JPS62183851A - Light irradiating window - Google Patents

Light irradiating window

Info

Publication number
JPS62183851A
JPS62183851A JP2593686A JP2593686A JPS62183851A JP S62183851 A JPS62183851 A JP S62183851A JP 2593686 A JP2593686 A JP 2593686A JP 2593686 A JP2593686 A JP 2593686A JP S62183851 A JPS62183851 A JP S62183851A
Authority
JP
Japan
Prior art keywords
window material
window
group
reactive gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2593686A
Other languages
Japanese (ja)
Inventor
Tsuneo Takahashi
庸夫 高橋
Hitoshi Ishii
仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2593686A priority Critical patent/JPS62183851A/en
Publication of JPS62183851A publication Critical patent/JPS62183851A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To reduce the accumulation of a film onto the surface of a window material by reducing the adsorption of reactive gas, by bonding a group such as a hydrocarbon group, a halogenated hydrocarbon group or a carbon halide group to the surface of the light irradiating window material for optical CVD reaction. CONSTITUTION:When the surface of a window material comprising SiO2 is immersed in an aqueous solution of R-Si(OH)3 or an alcohol solution thereof and subsequently heat-treated, the surface from which R is issued as shown by a drawing is obtained. By using a hydrocarbon, halogenated hydrocarbon or carbon halide group having a relatively large MW as R, the dipole moment of the surface is markedly lowered and the surface becomes hard to adhere a gas molecule. By this method, the accumulation of a film onto the surface of the window material can be reduced and the washing or replacing cycle of the window material can be extended.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光CVD反応用の光照射用窓に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a light irradiation window for photo-CVD reactions.

〔従来の技術〕[Conventional technology]

光CVD等のように、基板表面に反応性ガスを導入し、
これに光を照射し、気相中あるいは基板表面で反応性ガ
スを反応させる装置においては、光源と反応性ガスを導
入する容器との間に光透過性の窓が必要となる。このと
き、導入した撃心性ガスが容器内に拡散し、窓の容器側
の面付近で反応し分解すると、窓に分解物が付着し、光
透過性が悪くなるという問題があった。従来法では、こ
れを避けるために、窓の容器側の面付近に反応しないガ
ス例えばHe等を流し、反応性ガスが窓の表面付近に拡
散してくるのを防いでいた。
Introducing a reactive gas onto the substrate surface, such as in photo-CVD,
In an apparatus in which a reactive gas is reacted in the gas phase or on the surface of a substrate by irradiating it with light, a light-transmitting window is required between the light source and the container into which the reactive gas is introduced. At this time, if the introduced center-of-center gas diffuses into the container, reacts and decomposes near the surface of the window on the container side, decomposed products adhere to the window, resulting in poor light transmittance. In the conventional method, in order to avoid this, a non-reactive gas such as He is flowed near the surface of the window on the container side to prevent the reactive gas from diffusing near the surface of the window.

たとえば第6図に示すように、反応性ガスを導入する容
器1に光透過性窓2を取り付け、さらに窓の近くに反応
しないガスの導入口3を設けておき、ガスの供給源4を
つないでおく。容器l内を反応性ガスを含む雰囲気とし
、試料5の近くに向かって光源6から窓2を通して光を
照射し、気相あるいは試料表面で反応性ガスを分解しよ
うとすると、窓の内側表面付近で分解した分解化学種が
窓の内側に付着することになる。これを避けるために、
ガス導入口3より、反応しないガスを窓の内側表面に向
かって流すと、ガス流によって反応性ガスが窓の内側表
面付近に近づきにくくなるため、分解化学種の窓への付
着が低減できることになる。
For example, as shown in FIG. 6, a light-transmitting window 2 is attached to a container 1 into which a reactive gas is introduced, and an inlet 3 for a non-reactive gas is provided near the window, and a gas supply source 4 is connected. I'll leave it there. When the inside of the container L is made into an atmosphere containing a reactive gas, and light is irradiated from the light source 6 through the window 2 toward the vicinity of the sample 5 to decompose the reactive gas in the gas phase or on the sample surface, it is possible to decompose the reactive gas near the inner surface of the window. The decomposed chemical species will adhere to the inside of the window. To avoid this,
When a non-reactive gas is flowed toward the inner surface of the window from the gas inlet 3, the gas flow makes it difficult for the reactive gas to approach the inner surface of the window, thereby reducing the adhesion of decomposed chemical species to the window. Become.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この従来法では、拡散を完全に防止するのは難
しく、窓への分解化学種の付着は完全には防げない。ま
た、真空排気装置を用いて減圧雰囲気での光反応を利用
しようとした場合は、反応しないガスの導入が排気装置
に負担をかけることになる。
However, with this conventional method, it is difficult to completely prevent diffusion and the adhesion of decomposed chemical species to the window cannot be completely prevented. Furthermore, if an attempt is made to utilize a photoreaction in a reduced pressure atmosphere using a vacuum evacuation device, the introduction of non-reactive gas will place a burden on the evacuation device.

