練による鎮状構造の破壊率が少な
く、混線による電子伝導性の喪失が少ないので、混線を
アセチレンブランクの場合より長く行うことができ、少
量のポリテトラフルオロエチレンの使用でも、長時間混
練によりポリテトラフルオロエチレンの結着作用を充分
に発揮させることができる。したがって、このカーボン
ブラックを主成分とする配合剤を用いた場合には、アセ
チレンブラックを用いる場合に比べて機械的強度の大き
い正極を得ることができる。
As mentioned above, the carbon black used in the present invention has a volatile substance content of 0.2% by weight or less, the content of volatile substances is about the same as that of acetylene black, and the carbon black used in the present invention is The content is usually 0.5-17.0
(% by weight), so there are fewer side reactions due to impurities when used as a positive electrode (Also, in X-ray diffraction with CuKα rays, the half width of carbon (002) at a diffraction angle of around 26.9° is 4.9
° and smaller than normal carbon black, good crystallinity, high graphitization degree, and absorption stiffness value (absorption stiffness value refers to sample 5
The amount of liquid when an acetone aqueous solution containing 10% acetone is added to g to form a lump) is 33 cd/5 g to 40
CD15g is greater than the absorption stiffness value of acetylene black, 31cm3/5g, and it has a chain structure similar to acetylene black, and the chain structure is more developed than acetylene black, as is clear from the above absorption stiffness value. ing. Therefore, when a positive electrode is produced using this carbon black, there are fewer side reactions due to impurities, and it has a chain structure like acetylene black, and as will be explained in detail later based on Figure 3. In addition, the absorption stiffness value is always larger than that of acetylene black when milled for the same time, and therefore it always has a larger chain structure than acetylene blank when milled for the same time. A highly conductive positive electrode can be obtained. Similarly, 31) i! l
As shown in , this carbon black has a lower rate of destruction of the silane structure due to kneading than an acetylene blank, and less loss of electronic conductivity due to cross-talk, so cross-crossing can be carried out for a longer period of time than with an acetylene blank. Even if a small amount of polytetrafluoroethylene is used, the binding effect of polytetrafluoroethylene can be fully exhibited by long-time kneading. Therefore, when a compounding agent containing carbon black as a main component is used, a positive electrode having greater mechanical strength can be obtained than when acetylene black is used.

上記のごと<、揮発性物質が0.2 重量%以下で、C
uKot線によるX線回折で回折角26.9°付近の炭
素(002)の半価幅が4.9°であり、アブソーブシ
ョンスティフネス値が33cd/5g〜40−75gと
いう特性を持つカーボンブラックとしては、たとえばベ
ルギー国のセデマ社よりエンサグリ・スーパーS (E
NSAGRI・5UPI!RS)の商品名で市販されて
いるカーボンブラックをその一例としてあげることがで
きる。
As above, volatile substances are 0.2% by weight or less, C
As a carbon black that has the characteristics that the half width of carbon (002) near the diffraction angle of 26.9° is 4.9° in X-ray diffraction using uKot rays, and the absorption stiffness value is 33cd/5g to 40-75g. For example, Ensagri Super S (E
NSAGRI・5UPI! An example of such carbon black is commercially available under the trade name RS.

第3図に上記エンサグリ・スーパーSとアセチレンブラ
ックをボールミルで粉砕したときの粉砕時間とアブソー
プションスティフネス値との関係を示す。なお、粉砕に
使用されたボールミルは直径50m+w、内部有効長さ
500+w+wで、直径13IIII1)の磁性ボール
が60個入れられており、粉砕はこのボールミル内に試
料をそれぞれ10gずつ入れ、ボールミルを回転速度2
5rp+*で回転させることによって行われた。なお、
第3図において、曲線■は上記エンサグリ・スーパーS
の粉砕時間に伴うアブソープションスティフネス値の変
化を表し、曲線■はアセチレンブラックの粉砕時間に伴
うアブソープションステイフネス値の変化を表す。第3
図に示すように、同じ粉砕時間で比較した場合のエンサ
グリ・スーパーSのアブソープションスティフネス値は
常にアセチレンブラックより大きく、エンサグリ・スー
パーSの方がアセチレンブランクより常に大きな鎖状構
造を保有している。また、混練によるアブソープション
スティフネス値の低下も、エンサグリ・スーパーSの方
がアセチレンブラックより若干少なく、強度的にもエン
サグリ・スーパーSの方がアセチレンブラックより優れ
ている。
FIG. 3 shows the relationship between the grinding time and the absorption stiffness value when the Ensagri Super S and acetylene black were ground in a ball mill. The ball mill used for pulverization has a diameter of 50 m + w, an internal effective length of 500 + w + w, and contains 60 magnetic balls with a diameter of 13 III 1). For pulverization, 10 g of each sample is placed in this ball mill, and the ball mill is rotated at a rotation speed. 2
This was done by rotating at 5 rp+*. In addition,
In Figure 3, the curve ■ is the Ensagri Super S
The curve ■ represents the change in the absorption stiffness value with the grinding time of acetylene black, and the curve ■ represents the change in the absorption stiffness value with the grinding time of acetylene black. Third
As shown in the figure, the absorption stiffness value of Ensagri Super S is always larger than that of acetylene black when compared at the same grinding time, and Ensagri Super S always has a larger chain structure than acetylene blank. There is. Furthermore, the reduction in absorption stiffness value due to kneading is slightly lower for Ensagri Super S than for acetylene black, and Ensagri Super S is also superior to acetylene black in terms of strength.

