JPS62182594A - Heat transfer body for dynamic latent heat accumulator - Google Patents

Heat transfer body for dynamic latent heat accumulator

Info

Publication number
JPS62182594A
JPS62182594A JP61308966A JP30896686A JPS62182594A JP S62182594 A JPS62182594 A JP S62182594A JP 61308966 A JP61308966 A JP 61308966A JP 30896686 A JP30896686 A JP 30896686A JP S62182594 A JPS62182594 A JP S62182594A
Authority
JP
Japan
Prior art keywords
heat
phase change
change material
conductor
annular conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61308966A
Other languages
Japanese (ja)
Inventor
アンドレアス・ギユンテル
ウーウエ・ケスネル
ウオルフガング・アーレンス
クリスチーネ・アイルデルマン
トーマス・フアングヘーネル
ハンス−ハインツ・エモンス
ウオルフガング・デイートリツヒ
リユーデイゲル・ナウマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bauakademie der DDR
Original Assignee
Bauakademie der DDR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bauakademie der DDR filed Critical Bauakademie der DDR
Publication of JPS62182594A publication Critical patent/JPS62182594A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Central Heating Systems (AREA)
  • Road Paving Structures (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、加熱と冷却を閉鎖容器中でまたは循環させ
て沸騰し且つ凝縮する熱輸送剤と直接接触させて実現す
る、相転位材を特に利用する蓄熱工学の領域で利用され
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention makes particular use of phase change materials in which heating and cooling is achieved in a closed vessel or in direct contact with a heat transfer agent that boils and condenses by circulating it. It is used in the field of thermal storage engineering.

従来技術 潜在蓄熱の問題領域には多数の経営の構造と方法が知ら
れている。
Prior Art A number of management structures and methods are known in the problem area of latent heat storage.

専門書及び特許文献に記載された解決策は、1蓄熱器容
量をできる限り小さくするために、できる限り多い相転
移熱量のある一定の相転位材、2゜相転位材への熱導入
、相転位材からの熱導出に負の影響を与える相転位材の
特殊な性質を平均するための、各種材料と添加要素 とに関するものである。
The solutions described in technical books and patent literature are: 1) A certain phase change material with as much phase change heat as possible, 2° heat introduction into the phase change material, phase The present invention relates to various materials and additive elements to balance out the special properties of phase transition materials that negatively affect heat extraction from the transition materials.

この種の間層はたとえばD E、−OS 293795
9、  I)D−AP209902. I)1)−Wl
15.1126などにより知られている。
Interlayers of this type are for example DE, -OS 293795
9, I) D-AP209902. I)1)-Wl
15.1126 etc.

これらの解決策の特色は熱輸送剤の使用にある。A feature of these solutions is the use of heat transport agents.

これらの熱輸送剤は伝熱能力を改良するために相転位材
と直接接触させられ、熱伝導の対流部分を特に増すため
に運動させられる。
These heat transport agents are brought into direct contact with the phase change material to improve heat transfer capabilities and are moved to specifically increase the convective portion of heat transfer.

これらの解決策では熱輸送剤として沸騰しにくい液体或
いは沸騰しやすい液体が提案される。前者はたとえば油
で熱の導入・導出中流動状態を維持する。後者はたとえ
ば冷却剤で、熱の導入・導出中沸騰と凝縮を繰り返す。
These solutions propose low-boiling or high-boiling liquids as heat transport agents. The former is, for example, oil, which maintains a fluid state during the introduction and removal of heat. The latter are, for example, coolants that repeatedly boil and condense during the introduction and removal of heat.

その場合前提となるのは、熱輸送剤と相転位材は互いに
溶は合わず、分離することである。
In this case, the premise is that the heat transport agent and the phase change material do not dissolve in each other and are separated.

その場合重要なのは、沸騰しにくい液体が用いられるず
べての発明では熱輸送剤を循環ポンプで運動させる必要
があり、他の発明では熱輸送剤の運動は駆動なしの沸騰
工程を経て実現することができ、機械的運動は必ずしも
必要ない。
In this case, it is important to note that all inventions in which hard-to-boil liquids are used require the heat transport agent to be moved by a circulation pump, while in other inventions the movement of the heat transport agent is achieved through a boiling process without a drive. mechanical movement is not necessarily required.