一方、反応性ガスの分解化学種が選択的に窓の表面に付
着しないような窓材を選ぶという方法が考えられる。た
とえば、反応性ガスとしてGeH4を用い、適当な温度
で反応を起こさせることを考えると、Sin、を窓材と
すると、Geは5in2上に堆積しないという現象が生
じる。しかし、反応性ガスとして5iHnを用いれば、
Sin、上にSiが堆積する。
On the other hand, one possible method is to select a window material that prevents the decomposition species of the reactive gas from selectively adhering to the surface of the window. For example, considering that GeH4 is used as a reactive gas and a reaction is caused at an appropriate temperature, a phenomenon occurs in which Ge is not deposited on 5in2 when Sin is used as a window material. However, if 5iHn is used as the reactive gas,
Si is deposited on top of Sin.

このように、特別な窓材と反応性ガスの組合せでは、窓
は付着しにくい系もあるが、その例はきわめてまれであ
る。特に通常用いているような5i02.A!too+
等の窓材上に堆積しない反応性ガスは少なく、Sin、
とGeH4の場合は例外と言える。
As described above, there are systems in which windows are difficult to adhere to due to the combination of special window materials and reactive gases, but such cases are extremely rare. Especially the commonly used 5i02. A! too+
There are few reactive gases that do not deposit on window materials such as Sin,
The case of GeH4 can be said to be an exception.

〔問題点を解決するための手段〕 このような問題点を解決するために本発明は、光照射用
窓材の表面に炭素と水素又は炭素とハロゲンを含んで構
成される化学種を結合させるようにしたものである。
[Means for Solving the Problems] In order to solve these problems, the present invention combines chemical species containing carbon and hydrogen or carbon and halogen on the surface of a window material for light irradiation. This is how it was done.

〔作用〕[Effect]

本発明の光照射用窓材の表面には分解化学種が付着しに
くい。
Decomposed chemical species are difficult to adhere to the surface of the window material for light irradiation of the present invention.

〔実施例〕〔Example〕

本発明は、光照射用の窓材のSin、やA 7!z O
’s等の表面をガスおよびその分解化学種が吸着しない
ような構造の化学種で覆ってしまうことを主要な特徴と
する。この点、窓材をむき出しで使用する従来技術の方
法とは異なる。
The present invention can be applied to a window material for light irradiation such as Sin or A7! z O
The main feature is that the surface of the 's etc. is covered with a chemical species having a structure that prevents adsorption of gas and its decomposed chemical species. This point differs from conventional methods in which the window material is used exposed.

まず第1の実施例について説明する。通常光CVD等の
光照射用窓の材料としては、S iOz (パイレック
ス、鉛ガラス等も含む) 、 A j2203゜MgO
等の酸化物が用いられる。このような酸化物表面をたと
えばR−3t(OH)sの水溶液あるいはアルコール溶
液等で処理すると、第1図のような構造が得られる。こ
こでRは有機化学種である。たとえばSiO□等の窓材
表面7全R−st(OH)3の溶液に浸すと、水素結合
力で、第1図(kl)のように、表面にR−3i(OH
)iが吸着する。
First, a first example will be described. Materials for light irradiation windows for normal light CVD, etc., include SiOz (including Pyrex, lead glass, etc.), Aj2203°MgO, etc.
Oxides such as are used. When such an oxide surface is treated with, for example, an aqueous or alcoholic solution of R-3t(OH)s, a structure as shown in FIG. 1 is obtained. Here R is an organic species. For example, when the surface 7 of a window material such as SiO
) i is adsorbed.

