JPS5967335A - Fiber reinforced composite member and its production - Google Patents

Fiber reinforced composite member and its production

Info

Publication number
JPS5967335A
JPS5967335A JP16803982A JP16803982A JPS5967335A JP S5967335 A JPS5967335 A JP S5967335A JP 16803982 A JP16803982 A JP 16803982A JP 16803982 A JP16803982 A JP 16803982A JP S5967335 A JPS5967335 A JP S5967335A
Authority
JP
Japan
Prior art keywords
fiber
matrix
treatment
molding
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16803982A
Other languages
Japanese (ja)
Other versions
JPS6128006B2 (en
Inventor
Waichiro Nakajima
中島 和一郎
Hisashi Sakurai
久之 櫻井
Hiroshi Sasaki
浩 佐々木
Takushi Kondo
近藤 拓士
Katsuhiro Nishizaki
西崎 勝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16803982A priority Critical patent/JPS5967335A/en
Publication of JPS5967335A publication Critical patent/JPS5967335A/en
Publication of JPS6128006B2 publication Critical patent/JPS6128006B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To provide a fiber reinforced composite member which is light in weight and has improved strength by constituting the same of a precipitation hardening type stainless steel fiber molding and an Al alloy matrix which is subjected to an artificial aging treatment after a soln. heat treatment. CONSTITUTION:The abovet-described composite member is adapted to, for example, a connecting rod for an internal combustion engine. More specifically, precipitation hardening type stainless steel fibers (pH steel fibers) are inserted together with a copper brazing material into a heat resistant glass tube, and are held at 1,120 deg.C to melt. The fibers are partially diffusion-bonded to each other by such melting to form a fibrous molding F, whereafter the molding F is quickly cooled and is hardened by a soln. heat treatment. The molding F is disposed in the cavity of dies for forming a rod part in the axial line direction thereof, and with an Al alloy used as a matrix M a connecting rod is cast by a high pressure solidification casting method. At the same time, the matrix M is packed in the rod part 1 with the molding F, whereby the matrix is fiber-reinforced. The connecting rod is heat-treated at 500 deg.C and is then cooled by using hot water kept at >=60 deg.C to solutionize the Al alloy. On the other hand, the pH steel fibers constituting the molding F is subjected to a precipitation hardening treatment.

Description

【発明の詳細な説明】 本発明は繊維強化複合部材およびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber reinforced composite member and a method for manufacturing the same.

本出願人は、先にステンレス鍋繊維等の無機質繊維相互
間を銅系ろう材により、または焼成処理することにより
部分的に拡散接着して繊維成形体を成形し、それにマ)
 IJラックスしての軽合金を高圧凝固鋳造法により充
填複合させて部材の鋳造と同時にその所定箇所を繊維強
化した複合部材を提案した。」1記高圧凝固鋳造法によ
れば、マ) IJソクスを繊維成形体に十分に充填複合
させることができ、この種繊維強化複合部材を製造する
上に有効な手段であるといえる。
The applicant first forms a fiber molded article by partially diffusion bonding between inorganic fibers such as stainless steel pot fibers using a copper-based brazing filler metal or by firing.
We have proposed a composite member in which IJ Lux light alloy is filled and composited using a high-pressure solidification casting method, and predetermined locations are reinforced with fibers at the same time as the member is cast. According to the high-pressure solidification casting method described in 1), it is possible to sufficiently fill and composite IJ sox into a fiber molded body, and it can be said that it is an effective means for manufacturing this type of fiber reinforced composite member.

本発明者等は」二記複合部材の物性につ(・て種々検討
を加えた結果、前記繊維はろう接および焼成の際に高温
加熱されるため繊維自体が焼なまされてその強度が低下
する傾向にあり、複合部材の強度に影響を与えることを
究明した。
The present inventors have conducted various studies regarding the physical properties of the composite member described in 2. As a result, the fibers are heated at high temperatures during brazing and firing, so the fibers themselves are annealed and their strength is reduced. It was found that the strength of composite members tends to decrease, and that it affects the strength of composite members.

