JPS6218728A - Manufacture of dielectric isolation substrate - Google Patents

Manufacture of dielectric isolation substrate

Info

Publication number
JPS6218728A
JPS6218728A JP15860285A JP15860285A JPS6218728A JP S6218728 A JPS6218728 A JP S6218728A JP 15860285 A JP15860285 A JP 15860285A JP 15860285 A JP15860285 A JP 15860285A JP S6218728 A JPS6218728 A JP S6218728A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
layer
islands
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15860285A
Other languages
Japanese (ja)
Inventor
Shigeru Shibata
柴田 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15860285A priority Critical patent/JPS6218728A/en
Publication of JPS6218728A publication Critical patent/JPS6218728A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a sufficient withstand voltage in a high voltage circuit and to perform the function of a buried layer in a low voltage circuit by forming single crystal islands having different depths by a dielectric film. CONSTITUTION:An Si oxide film 2 and an Si nitride film 3 are formed on an N-type Si single crystal substrate 1, the number of low voltage circuits to be formed in future are selectively opened, and an N-type high density buried layer 4 is formed. Then, a mask made of an Si oxide film 5 is formed in the hole. Then, the films 2, 3 are removed, and an N-type single crystal layer 6 is epitaxially grown. Then, the portion of the layer 6 is selectively masked, and the substrate 1 is anisotropically etched. At this time, it is etched until the mask 5 is exposed, and thick and shallow single crystal islands 11, 12 are formed. Then, an N-type buried layer 13 and an Si oxide film 14 are formed. A polycrystalline Si layer 15 is accumulated on the substrate 1, and ground to a BB line partly exposed at the layer 15 on the back surface of the substrate 1. Thus, the islands 11, 12 having different depths insulator-separated by the film 14 are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘電体分離基板の製造方法に関し、特に深さの
異なる単結晶島を混合配設した状態で多結晶シリコンに
支持させた誘電体分離基板の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a dielectric isolation substrate, and in particular to a method for manufacturing a dielectric isolation substrate, in particular, a dielectric substrate supported on polycrystalline silicon with single crystal islands having different depths arranged in a mixed manner. The present invention relates to a method for manufacturing a separation substrate.

〔従来の技術〕[Conventional technology]

従来から、多結晶シリコンによって支持されかつ互いに
絶縁された複数の単結晶島を有する誘電体分離基板が半
導体集積回路に用いられているが、この誘電体分離基板
は例えば第2図(a)〜(d)に示す方法によって形成
されている。
Conventionally, a dielectric isolation substrate having a plurality of single crystal islands supported by polycrystalline silicon and insulated from each other has been used in semiconductor integrated circuits. It is formed by the method shown in (d).

即ち、先ず同図(a)のように、例えば面方位(100
)のN型シリコン単結晶基板21をシリコン酸化膜22
で選択的にマスクし、アルカリ溶液による異方性エツチ
ングを行って単結晶島23を形成する。
That is, first, as shown in FIG.
) N-type silicon single crystal substrate 21 with silicon oxide film 22
The single-crystal islands 23 are selectively masked and anisotropic etching is performed using an alkaline solution.

次いで、前記マスクを除去した後、同図(b)のように
N型不純物をイオン注入して不純物濃度の高い単結晶島
埋込層24を形成し、かつその表面に1.0〜3.0μ
m程度の厚さのシリコン酸化膜25を絶縁分離膜として
形成する。
Next, after removing the mask, N-type impurities are ion-implanted to form a single-crystal island buried layer 24 with a high impurity concentration, as shown in FIG. 0μ
A silicon oxide film 25 having a thickness of about m is formed as an insulating isolation film.

続いて、同図(c)のように、エピタキシャル成長によ
り支持体用の多結晶シリコン層26を成長堆積させる。
Subsequently, as shown in FIG. 4C, a polycrystalline silicon layer 26 for a support is grown and deposited by epitaxial growth.