これを溶液から取り出し、摂氏数十度から数百度で熱処
理すると脱水反応が起こり、表面にRが出た表面が得ら
れる。このR−3i(OH)、Iは、R−5i (OC
R3)IやR−S i (OCzHs)s等のトリアル
コキシシランを加水分解することによって容易に得られ
る。比較的容易に入手できるトリアルコキシシランとし
ては、C+5)(at  (OCgHs)3゜CbHs
  S 1(OCzHs)z等がある。このようにRと
して比較的大きな炭化水素を用いて、第1図(C)のよ
うな構造をつくると、表面の双極子モーメントが著しく
低下し又表面エネルギーが低下するので、表面にガス分
子が付着しにく(なる。
When this is taken out of the solution and heat treated at several tens to hundreds of degrees Celsius, a dehydration reaction occurs and a surface with R is obtained. This R-3i (OH), I is R-5i (OC
It can be easily obtained by hydrolyzing trialkoxysilanes such as R3)I and R-S i (OCzHs)s. Trialkoxysilanes that are relatively easily available include C+5)(at (OCgHs)3°CbHs
There are S 1 (OCzHs)z, etc. When a relatively large hydrocarbon is used as R to create a structure as shown in Figure 1 (C), the dipole moment of the surface decreases significantly and the surface energy decreases, causing gas molecules to form on the surface. Difficult to adhere to.

このように第1図(C)のような表面を有した3LO□
、A℃、O,、MgO等を窓材に用いれば、その表面へ
の膜の堆積は少なくなり、光照射の防げにならない。
In this way, 3LO□ with a surface as shown in Figure 1(C)
, A° C., O, , MgO, etc., for the window material will reduce the amount of film deposited on the surface and will not prevent light irradiation.

このとき重要なのは、比較的大きな炭化水素基で完全に
表面を覆うことであるが、次にそれを実現する方法につ
いて述べる。たとえばC1[lH3?−(OCzHs)
aを加水分解したCtsHstS i (OH)3は、
第2図に示すように、親水性のシラノール8と疎水性の
アルキル基9に分かれる。これをたとえば水に入れ、公
知のラングマイアープロジェット(Langa+uir
−Blodgett) [の形成法を用いれば、第3図
に示すように、窓材表面7上にシラノール基10を付着
させアルキル基11を窓材表面7にほぼ垂直に向けた構
造のものが得られる。これを摂氏数十度から数百度で熱
処理すると、第1図のRをCI a H3?とし、完全
に表面をC16H3?基で覆った構造が実現できる。
What is important here is to completely cover the surface with relatively large hydrocarbon groups, and next we will discuss how to achieve this. For example, C1[lH3? -(OCzHs)
CtsHstS i (OH)3, which is obtained by hydrolyzing a, is
As shown in FIG. 2, it is divided into a hydrophilic silanol 8 and a hydrophobic alkyl group 9. For example, by putting this in water,
-Blodgett) [, as shown in Figure 3, it is possible to obtain a structure in which silanol groups 10 are attached to the surface 7 of the window material and alkyl groups 11 are oriented almost perpendicularly to the surface 7 of the window material. It will be done. When this is heat treated at tens to hundreds of degrees Celsius, R in Figure 1 becomes CI a H3? And completely cover the surface with C16H3? A structure covered with base can be realized.

次にラングマイアープロジェット(Langmutr−
Blodgett)法を用いない方法について述べる。
Next, Langmuir Project (Langmutr-
A method that does not use the (Blodgett) method will be described.

第4図に示すような化学構造の物質を用い、加水分解し
てシラノールにした後、水溶液あるいはアルコール溶液
として窓材基板を浸すと、基板表面に吸着する。この基
板を取り出して熱処理し、シラノール基を反応させ、第
1図(e)と同様な長いアルキル基を表面に出した構造
が得られる。
When a window material substrate is immersed in an aqueous or alcoholic solution after being hydrolyzed into silanol using a substance having a chemical structure as shown in FIG. 4, it is adsorbed onto the surface of the substrate. This substrate is taken out and heat treated to react the silanol groups, resulting in a structure with long alkyl groups exposed on the surface as shown in FIG. 1(e).