本発明においては、上記特定のカーボンブランクを主成
分とし、通常、これに強度向上の目的で黒鉛と結着剤と
してのポリテトラフルオロエチレンを加え、さらにメチ
ルアルコール、水などの揮発性成分を添加して混練し、
得られた混練物を押出成形機で押出成形し、乾燥して揮
発性成分を除去することによって炭素多孔質成形体正極
が得られる。
In the present invention, the above-mentioned specific carbon blank is the main component, and graphite and polytetrafluoroethylene as a binder are usually added to this for the purpose of improving strength, and volatile components such as methyl alcohol and water are also added. and knead.
The obtained kneaded product is extruded using an extrusion molding machine, and the volatile components are removed by drying to obtain a carbon porous molded positive electrode.

本発明において、炭素多孔質成形体正極を作製する配合
剤とは、上記のような押出成形に際して使用した揮発性
成分を含む混線物から水、メチルアルコールなどの揮発
性成分を除いた固形分をいい、該配合剤において前記特
定のカーボンブラックの量は通常85〜95重量%であ
る。
In the present invention, the compounding agent for producing the carbon porous molded positive electrode is the solid content obtained by removing volatile components such as water and methyl alcohol from the mixture containing volatile components used during extrusion molding as described above. Yes, the amount of the specific carbon black in the formulation is usually 85 to 95% by weight.

本発明においては、用いるカーボンブランクの揮発性物
質を0.2重量%以下に特定しているが、これは揮発性
物質量をアセチレンブラックと同程度にして、不純物に
よるオキシハロゲン化物との副反応をできるだけ少なく
するためである。また、用いるカーボンブラックのCu
Kα線によるX線回折で回折角26.9°付近の炭素(
002)の半価幅を4.9°としているのは、このよう
に炭素(002)の半価幅が小さいものは結晶性が高く
黒鉛化度が大きく、かつ不純物が少な(電子伝導性も良
好であるからである。そして、用いるカーボンブランク
のアブソープションスティフネス値を33−15g〜4
0cm3/5gの範囲に特定しているのは、アプソーブ
シロンステイフネス値が33aJ/5gより小さいとア
セチレンブラックとの差が少なくなり、このカーボンブ
ラックの特徴を充分に発揮させることができず、一方、
アブソープションスティフネス値が40aJ/5gより
大きなものは、表面積が大きく結晶性が小さいので、機
械的強度が小さくなり、初期のアブソーブションスティ
フネス値が大きくても混練による鎮状構造の破壊が生じ
て電子伝導性の高い正極が得られなくなるからである。
In the present invention, the volatile substances of the carbon blank used are specified to be 0.2% by weight or less, but this is because the amount of volatile substances is about the same as that of acetylene black, and side reactions with oxyhalides caused by impurities are prevented. The purpose is to minimize this. In addition, Cu of the carbon black used
X-ray diffraction using Kα rays reveals carbon (
The reason why the half-width of carbon (002) is set at 4.9° is because carbon (002) with a small half-width has high crystallinity, a high degree of graphitization, and has few impurities (also has low electronic conductivity). This is because the absorption stiffness value of the carbon blank used is 33-15g to 4.
The reason for specifying the range of 0cm3/5g is that if the Absorbsilon stiffness value is smaller than 33aJ/5g, the difference from acetylene black will be small and the characteristics of this carbon black will not be fully exhibited. on the other hand,
If the absorption stiffness value is larger than 40aJ/5g, the surface area is large and the crystallinity is small, so the mechanical strength is small, and even if the initial absorption stiffness value is large, the quenched structure will be destroyed by kneading. This is because a positive electrode with high electron conductivity cannot be obtained.

