JPS62183957A - Production of fiber reinforced metallic material - Google Patents

Production of fiber reinforced metallic material

Info

Publication number
JPS62183957A
JPS62183957A JP2339286A JP2339286A JPS62183957A JP S62183957 A JPS62183957 A JP S62183957A JP 2339286 A JP2339286 A JP 2339286A JP 2339286 A JP2339286 A JP 2339286A JP S62183957 A JPS62183957 A JP S62183957A
Authority
JP
Japan
Prior art keywords
preform
fiber
metal material
reinforced metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2339286A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tatematsu
立松 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2339286A priority Critical patent/JPS62183957A/en
Publication of JPS62183957A publication Critical patent/JPS62183957A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a fiber reinforced metallic material by melting a metal to constitute a preform by using a welding means and uniting and solidifying the preform. CONSTITUTION:Long fibers consisting of silicon carbide are used as inorg. reinforcing fibers and a molten Al alloy which is a matrix metal is brought into contact with the bundled fibers to form the wire-shaped perform 1 in a preform molding stage. The preform 1 is packed into the groove part provided to an Al alloy plate 2 and is so molded as to comply with the outside shape of the alloy plate 2 in the molding stage of the preform 1. The wire-shaped preform 1 molded in such a manner is heated by a TIG arc welding machine 3 successively from one end of the preform1 to melt the Al alloy then the molten Al alloy is solidified to unite the preform 1 in a combining state. The fiber reinforced metallic material is thus formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、繊維強化金属材料(以下FRMという)の製
造方法に関するものである。本発明の製造方法は構造材
料或いは機械部品のIcl造に用いることが出来る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a fiber reinforced metal material (hereinafter referred to as FRM). The manufacturing method of the present invention can be used for ICL manufacturing of structural materials or mechanical parts.

[従来の技術] 従来、FRMの製造方法としては、金属が表面に被覆さ
れるセラミック繊維を用いるプリフォーム法が知られて
いる。このプリフォーム法は、セラミック繊維の表面に
PvD或いはCvDその他プラズマ溶射等で金属をコー
トしてプリフォームを形成し、この得られたプリフォー
ムを成形型内に入れ、型内で加圧しつつ加熱し、プリフ
ォームの金属を溶融、或いは焼結させて一体化する方法
である。
[Prior Art] Conventionally, as a method for manufacturing FRM, a preform method using ceramic fibers whose surfaces are coated with metal is known. In this preform method, a preform is formed by coating the surface of ceramic fibers with metal using PvD, CvD, or other plasma spraying, and the obtained preform is placed in a mold and heated while being pressurized within the mold. This is a method in which the metal of the preform is melted or sintered to integrate it.

し発明が解決しようとづる問題点] 従来のプリフォームよりFRMf’!i造する方法は型
内で加熱加圧する必要があるために複雑な形状のF R
Mが提供出来ない、高価な設備を必要とする等の問題点
がある。
[Problems that the invention attempts to solve] FRMf'! than conventional preforms! The i-forming method requires heating and pressurizing in the mold, so it is possible to produce complex-shaped F
There are problems such as M cannot be provided and expensive equipment is required.

本発明はプリフォームを使用し、111串な設備でFR
Mが(qられるFRMの製造方法を提供することを目的
とするものである。
The present invention uses a preform, and the FR is made with 111 pieces of equipment.
The purpose of this invention is to provide a method for manufacturing an FRM in which M is (q).

[発明の構成〕 〈問題点を解決するための手段) 本発明のU&雑強化金属材料の製造方法は、無機質強化
繊維の表面をマトリックス金属で被覆してプリフォーム
化覆るプリフォーム形成工程、得られたプリフォームを
一定形状に配置する成形工程、及び成形された該プリフ
ォームを溶接装置にて該プリフォームを構成する該マト
リックス金属を溶融、凝固させる複合化工程とから成る
ことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a U & miscellaneous reinforced metal material of the present invention includes a preform forming step in which the surface of an inorganic reinforcing fiber is coated with a matrix metal to form a preform; The method is characterized by comprising a molding step of arranging the molded preform into a certain shape, and a composite step of melting and solidifying the matrix metal constituting the preform using a welding device. It is something.

本発明においては溶接装置、Jなわち溶接という手段を
用いてプリフォームを構成する金属を溶融し、プリフォ
ームを一体化、凝固してFRMを形成している。このた
めに極めて簡単にF RMが得られる。
In the present invention, the metal constituting the preform is melted using a welding device, that is, a means called welding, and the preform is integrated and solidified to form an FRM. For this reason, F RM can be obtained very easily.