なお第1図(C1で、表面に出たR基は、必ずしも飽和
炭化水素である必要はなく、不飽和結合を有しても良い
。また、R基は第2図の例のように必ずしも炭化水素の
みである必要はなく、第4図の例のように窒素(N)や
酸素(0)等を含んでいても良い。ただし、このとき、
R基はNやOを含んだ基が表面側に出ないような構造、
たとえば第4図の例のように、Nに−Cls Hs ?
のような大きなアルキル基を結合させた構造にしておく
方がNや0等を含んだ基がもつ双極子モーメントの効果
を小さくすることができ、ガスの吸着を押さえるのによ
り効果的である。
Note that the R group exposed on the surface in Figure 1 (C1) does not necessarily have to be a saturated hydrocarbon and may have an unsaturated bond. It does not have to be only hydrocarbons, and may also contain nitrogen (N), oxygen (0), etc., as shown in the example in Figure 4.However, in this case,
The R group has a structure in which groups containing N and O do not appear on the surface side,
For example, as in the example in FIG. 4, -Cls Hs ?
It is better to have a structure in which large alkyl groups such as those bonded together can reduce the dipole moment effect of groups containing N, 0, etc., and is more effective in suppressing gas adsorption.

次に第2の実施例について説明する。第1の実施例では
、第1図(C)のR基として炭化水素を中心とした基を
用いる場合について示したが、ハロゲン化炭素基やハロ
ゲン化炭化水素を中心とした基を用いても双極子モーメ
ントを小さくできる。このとき、各種のハロゲンや水素
基を混合した形よりは、単一のハロゲンあるいは水素を
用いた方が良い。たとえばR基として−c+5)(st
基等を用いると特に双極子モーメントが小さくできるの
で効果的である。以上述べたように、第1図[0)のR
基としては各種の化学種を用いることができるが、照射
する光を吸収しにくいこと、さらに、照射する光を吸収
してR基自身が分解しないことが必要となる。したがっ
て、照射する光の波長を考慮してR基を選べば良い。
Next, a second embodiment will be described. In the first example, a case was shown in which a group mainly composed of hydrocarbons was used as the R group in FIG. Dipole moment can be reduced. At this time, it is better to use a single halogen or hydrogen rather than a mixture of various halogens or hydrogen groups. For example, as an R group -c+5)(st
The use of a group or the like is particularly effective because the dipole moment can be made small. As mentioned above, R in Fig. 1 [0)
Various chemical species can be used as the group, but it is necessary that the R group itself does not absorb the irradiated light and is not decomposed by absorbing the irradiated light. Therefore, the R group may be selected in consideration of the wavelength of the irradiated light.

次に実施例1および実施例2で示した光照射用窓材の使
用方法について説明する。実施例1および実施例2で説
明したような炭化水素、ハロゲン化炭化水素、ハロゲン
化炭素のような基は、摂氏数百度に加熱されると分解し
てしまう。したがって、窓の内面の温度があまり上昇し
ないよう注意する必要がある場合も生じる。そのために
は、たとえば第5図に示すように、窓を2層構造とし、
反応容器12の内側の窓材13と外側の窓材、14との
間に間隙を開けておき、それに冷却流体導入パイプ15
と排出パイプ16を取り付け、冷却流体17を間隙に流
せるようにする。このような構成にすることにより、・
内側の窓材13の内面が高温になることを防ぐことがで
きるようになる。ただし、その際、冷却流体による光吸
収が少なくなるように光の波長によって流体材料を選択
する必要がある。
Next, a method of using the light irradiation window material shown in Examples 1 and 2 will be explained. Groups such as hydrocarbons, halogenated hydrocarbons, and halogenated carbons as described in Examples 1 and 2 decompose when heated to several hundred degrees Celsius. Therefore, it may be necessary to take care not to increase the temperature of the inner surface of the window too much. To do this, for example, as shown in Figure 5, the window should have a two-layer structure,
A gap is opened between the inner window material 13 and the outer window material 14 of the reaction vessel 12, and a cooling fluid introduction pipe 15 is inserted into the gap.
and a discharge pipe 16 to allow cooling fluid 17 to flow into the gap. By configuring like this,
It becomes possible to prevent the inner surface of the inner window material 13 from becoming high temperature. However, in this case, it is necessary to select the fluid material depending on the wavelength of the light so that light absorption by the cooling fluid is reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、光照射用窓材の表面に炭
素と水素又は炭素とハロゲンを含んで構成される化学種
を結合させたことにより、反応性ガスの吸着を減少させ
ることができるので、窓材表面への膜の堆積を少なくす
ることができ、窓の洗浄あるいは交換のサイクルを長(
することができるという効果がある。
As explained above, the present invention can reduce the adsorption of reactive gases by bonding chemical species containing carbon and hydrogen or carbon and halogen to the surface of the window material for light irradiation. This reduces the amount of film deposited on the surface of the window material and lengthens the window cleaning or replacement cycle.
The effect is that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で用いる有機シラノールによる表面修飾
法を示す説明図、第2図は本発明の第1の実施例で用い
るオクタデシルシラノールの化学式を示す構成図、第3
図はラングマイアープロジェット(Langmuir−
Blodgett)法により窓材表面に吸着させた有機
シラノールの構造の胸を示す構成図、第4図は本発明の
第1の実施例で用いるジメチルオクタデシルアミノプロ
ピイルトリエトキシシランの化学式を示す構成図、第5
図は本発明による光照射用窓材の使用方法の一例を説明
するための説明図、第6図は従来の光照射用窓材の使用
方法を説明するための説明図である。 7・・・!窓材表面、8・・・・シラノール基、9・・
・・アルキル基、1o・・・・親木性基、11・・・・
疏水性基、12・・・・反応容器、13・・・・内側の
窓材、14・・・・外側の窓材、15・・・・冷却流体
導入パイプ、16・・・・冷却流体排水パイプ、17・
・・・冷却流体。
FIG. 1 is an explanatory diagram showing the surface modification method using organic silanol used in the present invention, FIG. 2 is a structural diagram showing the chemical formula of octadecylsilanol used in the first embodiment of the present invention, and FIG.
The figure shows the Langmuir project.
Fig. 4 is a block diagram showing the structure of organic silanol adsorbed onto the surface of the window material by the method (Blodgett), and Fig. 4 is a block diagram showing the chemical formula of dimethyloctadecylaminopropyltriethoxysilane used in the first embodiment of the present invention. , 5th
The figure is an explanatory diagram for explaining an example of the method of using the window material for light irradiation according to the present invention, and FIG. 6 is an explanatory diagram for explaining the method of using the conventional window material for light irradiation. 7...! Window material surface, 8... Silanol group, 9...
...Alkyl group, 1o...Lyophilic group, 11...
Hydrophobic group, 12...Reaction vessel, 13...Inner window material, 14...Outer window material, 15...Cooling fluid introduction pipe, 16...Cooling fluid drainage pipe, 17.
...cooling fluid.