そして、多結晶シリコン層26をAA線まで研削加工し
た後、この研削面を基準として前記単結晶島24がシリ
コン酸化膜25で分離されるようにシリコン単結晶基板
21をBB線まで研削加工することにより、同図(d)
に示す誘電体分離基板20を得ることができる。
Then, after grinding the polycrystalline silicon layer 26 to the AA line, the silicon single crystal substrate 21 is ground to the BB line so that the single crystal islands 24 are separated by the silicon oxide film 25 using this ground surface as a reference. By doing so, the same figure (d)
A dielectric isolation substrate 20 shown in can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の製造方法で形成した誘電体分離基板20
は、形成される単結晶島23が全て同−深さとされてい
るため、この基板20に高電圧回路や低電圧回路を一体
的に構成する場合には、高電圧回路における耐圧を満足
させ得るように前記単結晶島23の深さを設定している
Dielectric isolation substrate 20 formed by the conventional manufacturing method described above
Since the formed single crystal islands 23 are all at the same depth, when a high voltage circuit or a low voltage circuit is integrally formed on this substrate 20, the withstand voltage in the high voltage circuit can be satisfied. The depth of the single crystal island 23 is set as follows.

このため、同−深さの単結晶島23に低電圧回路を構成
した場合には、必要以上に単結晶島の深さが大きくなり
、埋込層24までの距離も大きくなる。この結果、埋込
層24が十分にその機能を果たさなくなり、低電圧回路
の素子特性、特にコレクタ抵抗の劣化という問題が生じ
ている。
For this reason, when a low voltage circuit is constructed in the single crystal island 23 having the same depth, the depth of the single crystal island becomes larger than necessary, and the distance to the buried layer 24 also becomes large. As a result, the buried layer 24 no longer performs its function sufficiently, causing a problem of deterioration of the element characteristics of the low voltage circuit, particularly the collector resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の誘電体分離基板の製造方法は、高電圧回路と低
電圧回路の各単結晶島の深さを相違させた基板構造を得
るために、単結晶シリコン基板に選択的に不純物を導入
し、かつこの不純物導入部分をマスクした状態で少な(
とも前記基板上にシリコン単結晶層を形成するようにエ
ピタキシャル成長を行う工程と、前記マスクが露呈され
る以上に前記基板上に形成されたエピタキシャル成長層
を選択的に異方性エツチングして厚さの相違する単結晶
島を形成する工程と、これら単結晶島を形成した前記基
板上に誘電体膜及び多結晶シリコンを順次堆積する工程
と、前記基板を裏面側から研削して夫々前記誘電体膜に
よって分離された深さの異なる単結晶島を形成する工程
とを備えている。
The method for manufacturing a dielectric isolation substrate of the present invention involves selectively introducing impurities into a single crystal silicon substrate in order to obtain a substrate structure in which the depths of each single crystal island of a high voltage circuit and a low voltage circuit are different. , and with this impurity introduction part masked, a small amount (
Both include a step of performing epitaxial growth to form a silicon single crystal layer on the substrate, and a step of selectively anisotropically etching the epitaxial growth layer formed on the substrate beyond the area where the mask is exposed to increase the thickness. A step of forming different single crystal islands, a step of sequentially depositing a dielectric film and polycrystalline silicon on the substrate on which these single crystal islands have been formed, and a step of grinding the substrate from the back side to remove the dielectric film, respectively. forming single-crystal islands with different depths separated by

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(f)は本発明方法の一実施例を製造工
程順に示す断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views showing an embodiment of the method of the present invention in the order of manufacturing steps.

先ず、同図<a>のように、面方位(100)のN型シ
リコン単結晶基板1上にシリコン酸化膜2及びシリコン
窒化膜3を形成し、将来低電圧回路を構成すべき箇所に
相当する部分を選択的に開口し、この開口を通して前記
基板1にリンやひ素等のN型不純物を高濃度に導入し、
N型高濃度埋込N4を形成する。この埋込層4は、後工
程の熱処理によって押込まれ、最終的には10μm程度
の厚さにされる。
First, as shown in FIG. selectively opening a portion to be formed, and introducing an N-type impurity such as phosphorus or arsenic into the substrate 1 at a high concentration through this opening,
An N-type high concentration buried N4 is formed. This buried layer 4 is pressed in by heat treatment in a post-process, and is finally made to have a thickness of about 10 μm.