本発明は上記に鑑み、強化用繊維として析出硬化形ステ
ンレス鋼繊維を用い、この繊維および部材自体に特定の
熱処理を廁、すことにより強度を向上させた前記繊維強
化複合部材を提供することを目的とし、溶体化処理後析
出硬化処理を施された析出硬化形ステンレス鋼繊維成形
体と、その繊維成形体に高圧凝固鋳造法により充填複合
され、溶体化処理後人工時効処理を施されたアルミニウ
ム合金マトリックスとより構成したことを特徴とする。
In view of the above, the present invention provides a fiber-reinforced composite member whose strength is improved by using precipitation-hardened stainless steel fibers as reinforcing fibers and subjecting the fibers and the member itself to a specific heat treatment. A precipitation-hardened stainless steel fiber molded body that was subjected to solution treatment and precipitation hardening treatment, and an aluminum composite that was filled and composited into the fiber molded body by high-pressure solidification casting method and subjected to artificial aging treatment after solution treatment. It is characterized by being composed of an alloy matrix.

以下、本発明を内燃機関用コンロッドに適用した一実施
例について説明する。
An embodiment in which the present invention is applied to a connecting rod for an internal combustion engine will be described below.

〈実施例〉 第1.第2図はマトリックスとしてアルミニウム合金を
用いたコンロッドを示し、1は枠部で、その両端にそれ
ぞれ環状小端部2および半環状太端部半体3が一体に設
けられている。枠部1はその軸線方向に配設された析出
硬化形ステンレス鋼繊維成形体Fにより繊維強化されて
いる。
<Example> 1st. FIG. 2 shows a connecting rod using an aluminum alloy as a matrix. Reference numeral 1 denotes a frame portion, and an annular small end portion 2 and a semi-annular thick end half body 3 are integrally provided at both ends of the frame portion. The frame part 1 is fiber-reinforced by precipitation-hardened stainless steel fiber moldings F arranged in the axial direction.

上記コンロッドは以下に述べる方法により製造される。The above connecting rod is manufactured by the method described below.

先ず1.115  SUS  631J1 で表わされ
る直径80μの析出硬化形ステンレス鋼繊維(以下PI
l鋼繊維と称する。)を耐熱性ガラス管内に銅系ろう材
と共に挿入し、これを温度1.12(lCで15分間保
持してろう材を溶融し、これにより繊維相互間を部分的
に拡散接着して繊維成形体p゛を成形し、次いで繊維成
形体Fを冷却速度10C/秒で冷却する。
First, a precipitation-hardened stainless steel fiber (hereinafter referred to as PI
It is called steel fiber. ) is inserted into a heat-resistant glass tube together with a copper-based brazing material, and held at a temperature of 1.12 (lC) for 15 minutes to melt the brazing material, which partially diffuses and bonds the fibers together to form fibers. The body P' is molded, and then the fiber molded body F is cooled at a cooling rate of 10 C/sec.

上記温度1,120tl?は銅系ろう材の融点であると
共にp II鋼繊維の溶体化温度であり、したがってこ
の温度から前記速度で冷却することにより繊維成形体F
は溶体化処理を施され硬化する。この繊維成形体Fのか
さ密度は2.65g/ccで良好な保形性を有する。
Above temperature 1,120tl? is the melting point of the copper-based brazing filler metal and the solution temperature of the p II steel fiber, therefore, by cooling from this temperature at the above rate, the fiber molded body F
is subjected to solution treatment and hardened. This fiber molded product F has a bulk density of 2.65 g/cc and has good shape retention.

次いで、繊維成形体Fを金型の枠部形成用キャビティ内
にその軸線方向に配設し、マトリックスMとしてアルミ
ニウム合金(,115AC8B材)を用いて高圧凝固鋳
造法により、コンロッドを鋳造すると同時にその枠部1
において繊維成形体FにマトリックスMを充填複合させ
て繊維強化する。
Next, the fiber molded body F is arranged in the axial direction in the cavity for forming the frame part of the mold, and a connecting rod is simultaneously cast by high-pressure solidification casting using an aluminum alloy (115AC8B material) as the matrix M. Frame part 1
In the step, the fiber molded body F is filled and composited with the matrix M to be reinforced with fibers.

その後コンロッドを500C15時間加熱し、次いで6
0C以」二の湯を用いて冷却する。この熱処理によりマ
トリックスMとしてのアルミニウム合金は溶体化処理を
施され、一方繊維成形体Fを構成するPH鋼繊維は析出
硬化処理を施される。
After that, the connecting rod was heated to 500C for 15 hours, then 6
Cool using hot water above 0C. Through this heat treatment, the aluminum alloy serving as the matrix M is subjected to solution treatment, while the PH steel fibers constituting the fiber compact F are subjected to precipitation hardening treatment.