(発明の構成の詳細な説明) 本発明はプリフォーム形成工程、成形工程及び複合化■
稈よりなる。
(Detailed explanation of the structure of the invention) The present invention includes a preform forming process, a molding process, and a compounding process.
Consists of culm.

プリフォーム形成工程は無11質強化繊維の表面をマト
リックス金属で被覆し、プリフォームを形成する工程で
ある。ここで無機質強化繊維としては、アルミナ、シリ
カ、アルミナ−シリカ、ボロン、黒鉛、炭素、炭化珪素
又はガラス等の長繊維、短繊維、或いはそれらのウィス
カーを使用することが出来る。マトリックス金属として
は、アルミニウム、銅、鉄等構造材料として使用出来る
金属が用いられる。プリフォーム化は従来同様に、Pv
o、cvo、プラズマ溶射等が利用出来る。なお、プリ
フォーム化は強化繊I11本1本の外周面にマトリック
ス金属を被覆してもよいし、例えば長11帷を一定本数
束ねた束状の繊維に、例えば溶融金属を接触させ、比較
的太いワイヤー状のプリフォームを形成してもよい。成
形工程は得られたプリフォームを一定形状に成形する工
程である。
The preform forming step is a step of coating the surface of the 11-free reinforcing fiber with a matrix metal to form a preform. Here, as the inorganic reinforcing fibers, long fibers and short fibers of alumina, silica, alumina-silica, boron, graphite, carbon, silicon carbide, glass, etc., or whiskers thereof can be used. As the matrix metal, metals that can be used as structural materials, such as aluminum, copper, and iron, are used. As before, preforming is performed using Pv
O, CVO, plasma spraying, etc. can be used. Preforming may be done by coating the outer circumferential surface of each of the 11 reinforcing fibers with a matrix metal, or by bringing molten metal into contact with a fixed number of 11 long fibers, for example. A thick wire-like preform may also be formed. The molding process is a process of molding the obtained preform into a certain shape.

この成形工程としては、例えば成形型の凹部内にプリフ
ォームを配置し加圧等で四部形状に形成すること、或い
は金属部品本体の溝、凹部等にプリフォームを詰めこん
で一定形状に成形すること、その他ワイヤー状に成形さ
れたプリフォームを金属本体の外周面に巻きつける等に
より一定形状にプリフォームを成形することが出来る。
This molding process involves, for example, placing a preform in the recess of a mold and forming it into a four-part shape by applying pressure, or filling the preform into a groove, recess, etc. of a metal part body and molding it into a fixed shape. In addition, the preform can be formed into a certain shape by winding the wire-shaped preform around the outer peripheral surface of the metal body.

複合化工程は、成形されたプリフォームに溶接装置によ
り熱を加え、マトリックス金属を溶融させプリフォーム
を一体化づるものである。なお、成形されたプリフォー
ムを部分的に溶接装置により加熱し、部分的に溶融、凝
固を行うことが出来る。又?¥f融或いは凝固した直後
のまだ7トリツクス、金属が軟らかい間にローラ等で加
圧づることも出来る。溶融装置としては、従来公知のT
rG溶接装置、酸素−水素バーナ、電気溶接等の装置を
利用することが出来る。
In the composite process, heat is applied to the molded preform by a welding device to melt the matrix metal and integrate the preforms. Note that the molded preform can be partially heated by a welding device to partially melt and solidify the preform. or? It is also possible to apply pressure with a roller or the like while the metal is still soft, just after it has been melted or solidified. As a melting device, a conventionally known T
Equipment such as rG welding equipment, oxygen-hydrogen burners, electric welding, etc. can be used.

本発明のm帷強化金属材料の製造方法は溶接装置により
プリフォームを一体化している。このために得られたF
RMの少なくとも露出した表面は所定の平滑度におさえ
ることが困難である。かかる場合にはFRM成形後、機
械加工を行う必要がある。
In the method for manufacturing a m-thread reinforced metal material of the present invention, preforms are integrated using a welding device. The F obtained for this
It is difficult to maintain at least the exposed surface of the RM to a predetermined level of smoothness. In such a case, it is necessary to perform machining after FRM molding.