次いで、同図(b)のように、前記基板1表面を選択酸
化して前記開口部分にのみシリコン酸化膜5からなるマ
スクを形成する。そして前述したシリコン酸化膜2とシ
リコン窒化膜3を除去した後、基板1と同一濃度のN型
不純物をドープしたエピタキシャル成長を行う。このエ
ピタキシャル成長は高電圧回路に必要な数10μm程度
の厚さとし、これにより前記マスク5以外の部分にはN
型シリコン単結晶層6が成長され、前記マスク5上には
多結晶シリコン層8が成長され、これらの間には遷移領
域と呼ばれる結晶欠陥の多い単結晶層7が成長される。
Next, as shown in FIG. 2B, the surface of the substrate 1 is selectively oxidized to form a mask made of silicon oxide film 5 only in the openings. After removing the silicon oxide film 2 and silicon nitride film 3 described above, epitaxial growth is performed by doping N-type impurities at the same concentration as the substrate 1. This epitaxial growth is made to have a thickness of about several tens of micrometers, which is necessary for high voltage circuits, so that the parts other than the mask 5 are covered with N.
A type silicon single crystal layer 6 is grown, a polycrystalline silicon layer 8 is grown on the mask 5, and a single crystal layer 7 with many crystal defects called a transition region is grown between these layers.

なお、成長速度の相違により、多結晶シリコン層8は単
結晶層6よりも若干厚く形成されるが、後に研削加工す
れば図示のように均一な厚さに修正できる。
Note that due to the difference in growth rate, the polycrystalline silicon layer 8 is formed to be slightly thicker than the single crystal layer 6, but the thickness can be corrected to a uniform thickness as shown in the figure by performing a grinding process later.

次に、高電圧回路を構成すべき基板1上、即ち前記単結
晶層6上の箇所をシリコン酸化膜9等で選択的にマスク
した上で、基板1をアルカリ溶液によって異方性エツチ
ングする。これにより、同図(C)のように、十分に深
いV字状の溝10が形成され、この溝によって単結晶島
11.12が画成される。このとき、前記マスク5上で
は、このマスク5が露呈されるまでエツチングされ、そ
れ以後はエツチングの進行が停止される。これにより、
マスク5以外の部分の厚い単結晶島11と、マスク5下
のこれよりも薄い単結晶島12とに区分けされる。
Next, after selectively masking the portions on the substrate 1 where the high voltage circuit is to be constructed, that is, on the single crystal layer 6 with a silicon oxide film 9, etc., the substrate 1 is anisotropically etched with an alkaline solution. As a result, a sufficiently deep V-shaped groove 10 is formed as shown in FIG. 2C, and single crystal islands 11 and 12 are defined by this groove. At this time, etching is performed on the mask 5 until the mask 5 is exposed, and thereafter the etching process is stopped. This results in
It is divided into a thick single crystal island 11 outside the mask 5 and a thinner single crystal island 12 under the mask 5.

しかる後、同図(d)のように、全面にひ素等のN型不
純物をイオン注入してN型埋込層13を形成し、更に基
板1表面に誘電体分離膜としてのシリコン酸化膜14を
厚さ1.0〜3.0μmに形成する。そして、同図(e
)のように、基板1上にエピタキシャル成長法によって
支持体としての多結晶シリコン層15を堆積形成し、そ
の表面から図示AA線まで研削加工した後、この面を基
準にして基板1の裏面を多結晶シリコン層15の一部が
露呈される図示BB線まで研削加工する。
Thereafter, as shown in FIG. 3(d), an N-type impurity such as arsenic is ion-implanted into the entire surface to form an N-type buried layer 13, and a silicon oxide film 14 as a dielectric isolation film is further formed on the surface of the substrate 1. is formed to have a thickness of 1.0 to 3.0 μm. And the same figure (e
), a polycrystalline silicon layer 15 is deposited as a support on the substrate 1 by an epitaxial growth method, and after grinding from the surface to the line AA shown in the figure, the back surface of the substrate 1 is polished using this surface as a reference. Grinding is performed to the line BB shown in the figure where a part of the crystalline silicon layer 15 is exposed.

この結果、同図(f)のように、多結晶シリコン層15
を支持体とし、誘電体分離膜14によって互いに絶縁分
離された深さの相違する単結晶島11.12を得ること
ができる。
As a result, as shown in FIG.
Using this as a support, it is possible to obtain single crystal islands 11 and 12 having different depths, which are insulated and separated from each other by the dielectric isolation film 14.

