JPS6218485B2 - - Google Patents
Info
- Publication number
- JPS6218485B2 JPS6218485B2 JP54008279A JP827979A JPS6218485B2 JP S6218485 B2 JPS6218485 B2 JP S6218485B2 JP 54008279 A JP54008279 A JP 54008279A JP 827979 A JP827979 A JP 827979A JP S6218485 B2 JPS6218485 B2 JP S6218485B2
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- denitrification
- heating
- solution
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000011261 inert gas Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 4
- ZQPKENGPMDNVKK-UHFFFAOYSA-N nitric acid;plutonium Chemical compound [Pu].O[N+]([O-])=O ZQPKENGPMDNVKK-UHFFFAOYSA-N 0.000 claims description 2
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 claims description 2
- UTDLAEPMVCFGRJ-UHFFFAOYSA-N plutonium dihydrate Chemical compound O.O.[Pu] UTDLAEPMVCFGRJ-UHFFFAOYSA-N 0.000 claims description 2
- FLDALJIYKQCYHH-UHFFFAOYSA-N plutonium(IV) oxide Inorganic materials [O-2].[O-2].[Pu+4] FLDALJIYKQCYHH-UHFFFAOYSA-N 0.000 claims description 2
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910002007 uranyl nitrate Inorganic materials 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- RWFBQHICRCUQJJ-NUHJPDEHSA-N (S)-nicotine N(1')-oxide Chemical compound C[N+]1([O-])CCC[C@H]1C1=CC=CN=C1 RWFBQHICRCUQJJ-NUHJPDEHSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 235000021463 dry cake Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】
本発明は、硝酸ウラニルもしくは硝酸プルトニ
ウムまたはこれらの混合物の溶液から、原子炉燃
料製造用の二酸化ウランもしくは二酸化プルトニ
ウムまたはこれらの混合物の粉末を得るプロセス
の中の脱硝プロセスに関するもので上述溶液にマ
イクロ波を印加し内部加熱する事により溶液を蒸
発、濃縮および乾固し更に昇温させて脱硝反応を
生起せしめるマイクロ波加熱脱硝装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a denitrification process in the process of obtaining powder of uranium dioxide or plutonium dioxide or a mixture thereof for the production of nuclear reactor fuel from a solution of uranyl nitrate or plutonium nitrate or a mixture thereof. This invention relates to a microwave heating denitrification device that evaporates, concentrates, and dries the solution by applying microwaves to the solution and internally heating it, and then raises the temperature to cause a denitrification reaction.
従来マイクロ波加熱脱硝装置の加熱装置内雰囲
気は、空気雰囲気となつており、被加熱物の脱硝
プロセス中に被加熱物の局部加熱により局部的に
発火し、燃料製造用の原料として不適な燃焼生成
物ができる。 Conventionally, the atmosphere inside the heating device of microwave heating denitrification equipment is an air atmosphere, and during the denitrification process of the heated object, local heating of the heated object causes local ignition, resulting in combustion that is unsuitable as a raw material for fuel production. A product is formed.
即ち脱硝工程の実施例より得られた被加熱物の
反応カーブを第1図に示すが、マイクロ波の印加
を同時に、原料溶液が昇温し100〜120℃(A点)
で溶液が沸騰を生じ、溶液は濃縮され液深を低下
してやがて硝酸塩の析出が始まり次いで硝酸塩ケ
−クの乾燥の伴い(B点)被加熱物温度が急上昇
していく。350〜400℃(C点)に達すると脱硝反
応が進行し脱硝生成物の乾燥ケークが得られる。
更にマイクロ波印加を続けると、更に温度上昇が
生じ、約800℃程度で発火する。発火した燃焼後
の乾固物は、燃料製造用の原料としては不適なた
めこの発火は極力さける必要がある。また、従
来、マイクロ波により加熱装置内ではマイクロ波
の電界密度が平面的に均一でなく、局部的に高い
箇所が必ず生じ、その為局部的に過加熱の現象が
あり、全体的に400℃前後で脱硝プロセスが行な
われていても局部的に800℃以上となり発火が生
ずる事があり前述と同様に燃焼生成物が出来る。 That is, the reaction curve of the heated material obtained in the example of the denitrification process is shown in Figure 1. Simultaneously with the application of microwaves, the temperature of the raw material solution rises to 100 to 120°C (point A).