循環ポンプを用いる解決策はたとえばD E −092
82640/I、  I)l−〕−083023/19
/I。
Solutions using circulation pumps are for example DE-092
82640/I, I)l-]-083023/19
/I.

DE−O829+651/Iである。循環ポンプなしに
作業する沸騰し且つ凝縮する熱輸送剤を用いる解決策は
たとえばDI)−WP 225857とEPO079/
I 52である。
DE-O829+651/I. Solutions using boiling and condensing heat transport agents working without circulation pumps are for example DI)-WP 225857 and EPO 079/
I52.

何れの解決策の場合も一つの問題がある。即ち硬い状態
ではすべての熱輸送剤について相転位材が透過性でない
か或いは僅かしか透過しない。ごの非透過性の結果相転
位材中への熱の導入は阻止されるかまたは強く妨げられ
ろ。
There is one problem with either solution. That is, in the hard state, the phase change material is not permeable or only slightly permeable to all heat transport agents. As a result of the impermeability of the metal, the introduction of heat into the phase change material is prevented or strongly impeded.

沸騰しにくい液体の循環はこれによって不可能となるか
または強いポンプ圧によってのみ可能である。沸騰し易
い液体の循環は相転位材中にある毛細管及び亀裂中での
み可能かまたは特別の添加材によって結晶の層として存
在する相転位材中で結晶の中空間で可能である。沸騰す
る際相転位材中に上昇する蒸気と逆流する凝縮物とは間
隙中で相対的に妨げ合い、従って大きな熱伝導能力発揮
を不可能とする。 この問題を解決するためにDE−P
S3010625では沸騰しにくい液体については相転
位材中を垂直に案内されたいわゆる溶解導体が提案され
ており、この溶解導体により相転位材は管路状に溶解す
る。
Circulation of non-boiling liquids is thereby not possible or is only possible with strong pump pressures. Circulation of the boiling liquid is possible only in the capillaries and cracks present in the phase change material or in the interspaces of the crystals in the phase change material present as layers of the crystals with special additives. During boiling, the vapor rising into the phase change material and the condensate flowing back are relatively hindered in the gap, thus making it impossible to develop a large heat transfer capacity. To solve this problem, DE-P
For liquids that are difficult to boil, S3010625 proposes a so-called melting conductor that is guided vertically through the phase change material, and the phase change material is melted in the form of a conduit by this melting conductor.

熱輸送剤の循還は蓄熱器内部で前記管路中を案内されて
、障害なしに行なうことができる。
The circulation of the heat transport agent inside the heat accumulator can take place without any hindrance, being guided through the pipes.

この解決策は沸騰しにくい液体についてのみの改良であ
る。
This solution is an improvement only for liquids that are difficult to boil.

沸騰し易い液体に対してはこの解決策は転用できない。This solution cannot be applied to liquids that easily boil.

一方では熱伝導に必要な蒸気泡が放熱に至る迄相転位材
に接触することなく管路内部で上界し、他方蒸気泡は上
が開いた管路を経て逃げ、蓄熱材料の内部にはとどまら
ずに放熱に至り、続いて凝縮し、また気化する。
On the one hand, the vapor bubbles necessary for heat conduction rise inside the pipe without coming into contact with the phase transition material until heat dissipation, and on the other hand, the vapor bubbles escape through the pipe with an open top, and are trapped inside the heat storage material. It continues to dissipate heat, then condenses and then evaporates again.

沸騰し易い液体についての実際的な解決策は熱の導入に
必要な熱伝導面積の拡大、たとえば相転偉材中に設けら
れたリブと薄板による拡大によって可能となろう。しか
しこれらの而は材料費が高くつき、沸騰・凝縮過程を更
に妨げることになるので、この形は熱伝導能力の強化の
ために従来は静的潜熱蓄熱器中でのみ利用されていた。
A practical solution for boiling liquids may be possible by increasing the heat transfer area required for the introduction of heat, for example by means of ribs and laminae in the phase changer. However, these methods require high material costs and further impede the boiling and condensation process, so this form has hitherto only been used in static latent heat storages to enhance heat transfer capabilities.

静的潜熱蓄熱器はこれらの面なしには働かない。Static latent heat storage does not work without these aspects.

