JPS62183552A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62183552A
JPS62183552A JP2501686A JP2501686A JPS62183552A JP S62183552 A JPS62183552 A JP S62183552A JP 2501686 A JP2501686 A JP 2501686A JP 2501686 A JP2501686 A JP 2501686A JP S62183552 A JPS62183552 A JP S62183552A
Authority
JP
Japan
Prior art keywords
type
semiconductor device
silicon substrate
impurity layer
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2501686A
Other languages
Japanese (ja)
Inventor
Nobuyuki Tanaka
信行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2501686A priority Critical patent/JPS62183552A/en
Publication of JPS62183552A publication Critical patent/JPS62183552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the titled semiconductor device from turning into a state of operation as a thyristor as well as to prevent the semiconductor device from destruction due to latch-up by a method wherein an impurity layer, having the impurity type same as a silicon substrate, is formed on the rear surface of the silicon substrate. CONSTITUTION:The difference between the titled semiconductor device and the device heretofore in use is that the former is formed with P-type impurity layer 10. After the prescribed semiconductor element has been formed on a wafer, the wafer is shaved and polished to the prescribed thickness, and boric ions are implanted on the rear side of the wafer. Then, boric ions are activated by performing a low-temperature annealing by the irradiation of microwaves, for example, and a P-type impurity layer 10 is formed. As a result, the P-type impurity layer 10 can be formed without damaging the semiconductor element already formed. Consequently, the P-type silicon substrate is prevented from turning into an N-type one, and the semiconductor device can also be prevented from breakdown due to the latch-up of a parasitic thyristor.

Description

【発明の詳細な説明】 〔概要〕 比較的不純物濃度の低い一導電型シリコン基板上に半導
体素子を形成する半導体装置であって、シリコン基板の
背面に高濃度の一導電型不純層を形成することによりダ
イアタッチに接触する該シリコン基板の背面近傍が一導
電型から逆導電型に反転されるのを防止し、寄生サイリ
スタによるラッチアップの防止を図る。
[Detailed Description of the Invention] [Summary] A semiconductor device in which a semiconductor element is formed on a silicon substrate of one conductivity type with a relatively low impurity concentration, in which a high concentration impurity layer of one conductivity type is formed on the back side of the silicon substrate. This prevents the vicinity of the back surface of the silicon substrate that contacts the die attach from being reversed from one conductivity type to the opposite conductivity type, thereby preventing latch-up due to parasitic thyristors.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置に関するものであり、更に詳しく言
えば、ECL回路などのバイポーラトランジスタが形成
される半導体装置の構造に関するものである。
The present invention relates to a semiconductor device, and more specifically, to the structure of a semiconductor device in which a bipolar transistor such as an ECL circuit is formed.

〔従来の技術〕[Conventional technology]

第2図はECL基本回路の回路図であり、R1,R2は
それぞれトランジスタQl、Q2のプルアップ抵抗であ
り、R3は各トランジスタに共通のエミッタ抵抗である
。一般に高電圧電源VCCは接地レベル(GND)に、
低電圧電源WEEは−5,2Vに設定サレル。
FIG. 2 is a circuit diagram of a basic ECL circuit, where R1 and R2 are pull-up resistors for transistors Ql and Q2, respectively, and R3 is an emitter resistor common to each transistor. Generally, the high voltage power supply VCC is at ground level (GND),
Low voltage power supply WEE is set to -5.2V.

次にこの回路の動作について説明する。入力電圧VIN
が基準電圧VRより高いとき、Qlがオン、Q2がオフ
してSlが低レベル、S2が高レベルとなる。一方、入
力電圧WINが基準電圧VRより低いとき、Qlがオフ
、Q2がオンしてSlが高レベル、S2が低レベルとな
る。
Next, the operation of this circuit will be explained. Input voltage VIN
When is higher than the reference voltage VR, Ql is turned on and Q2 is turned off, so that Sl is at a low level and S2 is at a high level. On the other hand, when the input voltage WIN is lower than the reference voltage VR, Ql is turned off and Q2 is turned on, so that Sl is at a high level and S2 is at a low level.

ところでECL回路はできるだけ高速動作するように、
Ql、Q2がON状態のとき飽和しないようにR1,R
2およびR3を最適値に設定している。またQl、Q2
のコレクタに寄生的に付加される容量をできるだけ小さ
くなるように工夫している。
By the way, in order for the ECL circuit to operate as fast as possible,
R1, R to prevent saturation when Ql, Q2 are in the ON state.
2 and R3 are set to optimal values. Also Ql, Q2
Efforts have been made to minimize the capacitance parasitically added to the collector.