[発明の実施例] 第1図に概略示された第1の実施例においては、プリフ
ォーム形成工程において、無機質強化繊維として炭化珪
素の長繊維を使用し、該長m紺を多数、例えば約500
本束ねて束状のallI!Iにしたちのに、7トリツク
ス金属であるアルミニウム合金の溶融金属を接触させて
比較的太いワイヤー状のプリフォーム1を形成した。そ
して、本実施例においては、上記の如く形成されたワイ
ヤー状のプリフォーム1を、成豚工程において、アルミ
ニウム合金板2に設けられた溝部に詰めこみ該合金板2
の外形形状と一致するよう成形した。こうして成形され
たワイヤー状のプリフォーム1を、複合化工程において
、従来公知のTrGアーク溶接機3によりワイヤー状プ
リフォーム1の一方の端から順に加熱し、マトリックス
金属であるアルミニウム合金を溶融させ、次いで凝固さ
せることにより、前記ワイV−状ブリフォーム1を一体
化、すなわちFRM化した。なお、本実施例においては
、TIGアーク溶接機3を150アンペア、送り速度2
.5m1l/秒の条件で作動させた。又、本実施例によ
り製造されたFRM部を、前記アルミニウム合金板より
切出し試験片を製作して曲げ強度等の特性をテストした
結果、曲げ強度62kq/mm2、繊維体積率的40%
であった。更に、FRM化後のプリフォーム部の組織に
ついて顕微tllII察を行ったところ繊維問にアルミ
ニウム合金が十分充填され、複合状態は極めて良好であ
ることが確認された。
[Embodiments of the Invention] In the first embodiment shown schematically in FIG. 1, silicon carbide long fibers are used as the inorganic reinforcing fibers in the preform forming process, and a large number of the long fibers, for example, approximately 500
All I bundled together in a bundle! Immediately after I, a relatively thick wire-shaped preform 1 was formed by contacting molten metal of an aluminum alloy, which is a 7-trix metal. In this example, the wire-shaped preform 1 formed as described above is stuffed into the groove provided in the aluminum alloy plate 2 during the pig growth process.
It was molded to match the external shape of. In the composite process, the wire-shaped preform 1 formed in this way is sequentially heated from one end of the wire-shaped preform 1 using a conventionally known TrG arc welding machine 3 to melt the aluminum alloy that is the matrix metal, Next, by solidifying, the W-V-shaped preform 1 was integrated, that is, formed into an FRM. In this embodiment, the TIG arc welding machine 3 is operated at 150 amperes and at a feed rate of 2.
.. It was operated at a flow rate of 5 ml/sec. In addition, the FRM part manufactured according to this example was cut out from the aluminum alloy plate and tested for characteristics such as bending strength. As a result, the bending strength was 62 kq/mm2, and the fiber volume fraction was 40%.
Met. Further, microscopic TllII observation of the structure of the preform after FRM conversion revealed that the aluminum alloy was sufficiently filled between the fibers and that the composite condition was extremely good.

(実施例2) 第2図は本発明のもう1つの実施例を示す。該第2の実
施例ではプリフォーム形成工程において、無機質強化繊
維として、束状の炭素繊維が用いられ、又、71−リッ
クス金属としてアルミニウム合金を使用し、従来公知の
PVDのうち、特にイオン化された金属蒸気により強化
m維の表面を被覆するいわゆるイオンブレーティング法
を用いてプリフォーム化を行なった。こうして(9られ
たワイヤー状プリフォーム4を、次の成型工程において
、内燃!!1111のピストン本体の外周面5に形成さ
れた溝に巻きつけて一定形状にプリフォームを成形した
。続いて、複合化工程において、ピストンをゆっくり回
動させながら、(例えば約0.7回/分)従来公知のT
IGアーク溶接機3を用いてプリフォーム部を加熱し、
アルミニウム合金を溶融させるとともに該ピストン本体
の溝部に一体的に溶接して、凝固させた。こうして、本
実施例により、一部がFRM化された機械部品を製造す
ることが出来た。特に、本実施例において強化材として
用いた炭素繊維は強度、剛性が高く、かつ熱膨張係数が
小さいのでピストンの外周面にリング状に組み込むこと
によりピストンの熱膨張を効果的に阻止することができ
た。
(Example 2) FIG. 2 shows another example of the present invention. In the second embodiment, in the preform forming process, bundled carbon fibers are used as the inorganic reinforcing fibers, aluminum alloy is used as the 71-Rix metal, and ionized PVD is used among the conventionally known PVD methods. The preform was formed using the so-called ion blating method in which the surface of the reinforced m-fiber was coated with metal vapor. In the next molding process, the wire-shaped preform 4 thus formed (9) was wound around the groove formed in the outer peripheral surface 5 of the piston body of the internal combustion!! 1111 to mold the preform into a certain shape.Subsequently, In the compounding process, while slowly rotating the piston (for example, about 0.7 times/min), the conventionally known T
Heating the preform part using IG arc welding machine 3,
The aluminum alloy was melted, integrally welded to the groove of the piston body, and solidified. In this way, according to this example, it was possible to manufacture a mechanical component partially made of FRM. In particular, the carbon fiber used as the reinforcing material in this example has high strength and rigidity, and has a small coefficient of thermal expansion, so it is possible to effectively prevent thermal expansion of the piston by incorporating it in a ring shape on the outer circumferential surface of the piston. did it.