このように形成された誘電体分離基板によれば、単結晶
島11は十分に深く構成されているため、高電圧回路に
十分な耐圧を持たせることができる。
According to the dielectric isolation substrate formed in this manner, the single crystal islands 11 are configured to be sufficiently deep, so that the high voltage circuit can have sufficient withstand voltage.

また、単結晶島12は浅く構成され、かつ高濃度で厚い
埋込N4が形成されているため、低電圧回路を構成した
ときには埋込層4の機能を十分に発揮させることができ
、素子特性の向上、特にバイポーラトランジスタのコレ
クタ抵抗の劣化を防止できる。
In addition, since the single crystal island 12 is formed shallowly and has a thick buried N4 layer with a high concentration, when a low voltage circuit is constructed, the function of the buried layer 4 can be fully demonstrated, and the device characteristics In particular, it is possible to prevent deterioration of the collector resistance of bipolar transistors.

ここで、前記実施例はN型シリコン単結晶基板を用いて
誘電体分離基板を構成しているが、P型シリコン単結晶
基板を用いることも可能であり、また面方位も前述した
以外のものを採用することもできる。バイポーラ以外の
素子を構成する場合でも良いことは勿論である。
Here, in the above embodiment, the dielectric isolation substrate is constructed using an N-type silicon single crystal substrate, but it is also possible to use a P-type silicon single crystal substrate, and the surface orientation may also be other than those described above. can also be adopted. Of course, it is also possible to configure an element other than bipolar.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、単結晶シリコン基板に選
択的に不純物を導入し、かっこの不純物導入部分をマス
クした状態で少なくとも前記基板上ニシリコン単結晶層
を形成するようにエピタキシャル成長を行い、その上で
マスクが露呈される以上に前記基板上のエピタキシャル
層を異方性エツチングして高さの相違する単結晶島を形
成し、更に基板上に誘電体膜及び多結晶シリコンを順次
堆積しかつ基板を研削して夫々前記誘電体膜によって分
離された深さの異なる単結晶島を形成しているので、深
い単結晶島内に構成した高電圧回路に十分な耐圧を持た
せ得る一方、低電圧回路を構成した浅い単結晶島の埋込
層の機能を十分に発揮させ、素子特性の改善を図ること
ができる効果がある。
As explained above, the present invention selectively introduces impurities into a single-crystal silicon substrate, performs epitaxial growth to form at least a silicon single-crystal layer on the substrate with the impurity-introduced portion in parentheses masked, and The epitaxial layer on the substrate is anisotropically etched beyond the mask exposed above to form single crystal islands having different heights, and a dielectric film and polycrystalline silicon are sequentially deposited on the substrate. Since the substrate is ground to form single-crystal islands with different depths separated by the dielectric film, the high-voltage circuit configured in the deep single-crystal islands can have sufficient withstand voltage, while the low-voltage This has the effect of fully demonstrating the function of the buried layer of the shallow single-crystal island that constitutes the circuit, and improving the device characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の製造方法を工程順に示
す断面図、第2図(a)〜(d)は従来方法を工程順に
示す断面図である。 1・・・シリコン単結晶基板、2・・・シリコン酸化膜
、3・・・シリコン窒化膜、4・・・高濃度埋込層、5
・・・シリコン酸化膜(マスク)、6・・・単結晶シリ
コン層7・・・遷移領域、8・・・多結晶シリコン層、
9・・・マス(誘電体分離膜)、15・・・多結晶シリ
コン層、21・・・シリコン単結晶基板、22・・・シ
リコン酸化膜、23・・・単結晶島、24・・・埋込層
、25・・・シリコン酸化膜、26・・・多結晶シリコ
ン層。 第1図(d) 第1図(e) 第1図(f) 】5 第2図(a)
FIGS. 1(a) to (f) are cross-sectional views showing the manufacturing method of the present invention in order of steps, and FIGS. 2(a) to (d) are cross-sectional views showing the conventional method in order of steps. DESCRIPTION OF SYMBOLS 1...Silicon single crystal substrate, 2...Silicon oxide film, 3...Silicon nitride film, 4...High concentration buried layer, 5
... silicon oxide film (mask), 6 ... single crystal silicon layer 7 ... transition region, 8 ... polycrystalline silicon layer,
9... Mass (dielectric isolation film), 15... Polycrystalline silicon layer, 21... Silicon single crystal substrate, 22... Silicon oxide film, 23... Single crystal island, 24... Buried layer, 25... silicon oxide film, 26... polycrystalline silicon layer. Figure 1 (d) Figure 1 (e) Figure 1 (f) ]5 Figure 2 (a)