Claims (1)

【特許請求の範囲】[Claims] 光照射用窓材の表面に炭素と水素又は炭素とハロゲンを
含んで構成される化学種を結合させたことを特徴とする
光照射用窓。
A window for light irradiation, characterized in that a chemical species containing carbon and hydrogen or carbon and halogen is bonded to the surface of the window material for light irradiation.
JP2593686A 1986-02-10 1986-02-10 Light irradiating window Pending JPS62183851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2593686A JPS62183851A (en) 1986-02-10 1986-02-10 Light irradiating window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2593686A JPS62183851A (en) 1986-02-10 1986-02-10 Light irradiating window

Publications (1)

Publication Number Publication Date
JPS62183851A true JPS62183851A (en) 1987-08-12

Family

ID=12179657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2593686A Pending JPS62183851A (en) 1986-02-10 1986-02-10 Light irradiating window

Country Status (1)

Country Link
JP (1) JPS62183851A (en)

Similar Documents

Publication Publication Date Title
JPS6140035B2 (en)
Tada Layer-by-layer construction of SiOx film on oxide semiconductors
JPS62183851A (en) Light irradiating window
JPS5998726A (en) Formation of oxide film
JPH06220655A (en) Method of forming protective layer on substrate
GB2089377A (en) Improved photochemical vapor deposition apparatus and method
CN104834187A (en) Carbon pollution cleaning method of EUV optical element
JPH10230168A (en) Photocatalyst cell and its production
JP4283509B2 (en) Photocatalytic filter device and fluid processing method
JP3202863B2 (en) Photocatalyst-supported linear articles
JPH10180044A (en) Fluid purifier utilizing photocatalyst
JPH0468387B2 (en)
JP3384715B2 (en) Method for producing protective film and apparatus for producing protective film
JPH0118149B2 (en)
JPS61212016A (en) Film forming method
JPH029126A (en) Thin film forming method
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JPH0246669B2 (en)
JPS61196526A (en) Photochemical vapor deposition process and apparatus thereof
JPH0447957Y2 (en)
JP2002261074A (en) Method and apparatus for processing semiconductor substrate
JP3387140B2 (en) Water-repellent glass article
JPH08330292A (en) Cvd device
JPH0291928A (en) Vapor growth method and device therefor
JPH0464173B2 (en)