発明の目的 この発明の目的は、動的潜熱蓄熱器にあって熱導入中に
沸騰し且つ凝縮する熱輸送剤と関連する熱伝導能力を改
善し、同時に材料費を引き下げ、操作の確実性を高める
ことにある。
OBJECTS OF THE INVENTION It is an object of the invention to improve the heat transfer capacity associated with a heat transport agent in a dynamic latent heat storage device that boils and condenses during heat introduction, while reducing material costs and increasing reliability of operation. It is about increasing.

発明の構成 この発明あ基本課題は、動的潜熱蓄熱器の相転位材中へ
の熱集蓄を構造的要素によって増強することにある。
DESCRIPTION OF THE INVENTION The basic object of the present invention is to enhance the heat accumulation in the phase change material of a dynamic latent heat storage device by means of structural elements.

課題解決手段 この課題は一個の管状かごによって解決される。Problem solving means This problem is solved by a single tubular cage.

この管状かごは上部小環状導管と下部大環状導管から成
り、これらの上下の大小の環状導管は円錐台形の(仮想
)套面上を下部の環状導管から上部の環状導管に至る多
数の配管によって相互に連結されている。
This tubular cage consists of an upper small annular conduit and a lower large annular conduit, and these upper and lower large and small annular conduits are connected by numerous pipes extending from the lower annular conduit to the upper annular conduit on a truncated conical (imaginary) mantle. interconnected.

熱伝導体の対流部分と環状かごは直列或いは相互に平行
に連結されている。
The convection portion of the heat conductor and the annular cage are connected in series or parallel to each other.

平行連結の場合は熱源から来る熱媒体の一部を熱伝導体
の従来型部分に下部環状導管の分配器を介して給送され
る。
In the case of a parallel connection, a portion of the heating medium coming from the heat source is fed to the conventional part of the heat conductor via a distributor in the lower annular conduit.

この環状導管から出発して加熱媒体は配管中を高く」1
昇して−1一部環状導管中に流入する。ごの−に1部環
状導管中に加熱媒体が集められ、一本のもどり管を介し
て熱媒体の従来型部分から出る加熱媒体の流れと収集器
中で合流する。
Starting from this annular conduit, the heating medium travels high through the pipe.
-1 part flows into the annular conduit. The heating medium is then collected in a partially annular conduit and merges in the collector with the flow of heating medium exiting from the conventional section of the heating medium via a return pipe.

直列接続の場合は加熱媒体がまず完全に管状かごに通さ
れ、次に熱伝導体の従来型部分を介して案内されるかま
たはその逆である。動的潜熱蓄熱器内にこの発明による
熱伝導体を配設するためには熱伝導体の従来型部分を熱
輸送剤と、管状かごを相転位材と接触させておかなけれ
ばならない。
In the case of a series connection, the heating medium is first passed completely through the tubular basket and then guided through the conventional part of the heat conductor, or vice versa. In order to place a thermal conductor according to the invention in a dynamic latent heat storage, the conventional part of the thermal conductor must be in contact with the heat transport agent and the tubular cage with the phase change material.

その場合重要なのは、かごの(仮想)側部室中の配管を
傾斜させ、かごを相転位材から−1−へは出さないこと
である。
In that case, what is important is to incline the piping in the (imaginary) side chamber of the cage so that the cage does not come out from the phase change material to -1-.

管状かごの傾斜と、そして高さ制限によって、熱伝導体
の従来型部分から」1昇する蒸気泡が確実に、」二をふ
さいだ傾斜管路中のみを」1昇できる。
The slope of the tubular cage and the height restriction ensure that vapor bubbles rising from the conventional portion of the heat conductor can rise only in the obstructed inclined conduit.

このようにして、蒸気泡が垂直には−1−昇せず、相転
位材の接触なしには」−昇ぜず、放熱なしに相転位材か
ら出て行くことができ、これと接触を続けて、放熱なし
にこれからは出て行くことができない。
In this way, the vapor bubble does not rise vertically and without contact with the phase change material and can exit the phase change material without rising and heat dissipation. Continuing, you can't go out from now on without heat dissipation.