The solution boils, the solution is concentrated, the depth of the solution decreases, and soon nitrates begin to precipitate, and as the nitrate cake dries (point B), the temperature of the object to be heated rises rapidly. When the temperature reaches 350 to 400°C (point C), the denitrification reaction proceeds and a dry cake of the denitrification product is obtained.
If microwave application is continued, the temperature will further rise, and ignition will occur at approximately 800°C. The ignited dry matter after combustion is unsuitable as a raw material for fuel production, so ignition must be avoided as much as possible. In addition, conventionally, the electric field density of the microwave in the heating device was not uniform across the plane, and there were always areas where the electric field was high, resulting in local overheating, resulting in an overall temperature of 400°C. Even if the denitrification process is carried out before and after, the temperature may locally reach 800°C or higher and ignition may occur, producing combustion products as described above.
本発明は以上の事情の鑑みてなされたもので加
熱装置内雰囲気を窒素ガスまたはアルゴンガス等
の不活性ガス雰囲気として発火を防止し得るマイ
クロ波加熱脱硝装置を得ることを目的としてい
る。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a microwave heating denitrification device that can prevent ignition by creating an atmosphere inside the heating device of an inert gas atmosphere such as nitrogen gas or argon gas.
以下図面を参照して、本発明の一実施例を説明
する。 An embodiment of the present invention will be described below with reference to the drawings.
第2図は、本発明の脱硝装置縦断面図である。
図からわかる様に、脱硝装置の加熱装置のマイク
ロ波照射空間は、加熱装置の容器1と上、下駆動
部及び回転するターンテーブル3により形成され
る。被加熱物である源液5は、加熱装置内もしく
は外部で予め受皿7に満たされターンテーブル3
上にセツトされる。一方マイクロ波はマイクロ波
発振機で出力制御され導波管4を通じて、容器1
の天井部に設けられた開口部より被加熱物5に照
射される。加熱時に発生する蒸気、ガスは容器1
上部に取つけられている配管6により接続されて
いるオスガス処理系により吸引される一方容器1
の横方向に取付けられている配管8に接続されて
いる不活性ガス供給源より不活性ガスが送り込ま
れる。 FIG. 2 is a longitudinal sectional view of the denitrification device of the present invention.
As can be seen from the figure, the microwave irradiation space of the heating device of the denitrification device is formed by the container 1 of the heating device, the upper and lower drive parts, and the rotating turntable 3. The source liquid 5, which is the object to be heated, is filled in a saucer 7 in advance inside or outside the heating device and placed on the turntable 3.
set above. On the other hand, the output of the microwave is controlled by a microwave oscillator, and the microwave is transmitted to the container 1 through the waveguide 4.
The object to be heated 5 is irradiated with light from an opening provided in the ceiling. Steam and gas generated during heating are stored in container 1.
The container 1 is sucked by a male gas treatment system connected by a pipe 6 attached to the upper part.
Inert gas is fed from an inert gas supply source connected to piping 8 installed laterally.
マイクロ波照射空間はターンテーブル3底部と
容器1の下部でシールされており外界としや断さ
れているため不活性ガス及び反応生成ガス、蒸気
の雰囲気となる。 The microwave irradiation space is sealed at the bottom of the turntable 3 and the bottom of the container 1 and is insulated from the outside world, resulting in an atmosphere of inert gas, reaction product gas, and steam.
本発明の装置では、加熱装置内の雰囲気は不活
性ガス、NOX、硝酸、水蒸気の雰囲気となり、
被加熱物の高温での発火現象は生じない。従つて
局部的な発火により燃料製造用粉末に不適な燃焼
生成物の生成を防ぐ事が出来ると共に、装置運転
上、マイクロ波加熱脱硝装置の運転終了の温度を
従来は400℃前後に設定していたが、更に高温設
定することが可能となり充分に脱硝反応を起させ
ることができる。 In the device of the present invention, the atmosphere inside the heating device is an atmosphere of inert gas, NOX, nitric acid, and water vapor,
No ignition phenomenon occurs at high temperatures of the heated object. Therefore, it is possible to prevent the production of combustion products unsuitable for fuel production powder due to local ignition, and in terms of equipment operation, the temperature at which microwave heating denitration equipment ends is conventionally set at around 400°C. However, it becomes possible to set an even higher temperature, so that a sufficient denitrification reaction can occur.