上記溶体化および析出硬化処理の温度は450〜510
Cが適当であり、450Cを下回るとp H鋼繊維の析
出硬化処理が不可能となり、一方510Cを上回るとア
ルミニウム合金とpH鋼繊維が反応するおそれがある。
The temperature of the solution treatment and precipitation hardening treatment is 450-510℃.
C is suitable; below 450C, precipitation hardening of the pH steel fibers is impossible, while above 510C there is a risk of reaction between the aluminum alloy and the pH steel fibers.

上記処理後コンロッドを170C110時間加熱後空冷
してマトリックスMとしてのアルミニウム合金に人工時
効処理を施し、アルミニウム合金の強度を向上させる。
After the above treatment, the connecting rod is heated to 170C for 110 hours and then air cooled to perform artificial aging treatment on the aluminum alloy as the matrix M, thereby improving the strength of the aluminum alloy.

第3図はp H鋼繊維(I)とJIS  SUS  2
7で表わされるステンレス繊維(TI )の弾性比例限
界を示すもので、Δは各繊維の熱処理前、Bは溶体化処
理後、Cは析出硬化処理後である。第3図から明らかな
ようにPH鋼繊維(I)は前記熱処理によりその強度が
他方のステンレス繊維(II)に比べて大幅に向上1−
るもので、このpH鋼繊維の強度向上およびアルミニウ
ム合金の溶体化および人工時効処理による強度向上によ
りコンロッド桿部1の弾性比例限界はPHm繊維を用い
たものが7 、500 kf/mdとなり、ステンレス
繊維(If)を用いたものの5 、500 ky/mi
に比べて飛躍的に増大することが認められた。
Figure 3 shows pH steel fiber (I) and JIS SUS 2.
7 shows the elastic proportional limit of stainless steel fiber (TI), where Δ is before heat treatment of each fiber, B is after solution treatment, and C is after precipitation hardening treatment. As is clear from Figure 3, the strength of the PH steel fiber (I) is significantly improved by the heat treatment as compared to the other stainless steel fiber (II).
Due to the strength improvement of this pH steel fiber and the strength improvement due to the solution treatment and artificial aging treatment of the aluminum alloy, the elastic proportional limit of the connecting rod rod part 1 is 7,500 kf/md for the one using PHm fiber, which is higher than that of stainless steel. 5,500 ky/mi using fiber (If)
A dramatic increase was observed compared to .

以上のように本発明によれば、軽量で、且つ強度を向上
させた繊維強化複合部材を提供し得るもので、コンロッ
ド等自動車用部品に適用する」−に有効である。また析
出硬化形ステンレス鋼繊維成形体とアルミニウム合金マ
トリックスとの組合せにより、繊維成形体の析出硬化処
理とマトリックスのm体化処理を一工程で行うことがで
きるという製造上の利点がある。
As described above, according to the present invention, it is possible to provide a fiber-reinforced composite member that is lightweight and has improved strength, and is effective for application to automobile parts such as connecting rods. Furthermore, the combination of the precipitation-hardened stainless steel fiber molded body and the aluminum alloy matrix has the manufacturing advantage that the precipitation hardening treatment of the fiber molded body and the m-body conversion treatment of the matrix can be performed in one step.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図はコンロ
ッドの縦断正面図、第2図は第1図II −■線断面図
、第3図は弾性比例限界の変化を示ずグラフである。 F・・・繊維成形体、M・・・マトリックス第1図 第2図
The drawings show one embodiment of the present invention; FIG. 1 is a longitudinal sectional front view of a connecting rod, FIG. 2 is a sectional view taken along the line II-■ in FIG. 1, and FIG. 3 is a graph showing changes in the elastic proportional limit. It is. F...Fiber molded body, M...Matrix Fig. 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)溶体化処理後析出硬化処理を施された析出硬化形
ステンレス鋼繊維成形体と、該繊維成形体に高圧凝固鋳
造法により充填複合され、溶体化処理後人工時効処理を
施されたアルミニ・ラム合金マトリックスとよりなる繊
維強化複合部材。
(1) A precipitation-hardened stainless steel fiber molded body that has been subjected to precipitation hardening treatment after solution treatment, and aluminum that has been filled and composited into the fiber molded body by high-pressure solidification casting method and has been subjected to artificial aging treatment after solution treatment.・Fiber-reinforced composite material consisting of ram alloy matrix.
(2)析出硬化形ステンレス鋼繊維を用いて高温下で纜
維成形体を成形する工程と、該繊維成形体を冷却するこ
とによりそれに対する溶体化処理を完結する工程と、前
記繊維成形体にマトリックスとしてのアルミニウム合金
を高圧凝固鋳造法により充填複合させると同時に部材を
鋳造する工程と、該部材を加熱後冷却して前記繊維成形
体に析出硬化処理を施すと同時に前記マ) IJソック
ス溶体化処理を施す工程と、前記部材を再び加熱後冷却
して前記マトリックスに人工時効処理を施す工程と、よ
りなる繊維強化複合部材の製造方法。
(2) A process of forming a fiber molded body at high temperature using precipitation hardened stainless steel fibers, a process of completing a solution treatment for the fiber molded body by cooling the fiber molded body, and A step of filling and compounding an aluminum alloy as a matrix using a high-pressure solidification casting method and simultaneously casting a member, heating and cooling the member to perform a precipitation hardening treatment on the fiber molded body, and at the same time forming the IJ sock solution. A method for manufacturing a fiber-reinforced composite member, comprising the steps of applying a treatment, and heating and cooling the member again to subject the matrix to artificial aging treatment.
JP16803982A 1982-09-27 1982-09-27 Fiber reinforced composite member and its production Granted JPS5967335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16803982A JPS5967335A (en) 1982-09-27 1982-09-27 Fiber reinforced composite member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16803982A JPS5967335A (en) 1982-09-27 1982-09-27 Fiber reinforced composite member and its production