放熱によって生じる凝縮物は管路の下側面で管路の傾斜
によって常に相転位材と接触して熱伝導体に戻され、そ
の場合凝縮物中にある熱を相転位材に供給して相転位材
を予熱するのが有利であるこれらの工程によって相転位
材への熱の導入の増加が行なわれる。
The condensate generated by heat dissipation is constantly brought into contact with the phase change material by the slope of the pipe on the lower surface of the pipe and returned to the heat conductor, in which case the heat in the condensate is supplied to the phase change material to cause phase change. These steps, in which it is advantageous to preheat the material, result in an increased introduction of heat into the phase change material.

その場合かごの作用は熱導入の動態の改善によって調整
され、熱伝導面の拡張によっては調整されない。従って
改善するのに必要な管はごく僅かで済み、材料費の増加
は回避される。この発明によって円錐台形の管状かごの
構造は、熱導入能力の5〜20%がこの管状かごから相
転位材中に入り、円錐台形の側面の線が水平線と50〜
85゜の(内)角度を作るようになされる。管状かご中
の放熱によって凝縮する冷却材を加熱媒体として使用す
るという特殊な場合には上部環状導管は省くことができ
、配管の一ヒ方への口は閉鎖しである。
The action of the cage is then adjusted by improving the kinetics of heat introduction and not by expanding the heat transfer surface. Only a few tubes are therefore required to be retrofitted, and an increase in material costs is avoided. According to the present invention, the structure of the truncated conical tubular cage is such that 5 to 20% of the heat introduction capacity enters the phase change material from this tubular cage, and the side lines of the truncated cone are 50 to 50% of the horizontal line.
This is done to create an (inner) angle of 85°. In the special case of using as heating medium a coolant which is condensed by heat dissipation in the tubular cage, the upper annular conduit can be omitted and the opening to one side of the pipe is closed.

この場合配管は作業態様が冷却材を充填されている熱管
と同じである。この発明の第二の態様では円錐台の(仮
想)母面上に配置された配管がループ管に替わっている
。これはこの発明によって、上部環状導管を(仮想)円
錐台の内部で下部環状導管の直上に配設することによっ
て可能となる。二本の環状導管の直径はごく僅かしか違
わない。
In this case, the pipes have the same working behavior as heat pipes filled with coolant. In the second aspect of the invention, the pipe arranged on the (imaginary) generatrix of the truncated cone is replaced by a loop pipe. This is made possible according to the invention by arranging the upper annular conduit directly above the lower annular conduit inside the (virtual) truncated cone. The diameters of the two annular conduits differ only slightly.

この発明の第三の実施態様では、円錐台(仮想)の母面
がらせん管によって形成されることによって円錐台形の
管状かごが構成される。この場合には二本の配管は余分
である。
In a third embodiment of the present invention, a truncated cone-shaped tubular cage is constructed by forming the base surface of a truncated cone (virtual) by a spiral tube. In this case, two pipes are redundant.

更にその上円錐台形管状かごを円錐台母面の平面にあっ
て」一部がふさがれた管にのみ耐えるように構成するこ
とができる。
Furthermore, the truncated conical tubular cage can be constructed in such a way that it only accommodates partially obstructed tubes in the plane of the truncated cone generatrices.

実施例を示した図について更に詳記する。The figures showing examples will be described in more detail.

第1図に任意の従来型熱伝導体に連結した管状かごの第
一実施態様を示す。
FIG. 1 shows a first embodiment of a tubular cage connected to any conventional heat conductor.

両システムをごの発明により熱を導入するための熱伝導
体に構成する。
Both systems are configured with heat conductors for introducing heat according to the invention.

熱伝導体の機能態様を説明するために動的潜熱蓄熱器の
公知の形態の使用について説明する。
The use of known forms of dynamic latent heat storage will be described to illustrate the functional aspects of the thermal conductor.

蓄熱器は耐圧性で気密の被覆体3から構成されている。The heat storage device consists of a pressure-resistant and gas-tight covering 3.

被覆体中にはこの発明による従来型の部分4と管状かご
と熱導出用熱伝導体5を組み込んである。前記管状かご
は下部管状導管9、」一部管状導管IO1配管7、熱源
媒体を分配するための配分器14、熱源媒体を収集する
ための収集器15もどり管6から構成されている。
A conventional part 4 according to the invention and a tubular cage and heat conductor 5 for heat extraction are incorporated in the sheathing. The tubular cage is composed of a lower tubular conduit 9, a partially tubular conduit IO1 pipe 7, a distributor 14 for distributing the heat source medium, a collector 15 for collecting the heat source medium and a return pipe 6.