第1図は脱硝工程の反応カーブを示す説明図、
第2図は本発明の一実施例を示す縦断面図であ
る。
1……容器、3……ターンテーブル、4……導
波管、5……原液、6……排ガス管、7……受
皿、8……不活性ガス供給管。
Figure 1 is an explanatory diagram showing the reaction curve of the denitrification process;
FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention. 1... Container, 3... Turntable, 4... Waveguide, 5... Stock solution, 6... Exhaust gas pipe, 7... Saucer, 8... Inert gas supply pipe.
Claims (1)
はこれらの混合物の溶液から二酸化ウランもしく
は二酸化プルトニウムまたはこれらの混合物の乾
固物をマイクロ波照射により生成するマイクロ波
加熱脱硝装置において、マイクロ波照射空間が不
活性ガス雰囲気であることを特徴とするマイクロ
波加熱脱硝装置。1. In a microwave heating denitrification device that generates a dried product of uranium dioxide, plutonium dioxide, or a mixture thereof from a solution of uranyl nitrate, plutonium nitrate, or a mixture thereof by microwave irradiation, the microwave irradiation space is in an inert gas atmosphere. A microwave heating denitrification device characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP827979A JPS55104926A (en) | 1979-01-29 | 1979-01-29 | Microwave heat-denitrating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP827979A JPS55104926A (en) | 1979-01-29 | 1979-01-29 | Microwave heat-denitrating apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55104926A JPS55104926A (en) | 1980-08-11 |
JPS6218485B2 true JPS6218485B2 (en) | 1987-04-23 |
Family
ID=11688735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP827979A Granted JPS55104926A (en) | 1979-01-29 | 1979-01-29 | Microwave heat-denitrating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55104926A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5924738B2 (en) * | 1980-12-16 | 1984-06-12 | 株式会社東芝 | Nuclear fuel conversion device |
JPS5930652B2 (en) * | 1981-04-16 | 1984-07-28 | 株式会社東芝 | Microwave heating denitrification equipment |
NL8203357A (en) * | 1981-09-11 | 1983-04-05 | Babcock & Wilcox Co | METHOD FOR PREPARING A SINTERABLE POWDER OF URANIUM DIOXIDE. |
-
1979
- 1979-01-29 JP JP827979A patent/JPS55104926A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55104926A (en) | 1980-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS57175732A (en) | Denitrating device by microwave heating | |
JPH0795111B2 (en) | Microwave heating denitration method and device | |
CN112875770A (en) | Microwave denitration device | |
JPS57104217A (en) | Surface heat treatment | |
JPS6218485B2 (en) | ||
ES477778A1 (en) | Apparatus for the thermal treatment of organic materials | |
IE791505L (en) | Fluidised bed combustion | |
JPS5930653B2 (en) | Microwave heating denitrification equipment | |
JPS56168025A (en) | Burning method of abandoned radioactive ion exchange resin | |
JP2963854B2 (en) | Heating vessel and method for producing powder for nuclear fuel | |
JPS5663812A (en) | Production of carbon monoxide | |
DE2964385D1 (en) | A method of making a heat-sealed food package | |
JPS6151756B2 (en) | ||
JPS6218486B2 (en) | ||
SE8205138D0 (en) | PROCEDURE FOR PREPARING SINTERABLE URAND Dioxide POWDER | |
GB1441758A (en) | Device for establishing a furnace atmosphere for acting on workpieces during thermal treatment | |
JPS57149829A (en) | Microwave heat denitrating apparatus | |
JPS5655843A (en) | Denitrifying device | |
JPS6239959B2 (en) | ||
JPS5921526A (en) | Denitrating apparatus | |
Tahir et al. | Design and numerical simulations of an indirectly driven reactor-size inertial fusion capsule | |
JPS5458248A (en) | Heat energy conversion method | |
GB1092662A (en) | Vaporizing urea for production of melamine | |
Eichler et al. | The ignition of hydrocarbon-air mixtures with laser radiation | |
KALISKI | The laser heating and the regain of fusion energy of D-T plasma by mechanical-magnetic cumulation(Laser heating and fusion energy recovery of D-T plasma by mechanical-magnetic cumulation, considering cylindrical wave system) |