第3図はこれを説明するためのトランジスタQlを形成
する従来例の半導体装置の断面図である。lはP型シリ
コン基板でWEEレベルにある。
FIG. 3 is a sectional view of a conventional semiconductor device forming a transistor Ql to explain this. 1 is a P-type silicon substrate and is at the WEE level.

2はその上に形成されるN型エピタキシャル層であり、
Qlのコレクタを構成する。3はアイソレーション用P
型不純物領域である。4はN型エピタキシャル層2に形
成されるP型不純物領域であり、Qlのベースを構成す
る。5は高濃度のN型不純物領域であり、Qlのエミッ
タを構成する。また6はコンタクト用のN型不純物領域
であり、5と同じプロセスにより形成される。
2 is an N-type epitaxial layer formed thereon;
Configure the collector of Ql. 3 is P for isolation
This is a type impurity region. 4 is a P-type impurity region formed in the N-type epitaxial layer 2, and constitutes the base of Ql. Reference numeral 5 denotes a heavily doped N-type impurity region, which constitutes the emitter of Ql. Further, 6 is an N-type impurity region for contact, which is formed by the same process as 5.

すなわちQlのコレクタに付加される寄生容量は、主と
して第3図に示すP型シリコン基板lとN型エピタキシ
ャル層2との接合容量CFであり、ECL回路の高速動
作のためにはこの容量を減らすことが必要とされる。
That is, the parasitic capacitance added to the collector of Ql is mainly the junction capacitance CF between the P-type silicon substrate l and the N-type epitaxial layer 2 shown in FIG. 3, and this capacitance must be reduced for high-speed operation of the ECL circuit. That is required.

このため従来より、例えば20Ω・cmのP型シリコン
基板が用いられ、また0、50・cmのN型エピタキシ
ャル層が形成される。
For this purpose, a P-type silicon substrate of, for example, 20 Ω·cm is conventionally used, and an N-type epitaxial layer of 0.50·cm is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで20Ω・cmのP型シリコン基板の場合、チッ
プにしてダイアタッチに固着するとき、第4図に示すよ
うにダイアタッチに接触するP型シリコン基板の背面が
N型反転することがある。
By the way, in the case of a P-type silicon substrate of 20 Ω·cm, when it is made into a chip and fixed to a die attach, the back surface of the P-type silicon substrate that comes into contact with the die attach may be reversed to an N type, as shown in FIG.

°なお第4図はECL回路の入力回路部の断面図であり
、7は入力抵抗、8はダイアタッチ、9はN型反転層で
ある。
Note that FIG. 4 is a cross-sectional view of the input circuit section of the ECL circuit, where 7 is an input resistor, 8 is a die attach, and 9 is an N-type inversion layer.

かかる場合、入力端子(IN)に高レベル電圧が入力す
るとき寄生的に形成されるサイリスタ(7(P・) −
2(N) −1(P) −9(N) )がラッチアップ
して大電流が流れ、半導体装置が破壊される場合がある
。勿論、不純物濃度の高い、例えば0.5Ω・cmのP
型シリコン基板を用いればN型反転を防止して半導体装
置の破壊を防ぐこともできるが、前述のようにトランジ
スタのコレクタ容量の増加を招き、動作の高速化を図る
ことができないという問題がある。
In such a case, when a high level voltage is input to the input terminal (IN), a thyristor (7(P・) −
2(N) -1(P) -9(N) ) may latch up, causing a large current to flow and destroying the semiconductor device. Of course, P with a high impurity concentration, for example, 0.5Ω・cm
If a type silicon substrate is used, N-type inversion can be prevented and damage to the semiconductor device can be prevented, but as mentioned above, this increases the collector capacitance of the transistor, making it impossible to achieve faster operation. .

本発明はかかる従来例の問題点に鑑み創作されたもので
あり、高速動作とラッチアップの防止の双方を可能とす
る半導体装置の提供を目的とする。
The present invention was created in view of the problems of the prior art, and aims to provide a semiconductor device that is capable of both high-speed operation and prevention of latch-up.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、比較的不純物濃度の低い一導電型シリコン基
板上に半導体素子を形成する半導体装置において、前記
シリコン基板の背面に高濃度の一導電型不純層を形成す
ることにより、該シリコン基板の背面近傍が一導電型か
ら逆導電型に反転されるのを防止することを特徴とする
The present invention provides a semiconductor device in which a semiconductor element is formed on a silicon substrate of one conductivity type with a relatively low impurity concentration, by forming a high concentration impurity layer of one conductivity type on the back side of the silicon substrate. It is characterized by preventing the vicinity of the back surface from being reversed from one conductivity type to an opposite conductivity type.