つまり、33aJ/ 5 g 〜40csi/ 5 g
という特定範囲のアブソーブションスティフネス値のも
ののみが電子伝導性の高い正極を得る上において有用な
のである。
That is, 33aJ/5g ~40csi/5g
Only those having an absorption stiffness value within a specific range are useful in obtaining a positive electrode with high electron conductivity.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving Examples.

第1図は本発明の無機非水電解液電池の一実施例を示す
断面図であり、この実施例の電池は単3形の塩化チオニ
ル−リチウム電池である。
FIG. 1 is a sectional view showing an embodiment of the inorganic non-aqueous electrolyte battery of the present invention, and the battery of this embodiment is a AA-sized thionyl chloride-lithium battery.

第1図において、lは負極端子を兼ねるステンレス鋼製
の電池ケース、2はリチウム金属からなる負極、3はガ
ラス繊維不織布からなるセパレータ、4は上記負極2に
対してセパレータ3を介して対向させた炭素多孔質成形
体正極である。なお、上記正極4の下部および上部には
セパレータ3と同じガラス繊維不織布からなる底部絶縁
材1)および上部絶縁材12が配置されている。
In FIG. 1, l is a stainless steel battery case that also serves as a negative electrode terminal, 2 is a negative electrode made of lithium metal, 3 is a separator made of glass fiber nonwoven fabric, and 4 is a battery case facing the negative electrode 2 with a separator 3 in between. This is a carbon porous molded positive electrode. Note that a bottom insulating material 1) and an upper insulating material 12 made of the same glass fiber nonwoven fabric as the separator 3 are disposed below and above the positive electrode 4.

上記正極4は、揮発性物質が少な(、黒鉛化度が大きく
、かつ大きな鎖状構造を有するカーボンブランク(セデ
マ社製、商品名:エンサグリ・スーパーS、揮発性物質
含有量0.15重量%、CuKα線によるX線回折で回
折角26.9°付近の炭素(002)の半価幅が4.9
°、アブソープションスティフネス値が35cd/ 5
 g ) 90重量%と黒鉛10重量%の混合物100
重量部に対し、ポリテトラフルオロエチレンの水分散体
(固形分60重量%)20重量部、メチルアルコール1
20M量部および水250重量部を加えて、回転速度3
40rpmのリボン式混練機で5分間混練し、その混練
物を油圧式の押出成形機で直径101II1)の円柱状
に成形し、切断したのち、乾燥して水、メチルアルコー
ルなどの揮発性成分を除去することによって作製したも
のである。
The positive electrode 4 is made of a carbon blank (manufactured by Sedema, trade name: Ensagri Super S, volatile substance content: 0.15 wt% , the half width of carbon (002) around the diffraction angle of 26.9° is 4.9 in X-ray diffraction using CuKα rays.
°, absorption stiffness value is 35cd/5
g) Mixture of 90% by weight and 10% by weight of graphite 100
20 parts by weight of an aqueous dispersion of polytetrafluoroethylene (solid content 60% by weight), 1 part by weight of methyl alcohol
Add 20M parts and 250 parts by weight of water, and rotate at a rotation speed of 3.
Knead for 5 minutes with a ribbon kneader at 40 rpm, then form the kneaded product into a cylinder with a diameter of 101II1) with a hydraulic extruder, cut it, and dry it to remove volatile components such as water and methyl alcohol. It was created by removing the

図中の5は電池蓋であり、この電池蓋5はステンレス鋼
で形成され、外周部は前記電池ケース1の開口端部と溶
接によって接合されている。そして電池蓋5の中央部に
はガラスシール6を介して正極端子7が設けられている
。この正極端子7は、電池蓋5にガラスシール6を介し
てあらかじめ取り付けておいたステンレス鋼製のバイブ
8から電池内に電解液を注入したのち、該バイブ8にス
テンレス鋼製の正極集電棒9を挿入し、バイブ8の上端
部と正極1)?i棒9の上端部とを溶接することによっ
て形成されたものである。10は電解液で、この電解液
10は塩化チオニルに支持電解質としてリチウムテトラ
クロロアルミネート(LtAIC14)を1.2 mo
l/ j2熔解させたものである。そして、この電池に
おいては、塩化チオニルは上記のように電解液の溶媒で
あると共に、正極活物質でもある。
Reference numeral 5 in the figure denotes a battery cover, which is made of stainless steel, and its outer periphery is joined to the open end of the battery case 1 by welding. A positive electrode terminal 7 is provided in the center of the battery lid 5 with a glass seal 6 interposed therebetween. This positive electrode terminal 7 is connected to a stainless steel positive electrode current collector rod 9 after injecting electrolyte into the battery from a stainless steel vibrator 8 that has been previously attached to the battery lid 5 via a glass seal 6. Insert the upper end of the vibrator 8 and the positive electrode 1)? It is formed by welding the upper end of the i-rod 9. 10 is an electrolytic solution, and this electrolytic solution 10 contains 1.2 mo of lithium tetrachloroaluminate (LtAIC14) as a supporting electrolyte in thionyl chloride.
l/j2 was melted. In this battery, thionyl chloride is not only the solvent of the electrolytic solution as described above, but also the positive electrode active material.

