JPS62185377A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS62185377A
JPS62185377A JP2860186A JP2860186A JPS62185377A JP S62185377 A JPS62185377 A JP S62185377A JP 2860186 A JP2860186 A JP 2860186A JP 2860186 A JP2860186 A JP 2860186A JP S62185377 A JPS62185377 A JP S62185377A
Authority
JP
Japan
Prior art keywords
layer
gate electrode
forming
type impurity
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2860186A
Other languages
Japanese (ja)
Inventor
Tatsuo Tokue
徳江 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2860186A priority Critical patent/JPS62185377A/en
Publication of JPS62185377A publication Critical patent/JPS62185377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain an FET which improves a gate withstanding voltage by forming N<+> type layers for source/drain by twice with respect to a gate elec trode in a self-alignment. CONSTITUTION:An N-type active layer 2 is formed by ion implanting on a semi-insulating GaAs substrate 1, and a gate electrode 3 of refractory metal such as TiW is formed. It is covered with a CVD-SiO2 film 4A of approx. 150Angstrom thick, and ion implanted to form N<+> type source/drain layer 5A. It is again covered with a CVD-SiO2 film 4B, films 4B, 4A are allowed to remain on the side of the electrode 3 by RIE, and ion implanted to form an N<+> type layer 5B on the electrode 3 in a self-alignment. Source/drain electrodes are attached by heat treating to complete a transistor. Since the impurity density of the layer 5A is lower than that of the layer 5B, a gate withstanding voltage is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a field effect transistor.

〔従来の技術〕[Conventional technology]

砒化ガリウムを半導体材料とする電界効果トランジスタ
(以下GaAs −F E Tと記す)では、近年、よ
り高性能化、高均一化を目指し、種々のデバイス構造、
製造方法が提案されている。それらは、主に集積回路用
素子として検討されているが、その中でイオン注入技術
と耐熱ゲート金属を用いる製造方法も重要な技術である
Field-effect transistors (hereinafter referred to as GaAs-FET) that use gallium arsenide as a semiconductor material have recently been developed with various device structures, with the aim of achieving higher performance and higher uniformity.
A manufacturing method is proposed. They are mainly being considered as elements for integrated circuits, and among them, ion implantation technology and manufacturing methods using heat-resistant gate metals are also important technologies.

第2図は従来の電界効果l・ランジスタの製造方法を説
明する為の工程順に示した半導体チップの断面図である
FIG. 2 is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining a conventional method of manufacturing a field effect transistor.

まず、第2図(a>に示すように、半絶縁性GaAs基
板1上にn型不純物をイオン注入して活性層2を形成す
る。次に第2図(b)に示すように、全面に1’iW、
Wsi等を被着した後バターニングしゲ−I−電極3を
形成す°る9次に第2図(c)に示すように、ゲート電
極3をマスクとしてn型不純物をイオン注入し、ソース
・ドレイ〉・電極となるn′型不純物層5を形成する。
First, as shown in FIG. 2(a), an n-type impurity is ion-implanted onto a semi-insulating GaAs substrate 1 to form an active layer 2.Next, as shown in FIG. 2(b), an active layer 2 is formed on the entire surface. 1'iW,
After depositing Wsi, etc., the gate electrode 3 is formed by patterning.Next, as shown in FIG. - Dray> - Form an n'-type impurity layer 5 that will become an electrode.

このn+型不純物層5はデー1−電極3と自己整合で形
成されたものとなる。
This n+ type impurity layer 5 is formed in self-alignment with the D1- electrode 3.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

上述した6t=来のGaAs −F F、 Tの製造方
法は、工程が簡略であり、かつソース抵抗の低減等、非
常に有効な製造方法である。しかし、最大の欠点として
、ソース・ドレイン領域とゲート電[i3が非常に接近
し、ている為、ゲート耐圧が小さくなるという問題点が
ある。
The above-mentioned method for manufacturing GaAs-F F, T is a very effective manufacturing method that has simple steps and can reduce source resistance. However, the biggest drawback is that the source/drain region and the gate electrode [i3 are very close to each other, resulting in a low gate breakdown voltage.

通常1.L述の製造方法では、ゲート耐圧は5〜6■程
度しか得られない、この為、ゲート耐圧、及びソース・
ドレイン耐圧が要求されないデバイスでは、この製造方
法は優れているが、高電力用FETの様に、耐圧が少な
くとも15〜20V程度が要求される場合には、この製
造方法は使用できない。
Usually 1. With the manufacturing method described in L, the gate breakdown voltage is only about 5 to 6 cm. Therefore, the gate breakdown voltage and the source
Although this manufacturing method is excellent for devices that do not require a drain breakdown voltage, this manufacturing method cannot be used for devices that require a breakdown voltage of at least 15 to 20 V, such as high-power FETs.