なお、FRM化され、一体化されたピストン部分におけ
る繊維体積率は55%であり、その複合状態は、顕微鏡
観察の結果、第1の実施例と同様良好であることが確認
された。
The fiber volume percentage in the FRM-integrated piston portion was 55%, and microscopic observation confirmed that the composite state was as good as in the first example.

上記2つの実施例では、強化amとして炭素繊維および
炭化珪素gaHを用いたが、これらに限られるわけでな
く、黒鉛、アルミナ、シリカ、アルミナ−シリカ、ボロ
ン、又はガラスといった無機質m維を用いてもよいし、
又マトリックス金属として銅、鉄等構造林料として使用
可能な金属を用いることが出来ることはいうまでもない
。更に、溶接装置としてTIG溶接機を用いているが、
この伯に従来公知の電気溶接機等を用いることができる
In the above two examples, carbon fiber and silicon carbide GAH were used as the reinforcement am, but the invention is not limited to these. It's good too,
It goes without saying that metals that can be used as structural forest materials, such as copper and iron, can be used as the matrix metal. Furthermore, although a TIG welder is used as the welding device,
A conventionally known electric welding machine or the like can be used for this purpose.

[発明の効果] 以上述べたように、本発明はプリフォームを使用し、簡
単な設備でF RMを得ることが可能である。又複合化
工程において従来公知の溶接手段により、プリフォーム
を構成するマトリックス金属を加熱し、急速に溶融、凝
固させるようにしたため金属の組織がより緻密になり、
従って強度や弾性率など機械的特性が向上し従来に比べ
て優れた特性のFRMが製造可能である。又、本発明の
製造方法は、構造材料或いは機械部品の製造に用いるこ
とが出来、実用化も容易である。
[Effects of the Invention] As described above, the present invention uses a preform, and it is possible to obtain an FRM with simple equipment. In addition, in the composite process, the matrix metal constituting the preform is heated by conventional welding means to rapidly melt and solidify, resulting in a more dense metal structure.
Therefore, mechanical properties such as strength and elastic modulus are improved, and it is possible to manufacture an FRM with superior properties compared to conventional ones. Further, the manufacturing method of the present invention can be used for manufacturing structural materials or mechanical parts, and is easy to put into practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による第1の実施例の説明のための概略
斜視図である。第2図は本発明の第2の実施例のIt要
を説明する説明図である。 1・・・炭化珪素艮II緒にアルミニウム合金(AC4
G)を被覆したブリ7オームワイV−2・・・アルミニ
ウム合金(AC4G)板3・・・TIGアーク溶接機 4・・・炭素繊維にアルミニウム合金(AC8A)を被
覆したプリフォームワイヤー 5・・・ピストン本体の外周面 特許出願人   トヨタ自vJ巾株式会社代理人   
 弁理士 大川 宏 同     弁理士 丸山明夫
FIG. 1 is a schematic perspective view for explaining a first embodiment of the present invention. FIG. 2 is an explanatory diagram illustrating the essentials of the second embodiment of the present invention. 1...Silicon carbide II and aluminum alloy (AC4
G) Buri 7 Ohm Y V-2... Aluminum alloy (AC4G) plate 3... TIG arc welding machine 4... Preform wire 5 made of carbon fiber coated with aluminum alloy (AC8A)... Patent applicant for the outer circumferential surface of the piston body Toyota Motor Corporation vJ Hiba Co., Ltd. Agent
Patent Attorney Hirodo Okawa Patent Attorney Akio Maruyama

Claims (5)