上記実施例の電池を電池Aとし、正極に通常のアセチレ
ンブラックを用いたほかは前記実施例と同様に構成した
ff13形の塩化チオニル−リチウム電池を電池Bとし
、両電池を60℃で50日間貯藏した後、20℃、30
0Ωで連続放電させたときの放電特性を調べた。その結
果を第2図に示す。なお、電池Bの正極作製に際する混
練物開裂のための混練機、回転速度、混練時間はいずれ
も電池Aの場合と同じである。
The battery of the above example was designated as battery A, and the FF13 type lithium thionyl chloride battery constructed in the same manner as in the above example except that ordinary acetylene black was used for the positive electrode was designated as battery B. Both batteries were stored at 60°C for 50 days. After storage, 20℃, 30
The discharge characteristics when continuously discharged at 0Ω were investigated. The results are shown in FIG. In addition, the kneader, rotation speed, and kneading time for cleaving the kneaded material during the production of the positive electrode of battery B were all the same as in the case of battery A.

第2図に示すように、実施例の電池人は放電時間が従来
電池Bに比べて長く、しかも放電電圧が高く、かつ安定
していた。これは実施例の電池Aの正極作製に用いられ
たエンサグリ・スーパーSが従来電池Bの正極作製に用
いられたアセチレンブラックより大きな鎮状構造を有す
るため、実施例の電池Aの正極が従来電池Bの正極より
電子伝導性が優れていたためであると考えられる。
As shown in FIG. 2, the battery of Example had a longer discharge time than conventional battery B, and the discharge voltage was higher and more stable. This is because Ensagri Super S, which was used to fabricate the positive electrode of Battery A in the example, has a larger slag structure than the acetylene black used in the fabrication of the positive electrode in conventional battery B. This is thought to be because the electron conductivity was better than that of the B positive electrode.

なお、上記実施例では正極4に円柱状のものを角いたが
、本発明はこの場合のみに限られるものではなく、前記
特定のカーボンブランクを主成分とする配合剤を金属集
電体に塗布圧着して作製した帯状の炭素多孔質成形体を
渦巻状にして正極に用いる場合にも同様の効果かえられ
る。
In the above embodiment, the positive electrode 4 was made of a cylindrical shape, but the present invention is not limited to this case, and a metal current collector may be coated with a compound containing the above-mentioned specific carbon blank as a main component. A similar effect can be obtained when a band-shaped porous carbon body produced by pressure bonding is made into a spiral shape and used as a positive electrode.

マタ・塩化チオニルに代えて塩化スルフリル、塩化ホス
ホリルを用いても同様の効果が得られ、リチウムに代え
てナトリウムを用いても同様の効果が得られる。
A similar effect can be obtained by using sulfuryl chloride or phosphoryl chloride in place of thionyl chloride, and a similar effect can be obtained by using sodium in place of lithium.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、揮発性物質が0.2
重量%以下で、CuKα線によるX線回折で回折角26
.9°付近の炭素(002)の半価幅が4.9゛であり
、かつアブソープションスティフネス値が33cd15
g〜40cd15gという、揮発性物質が少なく、黒鉛
化度が大きく、かつ大きな鎖状構造を有するカーボンブ
ラックを主成分とする配合剤で炭素多孔質成形体正極を
作製することによって、正極の電子伝導性を高めて放電
容量を向上させることができた。
As explained above, in the present invention, the volatile substance is 0.2
Weight% or less, the diffraction angle is 26 by X-ray diffraction using CuKα rays.
.. The half width of carbon (002) near 9° is 4.9°, and the absorption stiffness value is 33cd15
By producing a carbon porous molded positive electrode with a carbon porous molded positive electrode containing carbon black as a main component, which has a small amount of volatile substances, a high degree of graphitization, and a large chain structure, the electron conductivity of the positive electrode is improved. It was possible to improve discharge capacity by increasing performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の無機非水電解液電池の一実施例を示す
断面図であり、第2図は本発明の電池Aと従来電池Bの
放電特性図である。第3図は本発明で用いるカーボンブ
ラックとアセチレンブラックをボールミルで粉砕したと
きの粉砕時間とアブソーブションスティフネス値との関
係を示す図である。 2・・・負極、 3・・・セパレータ、 4・・・炭素
多孔質成形体正極、 10・・・電解液 放電特開(h)
FIG. 1 is a sectional view showing an embodiment of an inorganic non-aqueous electrolyte battery of the present invention, and FIG. 2 is a discharge characteristic diagram of a battery A of the present invention and a conventional battery B. FIG. 3 is a diagram showing the relationship between the pulverization time and absorption stiffness value when carbon black and acetylene black used in the present invention are pulverized using a ball mill. 2... Negative electrode, 3... Separator, 4... Carbon porous molded body positive electrode, 10... Electrolyte discharge patent publication (h)