本発明の目的はゲート耐圧の向上した電界効果トランジ
スタの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a field effect transistor with improved gate breakdown voltage.

r問題点を解決するための手段〕 本発明の電界効果トランジスタの製造方法は、表面にn
型活性層が形成された半絶縁性半導体λふ板上にゲート
電極を形成する工程と、前記デー1〜電極を含む全面に
第1の絶縁膜を形成1−た浚このデー1〜電極をマスク
としn型不純物をイオン注入して前記活性層を含む半導
体基板上に第1のn゛型不純物層を形成する工程と、前
記第1の絶縁膜上に第2の絶縁膜を形成した後置方性エ
ツチンク法により前記ゲート電極の側面にのみ第1及び
第2の絶縁膜を残す工程と、前記ゲート電極とその側面
の第1及び第2の絶縁膜をマスクとしn型不純物をイオ
ン注入して前記活性層を含む半導体基板上に第2のn+
型不純物層を形成する工程とを陰んで構成される。
Means for Solving Problems] The method for manufacturing a field effect transistor of the present invention provides
A step of forming a gate electrode on the semi-insulating semiconductor lambda plate on which a type active layer is formed, and forming a first insulating film on the entire surface including the electrode. forming a first n-type impurity layer on the semiconductor substrate including the active layer by ion-implanting n-type impurities using a mask, and forming a second insulating film on the first insulating film; A step of leaving first and second insulating films only on the side surfaces of the gate electrode by a positional etching method, and ion implantation of n-type impurities using the gate electrode and the first and second insulating films on the side surfaces as masks. and deposit a second n+ layer on the semiconductor substrate including the active layer.
It is constructed in conjunction with the step of forming a type impurity layer.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を用いて詳細に説明
する。
Next, embodiments of the present invention will be described in detail using the drawings.

第1図(a)〜(d)は本発明の一実施例を説明する為
の工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining one embodiment of the present invention.

まず第1図(a)に示すように、半絶縁性GaAs基板
1上にn型不純物をイオン注入し選択的に活性層2を形
成する。続いて、TiW、WSi等の耐熱性金属を被着
したのちパターニングしゲート電極3を形成する。
First, as shown in FIG. 1(a), an n-type impurity is ion-implanted onto a semi-insulating GaAs substrate 1 to selectively form an active layer 2. As shown in FIG. Subsequently, a heat-resistant metal such as TiW or WSi is deposited and patterned to form the gate electrode 3.

次に、第1図(b)に示すように、厚さ1500人程度
のCVD法による5i02膜からなる第1の絶縁膜4A
を全面に形成する。続いてn型不$4物をイオン注入し
、ソース・ドレイン領域となる第1のn+型不純物層5
Aを形成する。この場合ゲ−?−電極3がマスクとなり
、n+型不純物層5Aは、ゲート電極3に対し自己整合
で形成される。
Next, as shown in FIG. 1(b), a first insulating film 4A made of a 5i02 film formed by CVD and having a thickness of about 1,500 layers is formed.
is formed on the entire surface. Next, an n-type impurity layer 5 is ion-implanted to form a first n+-type impurity layer 5 that will become the source/drain region.
Form A. In this case, game? The -electrode 3 serves as a mask, and the n+ type impurity layer 5A is formed in self-alignment with the gate electrode 3.

次に、第1図(c)に示すように、CV D法等による
SiO□膜からなる第2の絶縁膜4Bを形成した後、反
応性イオンエツチング法により異方性工・ソチングを行
ない第1.第2の絶縁膜を除去する。
Next, as shown in FIG. 1(c), after forming a second insulating film 4B made of a SiO□ film by CVD method or the like, anisotropic etching/soching is performed by reactive ion etching method to form a second insulating film 4B. 1. The second insulating film is removed.

この時、デー1〜電極3の側面には第1及び第2の絶縁
膜4A、4Bが残る。この状態でn型不純物のイオン注
入を行ない第2のn+型不純物/fi5Bを形成する。
At this time, the first and second insulating films 4A and 4B remain on the side surfaces of the electrodes 1 to 3. In this state, n-type impurity ions are implanted to form a second n+-type impurity /fi5B.

この場合も第2のn+型不14物層5Bはゲート電極3
に対し自己整合で形成される。
In this case as well, the second n+ type impurity layer 5B is the gate electrode 3.
is formed by self-alignment.

この後、熱処理を行ないソース・ドレインのオーミック
電極、配線電極等を形成し電界効果トランジスタを完成
させる。
Thereafter, heat treatment is performed to form source/drain ohmic electrodes, wiring electrodes, etc., thereby completing the field effect transistor.