〔作用〕[Effect]

シリコン基板の背面には高濃度の一導電型の不純物層を
形成しているので、チップ化してダイアタッチに固着す
るときもシリコン基板の背面近傍が逆導電型に反転され
ることはない。
Since a highly concentrated impurity layer of one conductivity type is formed on the back surface of the silicon substrate, the vicinity of the back surface of the silicon substrate will not be reversed to the opposite conductivity type even when it is made into a chip and fixed to die attach.

このため該反転層および他の不純物層との間で寄生的サ
イリスタが形成されるのを防止することができ、従って
サイリスタのラッチアップによる半導体装置の破壊を防
ぐことが可能となる。
Therefore, it is possible to prevent a parasitic thyristor from being formed between the inversion layer and other impurity layers, and it is therefore possible to prevent damage to the semiconductor device due to latch-up of the thyristor.

〔実施例〕〔Example〕

次に図を参照しながら本発明の実施例について説明する
。第1図は本発明の実施例に係る半導体装置の断面図で
ある。この図において第4図の従来例の半導体装置と異
なるのは、P型不純物層lOが形成されている点である
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention. This figure differs from the conventional semiconductor device shown in FIG. 4 in that a P-type impurity layer IO is formed.

次にこのP型不純物層lOの形成する方法について説明
する。ウェハ上に所定の半導体素子が形成された後に、
ウェハは所定の厚さにまで削られ研磨される0次にウェ
ハの背面にポロンイオン(Bo)を打ち込む、その後、
例えばマイクロ波照射による低温アニールによりポロン
イオンを活性化してP型不純物層lOを形成する。これ
によりすでに形成されている半導体素子を損傷すること
なくウェハの背面にP型不純物層lOを形成することが
できる。
Next, a method for forming this P-type impurity layer IO will be explained. After predetermined semiconductor elements are formed on the wafer,
The wafer is ground and polished to a predetermined thickness. Next, poron ions (Bo) are implanted into the back of the wafer.
For example, poron ions are activated by low temperature annealing using microwave irradiation to form a P-type impurity layer IO. Thereby, the P-type impurity layer IO can be formed on the back surface of the wafer without damaging the semiconductor elements that have already been formed.

このようにして、本発明の実施例によれば、例えばEC
L回路に用いられるP型シリコン基板として従来通り2
0Ω・cmの低濃度のシリコン基板を用いることにより
寄生容量を減らし動作の高速化を図ることができるとと
もに、P型不純物層lOによりP型シリコン基板のN型
反転化を防止し、寄生サイリスタのラッチアップによる
半導体装置の破壊を防止することができる。
Thus, according to embodiments of the invention, e.g.
As a P-type silicon substrate used in L circuits, 2
By using a silicon substrate with a low concentration of 0Ω・cm, it is possible to reduce parasitic capacitance and speed up operation, and the P-type impurity layer IO prevents the P-type silicon substrate from becoming N-type, thereby reducing the parasitic thyristor. Destruction of the semiconductor device due to latch-up can be prevented.

なお実施例ではECL回路が形成される半導体装置につ
いて説明したが、その他のバイポーラ型回路が形成され
る半導体装置について適用できることは明らかである。
In the embodiment, a semiconductor device in which an ECL circuit is formed has been described, but it is obvious that the present invention can be applied to a semiconductor device in which other bipolar type circuits are formed.

またサイリスタ化するおそれがあればMO3型回路が形
成される半導体装置にも適用可能である。
It is also applicable to a semiconductor device in which an MO3 type circuit is formed if there is a risk of it becoming a thyristor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によればシリコン基板の背
面に該シリコン基板と同じ不純物型の不鈍物層を形成す
ることにより半導体装置のサイリスタ化を防止し、該サ
イリスタのラッチアップによる半導体装置の破壊を防止
することができる。
As explained above, according to one aspect of the present invention, by forming an impurity layer of the same impurity type as the silicon substrate on the back surface of a silicon substrate, it is possible to prevent a semiconductor device from becoming a thyristor, and to prevent the semiconductor device from becoming a thyristor due to latch-up of the thyristor. can prevent the destruction of