熱伝導体の従来型部分4と、場合によっては下部環状導
管9も熱輸送剤を充填しである熱導入1の領域にある。
The conventional part 4 of the heat conductor and possibly also the lower annular conduit 9 are in the region of the heat introduction 1 filled with heat transport material.

その」−(不自然な密度差により)相転位材2があり、
これが管状かごを包囲している。相転位材」二には熱導
出用領域13が接続してあり、この熱導山部には熱輸送
剤の蒸気のみが充填されている。
- There is a phase change material 2 (due to an unnatural density difference),
This surrounds the tubular cage. A heat conduction region 13 is connected to the phase change material 2, and this heat conduction portion is filled only with the vapor of the heat transport agent.

熱源媒体のための流動路Ifと熱消費媒体のための流動
路12も同様に示しである。熱導入の場合には熱伝導体
の従来型部分にも管状かごにも熱源媒体が貫流し、熱源
媒体の融点は相転位材の融点より高い。
The flow path If for the heat source medium and the flow path 12 for the heat consumption medium are likewise shown. In the case of heat introduction, a heat source medium flows through both the conventional part of the heat conductor and the tubular cage, the melting point of the heat source medium being higher than the melting point of the phase change material.

両システムの貫流の結果二つの工程が同時に進行する。As a result of the flow through both systems, two processes proceed simultaneously.

一方では相転位材が管状かごの配管7に沿って溶解して
管路8になり、他方熱輸送材は熱伝導体4の従来型部分
の表面の熱導入1のための領域で気化する。
On the one hand, the phase change material melts along the pipe 7 of the tubular cage to form a conduit 8, and on the other hand, the heat transport material vaporizes in the area for heat introduction 1 on the surface of the conventional part of the heat conductor 4.

発生した蒸気泡は管路内を上昇し、管路の傾斜故に常に
まだ溶けていない相転位材と接触している。
The generated vapor bubbles rise within the pipe and are always in contact with the unmelted phase change material due to the slope of the pipe.

このような接触のない気泡の」−昇は不可能である。選
定された蓄熱器システムの機能機構に従って相転位材の
熔融温度より高い温度で気化が起こるので、蒸気泡は融
点より高い温度を有する。
Such non-contact bubble evacuation is not possible. The vapor bubbles have a temperature above the melting point, since vaporization takes place above the melting temperature of the phase change material according to the functioning mechanism of the selected regenerator system.

非熔融状態では温度が融点より僅かしか低くない固体相
転位材2と蒸気泡との接触により、相転位材への凝縮熱
の同時伝導と共に蒸気の凝縮が起こる。
Contact between the vapor bubble and the solid phase transition material 2, whose temperature is only slightly lower than the melting point in the non-molten state, causes condensation of the vapor with simultaneous conduction of the heat of condensation to the phase transition material.

凝縮熱の伝導は材料を次第に融点まで熱することになる
か或いは既に融点になっている場合には可溶性の状態の
相転位材を引き起こす。
Conduction of the heat of condensation will gradually heat the material to the melting point, or if already at the melting point, cause a phase change material to be in a soluble state.

熱輸送材の蒸気から形成された凝縮物は管路8中で滴下
し、管路の傾斜によって再び管路8の下側で相転位材2
と接触する。逆戻りする凝縮物は熱伝導体の従来型部分
で改めて気化し、その結果全工程が継続周期で繰り返さ
れる。
The condensate formed from the vapor of the heat transport material drips in the line 8 and, due to the inclination of the line, returns to the phase change material 2 on the underside of the line 8.
come into contact with. The returning condensate is vaporized again in the conventional part of the heat conductor, so that the whole process is repeated in successive cycles.

管状かごは相転位材からは突出しないので、この周期は
熱伝導の効率の高い相転位材2の内部のことである。
Since the tubular cage does not protrude from the phase change material, this period is within the phase change material 2 where heat conduction is highly efficient.