Claims (1)

【特許請求の範囲】[Claims] (1)オキシハロゲン化物を電解液の溶媒および正極活
物質とし、アルカリ金属からなる負極に対してセパレー
タを介して対向させた炭素多孔質成形体正極を備えた無
機非水電解液電池において、上記炭素多孔質成形体正極
を、揮発性物質が0.2重量%以下で、CuKα線によ
るX線回折で回折角26.9°付近の炭素(002)の
半価幅が4.9°であり、アブソープションスティフネ
ス(Absorption Stiffiness)値
が33cm^3/5g〜40cm^3/5gの鎖状構造
を有するカーボンブラックを主成分とする配合剤で作製
したことを特徴とする無機非水電解液電池。
(1) In an inorganic non-aqueous electrolyte battery equipped with a carbon porous molded positive electrode in which an oxyhalide is used as an electrolyte solvent and a positive electrode active material and is opposed to a negative electrode made of an alkali metal with a separator interposed therebetween, the above-mentioned The carbon porous molded positive electrode has a volatile substance content of 0.2% by weight or less, and the half width of carbon (002) at a diffraction angle of around 26.9° is 4.9° in X-ray diffraction using CuKα rays. , an inorganic non-aqueous electrolyte prepared from a compound mainly composed of carbon black having a chain structure with an absorption stiffness value of 33cm^3/5g to 40cm^3/5g. battery.
JP61091026A 1986-04-19 1986-04-19 Inorganic nonaqueous electrolyte battery Pending JPS62249355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61091026A JPS62249355A (en) 1986-04-19 1986-04-19 Inorganic nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091026A JPS62249355A (en) 1986-04-19 1986-04-19 Inorganic nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS62249355A true JPS62249355A (en) 1987-10-30

Family

ID=14015013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091026A Pending JPS62249355A (en) 1986-04-19 1986-04-19 Inorganic nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS62249355A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128773A (en) * 1983-01-14 1984-07-24 Toshiba Corp Nonaqueous solvent battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128773A (en) * 1983-01-14 1984-07-24 Toshiba Corp Nonaqueous solvent battery

Similar Documents

Publication Publication Date Title
US7851086B2 (en) Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
EP0938147B1 (en) Lithium secondary battery and method of manufacturing the lithium secondary battery
EP1206806B1 (en) Anode for rechargeable lithium cell
EP1022797B1 (en) Polymer electrolyte battery and polymer electrolyte
JP2000503467A (en) Zinc anode for electrochemical cells
JP2001015164A (en) Glass-ceramic composite electrolyte and lithium secondary battery
JPH0864237A (en) Nonaqueous electrolyte battery
JP4002829B2 (en) Electrode element electrode material, method for producing the same, and electrochemical element
JP2005505904A (en) Electrochemical battery
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
US20210351398A1 (en) Solid Electrolyte-Secondary Particle Composites
JPS6166369A (en) Lithium secondary battery
JPS62249355A (en) Inorganic nonaqueous electrolyte battery
JPH0660880A (en) Lithium secondary battery
JP2004095391A (en) Battery and its manufacturing method
EP4050682A1 (en) Anode active material comprising silicon composite formed by network of conductive fibers, preparation method therefor, and lithium secondary battery comprising same
JP3469752B2 (en) Non-aqueous electrolyte battery
JPH03196467A (en) Secondary battery
JP3273569B2 (en) Lithium battery
EP4379859A1 (en) Method for controlling particle size of porous carbon material
JPS614162A (en) Lithium battery
JPH02239572A (en) Polyaniline battery
JPS62222568A (en) Manufacture of lithium battery
JPS62188175A (en) Inorganic nonaqueous electrolyte battery
JP4575040B2 (en) Glass ceramic composite electrolyte and lithium secondary battery