Publications (2)

Publication Number Publication Date
JPS5967335A true JPS5967335A (en) 1984-04-17
JPS6128006B2 JPS6128006B2 (en) 1986-06-28

Family

ID=15860680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16803982A Granted JPS5967335A (en) 1982-09-27 1982-09-27 Fiber reinforced composite member and its production

Country Status (1)

Country Link
JP (1) JPS5967335A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432557B2 (en) * 1999-08-10 2002-08-13 Nhk Spring Co., Ltd. Metal matrix composite and piston using the same
CN107829053A (en) * 2017-10-26 2018-03-23 宁波市鄞州永佳电机工具有限公司 A kind of inner hexagon spanner
CN112958757A (en) * 2021-01-20 2021-06-15 苏州鸿翼卫蓝新材科技有限公司 Preparation method of composite transmission shaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432557B2 (en) * 1999-08-10 2002-08-13 Nhk Spring Co., Ltd. Metal matrix composite and piston using the same
CN107829053A (en) * 2017-10-26 2018-03-23 宁波市鄞州永佳电机工具有限公司 A kind of inner hexagon spanner
CN112958757A (en) * 2021-01-20 2021-06-15 苏州鸿翼卫蓝新材科技有限公司 Preparation method of composite transmission shaft

Also Published As

Publication number Publication date
JPS6128006B2 (en) 1986-06-28

Similar Documents

Publication Publication Date Title
JPH02422B2 (en)
TW200305526A (en) Hollow crank arm for a bicycle, and process for manufacturing the same
JPS59100236A (en) Production of fiber reinforced composite member
US4586554A (en) Process for manufacturing fiber reinforced light metal castings
JPS60114540A (en) Fiber-reinforced composite member and its production
JPS5967335A (en) Fiber reinforced composite member and its production
JPS6341969B2 (en)
CN101808762A (en) Method for producing hollow forged parts and parts thus obtained
US4892069A (en) Thermally stressed component
JPS5894622A (en) Manufacture of connecting rod for use in internal combustion engine
JPS5841775A (en) Manufacture of ceramic-metal composite body
JPS62238039A (en) Manufacture of fiber reinforced composite member
KR100513584B1 (en) High Strength Magnesium Composite Materials with Excellent Ductility and Manufacturing Process for Them
JPH02169171A (en) Production of fiber reinforced metal body
JPS6127452B2 (en)
JPS60110831A (en) Production of fiber-reinforced composite member
JPS60111756A (en) Production of connecting rod for internal-combustion engine
SU900957A1 (en) Method of obtaining castings
JPH06102265B2 (en) Method for manufacturing fiber-reinforced composite member
JPH02298651A (en) Manufacture of piston made of metallic compound material
SU709240A1 (en) Method of assembling investment patterns into block
JPS62185844A (en) Production of fiber reinforced metallic composite material
JP3145541B2 (en) Cast-in method of aluminum matrix composite
JPS6178552A (en) Production of aluminum parts having bolting part
JPS60111757A (en) Production of fiber reinforced composite member