相転位材としてNa、SO4・IOH,Oを用いて実施
される実験から、水平線に対して管状かご(または円錐
台の側線)の配管7が78°傾斜して管状かごを貫流す
る潜熱蓄熱器に供給された熱源媒体の量が8%である場
合蓄熱器中への熱導入の20%の効率アップが得られる
ことが判った。
From experiments carried out using Na, SO4/IOH, and O as phase change materials, it was found that a latent heat regenerator in which the pipe 7 of the tubular cage (or lateral line of a truncated cone) is inclined at 78 degrees with respect to the horizontal line, and the flow flows through the tubular cage. It has been found that when the amount of heat source medium supplied to the heat source medium is 8%, an increase in efficiency of heat introduction into the heat storage device by 20% can be obtained.

同じ程度の効率上昇は従来型手段を用いたら、即ち従来
式熱伝導の熱伝導面の拡大によれば約8倍の材料費がか
かる。
The same degree of efficiency increase would cost about eight times as much material using conventional means, ie, by increasing the heat transfer surface of conventional heat transfer.

【図面の簡単な説明】[Brief explanation of drawings]

図は一実施例の縦断側面図である。 図中符号 ■・・・熱導入部、2・・・相転位材、7・・・配管、
9.10・・・環状導管。
The figure is a longitudinal sectional side view of one embodiment. Symbol ■ in the figure: Heat introduction part, 2: Phase change material, 7: Piping,
9.10...Annular conduit.

Claims (1)

【特許請求の範囲】 1)熱導入のために沸騰し且つ凝縮する熱輸送剤により
処理作業し、熱輸送剤は直接相転位材と接触する、動的
潜在蓄熱器用熱伝導体であって、従来型部分と溶解導体
を備えた非従来型部分とから成り、これらの部分は動的
洗剤蓄熱器中に、従来型部分が熱輸送剤と、非従来型部
分が相転位材と接触するように配置されている、熱伝導
体において、溶解導体は円錐台形の環状かごを次のよう
に形成すること、即ち多数の配管(7)を水平線に対し
て50〜85°傾斜している円錐台の仮想套面上に配設
し、配管(7)は円錐台の上面を形成し、相転位材中に
ある上部環状導管(10)と円錐台の基面を形成する下
部環状導管(9)とを介して相互に連結してあることを
特徴とする、動的潜在蓄熱器用熱伝導体。 2)配管(7)はループ管であり、相転位材(2)中の
上部環状導管(10)が熱導入(1)の領域中の下部環
状導管(9)上にある、特許請求の範囲1)に記載の熱
伝導体。 3)円錐台形状の環状かごが完全に相転位材(2)中に
ある螺旋管から成る、特許請求の範囲1)に記載の熱転
位材。 4)円錐台形状の環状かごが下部環状導管(9)を有し
、母面が多数の上部閉鎖管から成る、特許請求の範囲1
)に記載の熱伝導体。
[Scope of Claims] 1) A thermal conductor for a dynamic latent heat storage, in which the processing operation is performed by a heat transfer agent that boils and condenses for heat introduction, and the heat transfer agent is in direct contact with a phase change material, comprising: It consists of a conventional part and a non-conventional part with a molten conductor, which parts are arranged in a dynamic detergent heat storage such that the conventional part is in contact with the heat transport agent and the unconventional part is in contact with the phase change material. In the heat conductor, the melting conductor forms a truncated conical annular cage as follows, i.e., a number of pipes (7) are arranged in a truncated conical shape inclined at an angle of 50 to 85 degrees with respect to the horizontal line. The pipe (7) forms the upper surface of the truncated cone, and the upper annular conduit (10) in the phase change material and the lower annular conduit (9) form the base of the truncated cone. A thermal conductor for a dynamic latent heat storage device, characterized in that the thermal conductor is interconnected through. 2) The pipe (7) is a loop pipe, the upper annular conduit (10) in the phase change material (2) being above the lower annular conduit (9) in the area of heat introduction (1). The thermal conductor described in 1). 3) The thermal transition material according to claim 1), wherein the truncated conical annular cage consists of a helical tube completely located within the phase change material (2). 4) The truncated cone-shaped annular cage has a lower annular conduit (9) and the parent surface consists of a number of upper closed tubes.
) The thermal conductor described in ).
JP61308966A 1985-12-31 1986-12-26 Heat transfer body for dynamic latent heat accumulator Pending JPS62182594A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD28F/285763-3 1985-12-31
DD85285763A DD256434A3 (en) 1985-12-31 1985-12-31 HEAT TRANSFER FOR DYNAMIC LATENT WASTE MEMORY