Claims (1)

【特許請求の範囲】 1、単結晶シリコン基板に選択的に不純物を導入し、か
つこの不純物導入部分をマスクした状態で少なくとも前
記マスク以外の部分の前記基板上にシリコン単結晶層を
形成するようにエピタキシャル成長を行う工程と、前記
マスクが露呈される以上に前記基板上に形成されたエピ
タキシャル成長層を選択的に異方性エッチングして厚さ
の相違する単結晶島を形成する工程と、これら単結晶島
を形成した前記基板上に誘電体膜及び多結晶シリコンを
順次堆積する工程と、前記基板を裏面側から研削して夫
々前記誘電体膜によって分離された深さの異なる単結晶
島を形成する工程とを備えることを特徴とする誘電体分
離基板の製造方法。 2、マスク下に形成された単結晶島を薄く、これ以外の
箇所に形成された単結晶島を厚く形成する特許請求の範
囲第1項記載の誘電体分離基板の製造方法。
[Claims] 1. Selectively introducing impurities into a single-crystal silicon substrate, and forming a silicon single-crystal layer on at least a portion of the substrate other than the mask while masking the impurity-introduced portion. a step of performing epitaxial growth on the substrate; a step of selectively anisotropically etching the epitaxial growth layer formed on the substrate beyond the exposure of the mask to form single crystal islands having different thickness; A step of sequentially depositing a dielectric film and polycrystalline silicon on the substrate on which crystal islands have been formed, and grinding the substrate from the back side to form single crystal islands of different depths separated by the dielectric film, respectively. A method for manufacturing a dielectric isolation substrate, comprising the steps of: 2. The method of manufacturing a dielectric isolation substrate according to claim 1, wherein the single crystal islands formed under the mask are made thin, and the single crystal islands formed at other locations are made thick.
JP15860285A 1985-07-17 1985-07-17 Manufacture of dielectric isolation substrate Pending JPS6218728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15860285A JPS6218728A (en) 1985-07-17 1985-07-17 Manufacture of dielectric isolation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15860285A JPS6218728A (en) 1985-07-17 1985-07-17 Manufacture of dielectric isolation substrate

Publications (1)

Publication Number Publication Date
JPS6218728A true JPS6218728A (en) 1987-01-27

Family

ID=15675282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15860285A Pending JPS6218728A (en) 1985-07-17 1985-07-17 Manufacture of dielectric isolation substrate

Country Status (1)

Country Link
JP (1) JPS6218728A (en)

Similar Documents

Publication Publication Date Title
US4997775A (en) Method for forming a complementary bipolar transistor structure including a self-aligned vertical PNP transistor
JPH06168952A (en) Semiconductor device and its manufacture
KR890003382B1 (en) Manufacturing method of dielectronic isolation complementary ic.
EP0051534A2 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
JPH0669431A (en) Method for manufacture of bipolar transistor and cmos transistor on soi substrate and these transistors
CA1154543A (en) Mesh gate v-mos power fet
KR890003146B1 (en) Manufacture of semiconductor device
JPH0582441A (en) Silicon carbide bipolar semiconductor device and its manufacture
JPS6218728A (en) Manufacture of dielectric isolation substrate
US5789793A (en) Dielectrically isolated well structures
JPS61289642A (en) Manufacture of semiconductor integrated circuit device
JPS5828731B2 (en) All silicon materials available.
JP2763105B2 (en) Method for manufacturing semiconductor device
JPS5957450A (en) Isolating method for element of semiconductor device
KR930009124B1 (en) Method of fabricating semiconductor device
JPS6025247A (en) Manufacture of semiconductor device
JPS59165435A (en) Manufacture of semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPS5911642A (en) Semiconductor integrated circuit device and manufacture thereof
JPH06232356A (en) Manufacture of semiconductor device
JPH05343416A (en) Manufacture of semiconductor device
JPS62247539A (en) Manufacture of semiconductor device
JPS60117764A (en) Semiconductor device
JPH036039A (en) Dielectric isolation substrate and its manufacture
JPS61248474A (en) Manufacture of semiconductor integrated circuit device