同時に、シリコン基板の濃度としては、この上に形成さ
れる半導体素子にとって最適の値を選択することができ
るので、所定の高性能の半導体素子を形成することが可
能となる。
At the same time, since the concentration of the silicon substrate can be selected to be the optimum value for the semiconductor element formed thereon, it is possible to form a semiconductor element with a predetermined high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る半導体装置の断面図であ
る。 第2図はECL基本回路の回路図であり、第3図は従来
例の半導体装置の断面図である。 第4図は従来例の半導体装置の問題点を説明する断面図
である。 (符号の説明) l・・・P型シリコン基板、 2・・・N型エピタキシャル層、 3.4.7・・・P型不純物領域、 5.6・・・N型不純物領域、 8・・・ダイアタッチ、 9・・・N型反転層、 lO・・・P型不純物層。 本宅m1lliめ叉党沓1腹醸囚 第1図 ECL基本回路 第2図 d束脣1Φ悶脂見4え朗すゐ図 第4図 第3図
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention. FIG. 2 is a circuit diagram of a basic ECL circuit, and FIG. 3 is a sectional view of a conventional semiconductor device. FIG. 4 is a cross-sectional view illustrating problems of a conventional semiconductor device. (Explanation of symbols) 1...P-type silicon substrate, 2...N-type epitaxial layer, 3.4.7...P-type impurity region, 5.6...N-type impurity region, 8...・Die attach, 9...N-type inversion layer, lO...P-type impurity layer. Main house m1lli Messenger 1 Figure 1 ECL basic circuit Figure 2 d Length 1

Claims (1)

【特許請求の範囲】[Claims] 比較的不純物濃度の低い一導電型シリコン基板上に半導
体素子を形成する半導体装置において、前記シリコン基
板の背面に高濃度の一導電型不純層を形成することによ
り、該シリコン基板の背面近傍が一導電型から逆導電型
に反転されるのを防止することを特徴とする半導体装置
In a semiconductor device in which a semiconductor element is formed on a silicon substrate of one conductivity type with a relatively low impurity concentration, by forming a high concentration impurity layer of one conductivity type on the back side of the silicon substrate, the area near the back side of the silicon substrate is improved. A semiconductor device characterized by preventing inversion from a conductivity type to an opposite conductivity type.
JP2501686A 1986-02-07 1986-02-07 Semiconductor device Pending JPS62183552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2501686A JPS62183552A (en) 1986-02-07 1986-02-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2501686A JPS62183552A (en) 1986-02-07 1986-02-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62183552A true JPS62183552A (en) 1987-08-11

Family

ID=12154114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2501686A Pending JPS62183552A (en) 1986-02-07 1986-02-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62183552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519193A (en) * 1992-10-27 1996-05-21 International Business Machines Corporation Method and apparatus for stressing, burning in and reducing leakage current of electronic devices using microwave radiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519193A (en) * 1992-10-27 1996-05-21 International Business Machines Corporation Method and apparatus for stressing, burning in and reducing leakage current of electronic devices using microwave radiation

Similar Documents

Publication Publication Date Title
EP0049273B1 (en) Complementary field-effect transistor integrated circuit device
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
US3667009A (en) Complementary metal oxide semiconductor gate protection diode
JPS6358380B2 (en)
US4543593A (en) Semiconductor protective device
US3913213A (en) Integrated circuit transistor switch
US5714793A (en) Complementary vertical bipolar junction transistors formed in silicon-on-saphire
US3770519A (en) Isolation diffusion method for making reduced beta transistor or diodes
JPH08288500A (en) Silicon carbide semiconductor element and its manufacture and use
US4873200A (en) Method of fabricating a bipolar transistor
US4724221A (en) High-speed, low-power-dissipation integrated circuits
US3704399A (en) Semiconductor device and circuit arrangement comprising the device
JPS62183552A (en) Semiconductor device
CA1289267C (en) Latchup and electrostatic discharge protection structure
JPS63148671A (en) Device preventive of electrostatic breakdown in semiconductor integrated circuit device
JPS6060753A (en) Semiconductor device
EP0121096B1 (en) Semiconductor contact structure
KR100356792B1 (en) Silicon on insulator device and method for fabricating the same
JPS59149045A (en) Semiconductor device
RU2166220C2 (en) Bipolar transistor
KR930008531B1 (en) Cmos invertor
KR100304950B1 (en) Cmos and fabrication method thereof
JP2932076B2 (en) Method for manufacturing semiconductor device
CN110571212A (en) Electrostatic protection structure, forming method and working method thereof, and electrostatic protection circuit
Glinski et al. Bipolar integrated circuits formed in p-type epitaxial layers