【特許請求の範囲】[Claims] (1)無機質強化繊維の表面をマトリックス金属で被覆
してプリフォーム化するプリフォーム形成工程、得られ
たプリフォームを一定形状に配置する成形工程、及び成
形された該プリフォームを溶接装置にて該プリフォーム
を構成する該マトリックス金属を溶融、凝固させる複合
化工程とから成ることを特徴とする繊維強化金属材料の
製造方法。
(1) A preform forming step in which the surface of inorganic reinforcing fibers is coated with a matrix metal to form a preform, a molding step in which the obtained preform is arranged in a fixed shape, and the formed preform is welded using a welding device. A method for manufacturing a fiber-reinforced metal material, comprising a composite step of melting and solidifying the matrix metal constituting the preform.
(2)プリフォームは、ワイヤー状である特許請求の範
囲第1項記載の繊維強化金属材料の製造方法。
(2) The method for manufacturing a fiber-reinforced metal material according to claim 1, wherein the preform is wire-shaped.
(3)無機質強化繊維は、アルミナ、シリカ、アルミナ
−シリカ、ボロン、黒鉛、炭素、炭化珪素又はガラスで
ある特許請求の範囲第1項記載の繊維強化金属材料の製
造方法。
(3) The method for producing a fiber-reinforced metal material according to claim 1, wherein the inorganic reinforcing fiber is alumina, silica, alumina-silica, boron, graphite, carbon, silicon carbide, or glass.
(4)溶接装置は、TIGアーク溶接機である特許請求
の範囲第1項記載の繊維強化金属材料の製造方法。
(4) The method for manufacturing a fiber-reinforced metal material according to claim 1, wherein the welding device is a TIG arc welder.
(5)成形工程は、内燃機関のピストン本体の外周面に
形成された溝にプリフォームを配置して行い、複合化工
程は、該プリフォームを加熱し、マトリックス金属を溶
融するとともにピストン本体の溝部に一体的に溶融して
凝固させる特許請求の範囲第1項記載の繊維強化金属材
料の製造方法。
(5) The forming process is performed by placing the preform in a groove formed on the outer circumferential surface of the piston body of the internal combustion engine, and the compounding process is performed by heating the preform to melt the matrix metal and forming the piston body. The method for producing a fiber-reinforced metal material according to claim 1, wherein the fiber-reinforced metal material is melted and solidified integrally in the groove.
JP2339286A 1986-02-05 1986-02-05 Production of fiber reinforced metallic material Pending JPS62183957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339286A JPS62183957A (en) 1986-02-05 1986-02-05 Production of fiber reinforced metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339286A JPS62183957A (en) 1986-02-05 1986-02-05 Production of fiber reinforced metallic material

Publications (1)

Publication Number Publication Date
JPS62183957A true JPS62183957A (en) 1987-08-12

Family

ID=12109234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339286A Pending JPS62183957A (en) 1986-02-05 1986-02-05 Production of fiber reinforced metallic material

Country Status (1)

Country Link
JP (1) JPS62183957A (en)

Similar Documents

Publication Publication Date Title
US4572271A (en) Method of producing a machine part of fiber-reinforced composite material, the fiber-reinforcement body and the machine part
US5263530A (en) Method of making a composite casting
JPS5996236A (en) Production of composite material
US5241737A (en) Method of making a composite casting
US6009843A (en) Fiber reinforced, titanium composite engine valve
JPH0238392A (en) Heat-insulating molded product composed of compression molding microporous heat-insulating material coated with metal
JP2691770B2 (en) Aluminum alloy piston for internal combustion engine
US5332022A (en) Composite casting method
JPS62183957A (en) Production of fiber reinforced metallic material
JPS626758A (en) Member made of carbon fiber reinforced magnesium alloy
JPS63126661A (en) Production of piston
JPS6021306A (en) Manufacture of composite reinforced member
JPS62183956A (en) Production of metallic composite material
JPS60203384A (en) Production of composite metallic product and piston
JPH01273664A (en) Production of fiber reinforced metal member
JPH024935A (en) Manufacture of metal matrix composite
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPS5870963A (en) Easy-to-weld composite material and its production
JPS60210350A (en) Production of fiber reinforced composite material
JPH0297628A (en) Production of metal-based composite material
JPH0310694B2 (en)
JPS5967335A (en) Fiber reinforced composite member and its production
JPH0459938A (en) Carbon fiber reinforced composite
JPS6127452B2 (en)
JPS623862A (en) Joining method for fiber reinforced metal base composite material