このようにして形成された電界効果トランジスタにおい
ては、ゲート電極3に近接する第1のn+型不純物層5
Aの不純物濃度が、第2のn゛型不純物層5Bの濃度よ
り低くなる為、ゲート耐圧は向上したものとなる。
In the field effect transistor formed in this way, the first n+ type impurity layer 5 adjacent to the gate electrode 3
Since the impurity concentration of A is lower than the concentration of the second n-type impurity layer 5B, the gate breakdown voltage is improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ソース・ドレイン領域と
なるn゛型不純物層をゲート電極に対し自己整合で′2
回に分けて形成することにより、ゲート耐圧の向上した
電界効果I・ランジスタが得られるという効果がある。
As explained above, in the present invention, the n-type impurity layer, which becomes the source/drain region, is self-aligned with the gate electrode.
By forming the layers in multiple steps, there is an effect that a field effect I transistor with improved gate breakdown voltage can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を説明する2
)の五程IIIαに示した半導体チップの断面図、第2
図(a)〜(c )は従来の電界効果トランジスタの製
造方法を説明する為の工程j;偵に示した半導体チップ
の断面図である。 1・・半絶縁性GaAs基板、2・・・活性層、3・・
・ゲート電極、=l A・・・第1の絶縁膜、4B・・
・第2の絶縁膜、5・・・n+型不純物層、5A・・・
第1のn+型不純物層、5B・・・第2のn+型不純物
層。 第f図
FIGS. 1(a) to 1(d) illustrate an embodiment of the present invention.
), sectional view of the semiconductor chip shown in Section 5 IIIα, 2nd
Figures (a) to (c) are cross-sectional views of a semiconductor chip shown in step J for explaining a conventional method of manufacturing a field effect transistor. 1... Semi-insulating GaAs substrate, 2... Active layer, 3...
・Gate electrode, =l A...first insulating film, 4B...
-Second insulating film, 5...n+ type impurity layer, 5A...
First n+ type impurity layer, 5B... second n+ type impurity layer. Figure f

Claims (1)

【特許請求の範囲】[Claims] 表面にn型活性層が形成された半絶縁性半導体基板上に
ゲート電極を形成する工程と、前記ゲート電極を含む全
面に第1の絶縁膜を形成した後該ゲート電極をマスクと
しn型不純物をイオン注入して前記活性層を含む半導体
基板上に第1のn^+型不純物層を形成する工程と、前
記第1の絶縁膜上に第2の絶縁膜を形成した後異方性エ
ッチング法により前記ゲート電極の側面にのみ第1及び
第2の絶縁膜を残す工程と、前記ゲート電極とその側面
の第1及び第2の絶縁膜をマスクとしn型不純物をイオ
ン注入して前記活性層を含む半導体基板上に第2のn^
+型不純物層を形成する工程とを含む事を特徴とする電
界効果トランジスタの製造方法。
A step of forming a gate electrode on a semi-insulating semiconductor substrate with an n-type active layer formed on the surface, and after forming a first insulating film on the entire surface including the gate electrode, using the gate electrode as a mask, n-type impurity is added. forming a first n^+ type impurity layer on the semiconductor substrate including the active layer by ion-implanting; and anisotropic etching after forming a second insulating film on the first insulating film. a step of leaving first and second insulating films only on the side surfaces of the gate electrode by a method; and a step of ion-implanting n-type impurities using the gate electrode and the first and second insulating films on the side surfaces as masks to remove the active material. A second n^ on a semiconductor substrate containing a layer
1. A method for manufacturing a field effect transistor, comprising the step of forming a +-type impurity layer.
JP2860186A 1986-02-10 1986-02-10 Manufacture of field effect transistor Pending JPS62185377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2860186A JPS62185377A (en) 1986-02-10 1986-02-10 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2860186A JPS62185377A (en) 1986-02-10 1986-02-10 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS62185377A true JPS62185377A (en) 1987-08-13

Family

ID=12253106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2860186A Pending JPS62185377A (en) 1986-02-10 1986-02-10 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS62185377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202869A (en) * 1988-02-08 1989-08-15 Sumitomo Electric Ind Ltd Manufacture of field-effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202869A (en) * 1988-02-08 1989-08-15 Sumitomo Electric Ind Ltd Manufacture of field-effect transistor

Similar Documents

Publication Publication Date Title
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
JPH0393271A (en) Mos-type semiconductor device
US4700455A (en) Method of fabricating Schottky gate-type GaAs field effect transistor
JPS62185377A (en) Manufacture of field effect transistor
JPS61187277A (en) Manufacture of field-effect transistor
JPS6225457A (en) Manufacture of vertical semiconductor device
JPS63227059A (en) Semiconductor device and manufacture thereof
JPS6112079A (en) Manufacture of semiconductor element
JP2003115585A (en) Method for manufacturing semiconductor device
JPH0513458A (en) Manufacture of semiconductor device
JPS6155967A (en) Manufacture of field-effect transistor
JPS6086871A (en) Manufacture of field effect transistor
JPH01161873A (en) Manufacture of semiconductor device
JPS6070772A (en) Manufacture of field-effect transistor
JPH0571191B2 (en)
JPH0439773B2 (en)
JPH01283964A (en) Manufacture of semiconductor device
JPS6237971A (en) Manufacture of schottky barrier gate type field effect transistor
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPS59195874A (en) Manufacture of field-effect transistor
JPH06260510A (en) Field effect transistor and its manufacturing method
JP2003163225A (en) Semiconductor device and manufacturing method therefor
JPS61265870A (en) Manufacture of field effect transistor
JPS63217670A (en) Manufacture of compound semiconductor element
JPH0281439A (en) Manufacture of semiconductor device