Publications (1)

Publication Number Publication Date
JPS62182594A true JPS62182594A (en) 1987-08-10

Family

ID=5575530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308966A Pending JPS62182594A (en) 1985-12-31 1986-12-26 Heat transfer body for dynamic latent heat accumulator

Country Status (9)

Country Link
JP (1) JPS62182594A (en)
AT (1) AT388046B (en)
BG (1) BG50799A1 (en)
CH (1) CH673889A5 (en)
DD (1) DD256434A3 (en)
DE (1) DE3642754A1 (en)
HU (1) HU199980B (en)
SE (1) SE461546B (en)
SU (1) SU1657891A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100819C2 (en) * 1991-01-14 1995-10-26 Herrmann Waermesysteme Gmbh Device for storing heat
US5685289A (en) * 1994-10-04 1997-11-11 Yeda Research And Development Co., Ltd. Heat storage device
DE102009006788A1 (en) 2009-01-30 2010-08-12 Tutech Innovation Gmbh Heat accumulator with a phase change material and method for its production
RU2451875C1 (en) * 2010-10-14 2012-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Heat exchanger
RU2504717C2 (en) * 2012-02-27 2014-01-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт судовой электротехники и технологии" (ФГУП "ЦНИИ СЭТ") Heat exchanger
DE102016200197A1 (en) * 2016-01-11 2017-07-13 Siemens Aktiengesellschaft Phase Change Memory
RU192766U1 (en) * 2019-07-09 2019-09-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ижевская государственная сельскохозяйственная академия" HEAT BATTERY
US11321294B2 (en) 2019-09-09 2022-05-03 Salesforce.Com, Inc. Database index repair

Also Published As

Publication number Publication date
AT388046B (en) 1989-04-25
ATA332486A (en) 1988-09-15
SE8605619D0 (en) 1986-12-30
DE3642754A1 (en) 1987-07-02
BG50799A1 (en) 1992-11-16
SE8605619L (en) 1987-07-01
SU1657891A1 (en) 1991-06-23
HU199980B (en) 1990-03-28
CH673889A5 (en) 1990-04-12
HUT46141A (en) 1988-09-28
DD256434A3 (en) 1988-05-11
SE461546B (en) 1990-02-26

Similar Documents

Publication Publication Date Title
CN100334931C (en) Plane capillary core evaporimeter with fin for CPL
JPS62182594A (en) Heat transfer body for dynamic latent heat accumulator
CN100335858C (en) Heat pipe
US5190098A (en) Thermosyphon with evaporator having rising and falling sections
CN111551058B (en) Ultra-long gravity heat pipe with enhanced carrying limit
RU2675977C1 (en) Method of transmitting heat and heat transferring device for its implementation
US3598178A (en) Heat pipe
JPH04501458A (en) Heat pipe for regenerating evaporated metals
JPH10238973A (en) Thin composite plate heat pipe
JPS5835388A (en) Rotary-type heat pipe
JPS61173085A (en) Latent heat storage device
JPH0552491A (en) Heat exchanging device
JPS63207994A (en) Heat circulating device
JPS59134488A (en) Latent heat type heat accumulator
WO2023279757A1 (en) Heat dissipation apparatus and electronic device
CN219810320U (en) Novel composite heat pipe
CN213335718U (en) Flat heat pipe with fast heat dissipation
JPH07127982A (en) Heat transfer pipe
Narute et al. A Review on Effect of Working Fluid with Nano Particle On The Thermal Performance of TPCT
JPH07115171B2 (en) Work quenching equipment in vapor phase soldering equipment
SU1270531A1 (en) Method of heat exchange between liquid and solid surface
Kalman et al. Visualization studies of a freon-113 bubble condensing in water
JPH03290511A (en) Thawing treatment device
JPS58210440A (en) Heat pipe type solar heat water heater
Saatci et al. Temperature drops in heat pipes