JPH07127982A - Heat transfer pipe - Google Patents

Heat transfer pipe

Info

Publication number
JPH07127982A
JPH07127982A JP27543393A JP27543393A JPH07127982A JP H07127982 A JPH07127982 A JP H07127982A JP 27543393 A JP27543393 A JP 27543393A JP 27543393 A JP27543393 A JP 27543393A JP H07127982 A JPH07127982 A JP H07127982A
Authority
JP
Japan
Prior art keywords
heat
heat generating
reservoir
heating element
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27543393A
Other languages
Japanese (ja)
Inventor
Akihiro Miyasaka
明宏 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27543393A priority Critical patent/JPH07127982A/en
Publication of JPH07127982A publication Critical patent/JPH07127982A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat transfer pipe in which a boiling pressure is high, and correspondingly a pressure for circulating fluid is high and no check valve is installed. CONSTITUTION:A heat generating part 4 is integrated with a fine tube 3. A cooling part 2 is contacted with the fine tube 3. A reservoir 5 is fixed near the heat generating part 4 of the fine tube 3 and working liquid condensed at the cooling part 2 is stored there, and then the liquid is returned back to the heat generating part 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱制御を行なうための熱
輸送装置に関し、特に発熱体を冷却するために用いられ
るループ型ヒートパイプ構造の熱輸送パイプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device for controlling heat, and more particularly to a heat transfer pipe having a loop type heat pipe structure used for cooling a heating element.

【0002】[0002]

【従来の技術】図8はこの種の熱輸送パイプの従来例の
断面図、図9は図8中の逆止弁14の断面図である。
2. Description of the Related Art FIG. 8 is a sectional view of a conventional example of this type of heat transport pipe, and FIG. 9 is a sectional view of a check valve 14 in FIG.

【0003】細管13は環状になり、内部には一定量の
凝縮性の作動液が封入されている。細管3の内部には凝
縮性の作動液の循環方向を決定するための逆止弁14が
取り付けられている。発熱体11は熱制御すべきもので
発熱量の大きい物体であり、細管13に接触するように
取付けられている。冷却フィン12は発熱体11からの
熱を放出させるための冷却部であって、細管11に接触
して取付けられており、発熱体11が所定の温度となる
ような面積を有している。逆止弁14は、図9に示すよ
うに、小さな球15とスロート16とストッパー17と
からなっている。この逆止弁14は、作動液がスロート
16の方向からきた場合には球15がストッパー17に
ひっかかり、球15とストッパー17の隙間から作動液
が流れ出、逆にストッパー17の方から作動液が流れて
きた場合には球15がスロート16の方向へ流れ、球1
5がスロート16に密着して流れを止めるようになって
いる。
The thin tube 13 has an annular shape, and a fixed amount of condensable hydraulic fluid is enclosed therein. A check valve 14 for determining the circulation direction of the condensable hydraulic fluid is attached inside the thin tube 3. The heating element 11 is an object that is to be thermally controlled and has a large amount of heat generation, and is attached so as to come into contact with the thin tube 13. The cooling fin 12 is a cooling unit for releasing heat from the heating element 11, is attached in contact with the thin tube 11, and has an area such that the heating element 11 has a predetermined temperature. The check valve 14 includes a small ball 15, a throat 16 and a stopper 17, as shown in FIG. In the check valve 14, when the hydraulic fluid comes from the direction of the throat 16, the ball 15 is caught by the stopper 17, the hydraulic fluid flows out from the gap between the ball 15 and the stopper 17, and conversely, the hydraulic fluid is discharged from the stopper 17. When flowing, the sphere 15 flows toward the throat 16 and the sphere 1
5 is closely attached to the throat 16 to stop the flow.

【0004】次に、図8に示す熱輸送パイプにおいて発
熱体11の冷却が生じる原理を説明する。発熱体11か
ら発生した熱は細管13の壁へ熱伝導して内部に封入さ
れている凝縮性の作動液を沸騰させる。凝縮性の作動液
が沸騰して蒸発する際に蒸発潜熱として蒸気内に取り込
まれて冷却部12まで流れ、そこで凝縮されて液になる
際に凝縮熱として細管13の外部へ放出される。発熱体
11と接触している細管13内での沸騰圧力によって、
流体が冷却部12へ押し出され、細管13内に存在する
逆止弁14の作用とによって凝縮性の作動液の循環方向
が決定される。発熱体11が発熱していない状態では凝
縮性の作動液が細管13の底に溜まり、上部に空間が存
在している状態となっているが、沸騰が始まると上部に
形成された空間を蒸気が通過する。すると、細管13が
細いので、液面に蒸気が流れることによって作動液が波
立ち、蒸気速度が大きいと、波も大きくなり管断面を閉
塞する状態となる。管断面を閉塞した作動液はある程度
の長さを持つ液溜まりとなる。すなわち、流れは蒸気と
作動液が交互になったスラグ流の状態で冷却部12まで
流れる。冷却部12から発熱部11への凝縮性の作動液
の帰還は、冷却部12で凝縮された液が溜まり、この液
溜まり端で形成される液曲面と蒸発部11近傍で形成さ
れている液曲面の違いから生じる毛細管圧力差、および
逆止弁14の効果によって生じる。図10は液曲面の違
いから生じる毛細管圧力差を説明する図であり、18は
発熱部11近傍での液曲面、19は冷却部12近傍での
液曲面、20は液曲面での曲率半径を示す。蒸気圧力と
液圧力の差は曲率半径に逆比例し、気液圧力差は発熱部
11で大きくなる。図10のように発熱部と冷却部が近
在する場合での液の曲率半径を比較すると、発熱部の半
径が冷却部の半径より小さくなる。管上部に空間が存在
する場合には蒸気が冷却部まで移動し易いため、蒸気圧
力は発熱部と冷却部間でほぼ等しい。したがって、冷却
部12での液圧力が発熱部11より大きくなり、凝縮性
の作動液は発熱部11へ帰還する。
Next, the principle of cooling of the heating element 11 in the heat transport pipe shown in FIG. 8 will be described. The heat generated from the heating element 11 conducts heat to the wall of the thin tube 13 to boil the condensable working liquid enclosed therein. When the condensable working liquid boils and evaporates, it is taken into the vapor as evaporation latent heat and flows to the cooling unit 12, where it is condensed as a liquid and released as condensation heat to the outside of the thin tube 13. By the boiling pressure in the thin tube 13 which is in contact with the heating element 11,
The fluid is pushed out to the cooling unit 12, and the action of the check valve 14 present in the thin tube 13 determines the circulation direction of the condensable hydraulic fluid. When the heating element 11 is not generating heat, the condensable hydraulic fluid is collected at the bottom of the thin tube 13 and there is a space at the top, but when boiling begins, the space formed at the top is vaporized. Passes through. Then, since the thin tube 13 is thin, the working liquid swells due to the steam flowing to the liquid surface, and when the steam velocity is high, the wave becomes large and the tube cross section is closed. The working fluid that has blocked the cross section of the pipe becomes a liquid pool having a certain length. That is, the flow flows to the cooling unit 12 in a state of slag flow in which steam and hydraulic fluid alternate. When the condensable hydraulic fluid is returned from the cooling unit 12 to the heat generating unit 11, the liquid condensed in the cooling unit 12 is accumulated, and the liquid curved surface formed at the liquid pool end and the liquid formed near the evaporation unit 11 are collected. It is caused by the capillary pressure difference caused by the difference in the curved surface and the effect of the check valve 14. FIG. 10 is a diagram for explaining the capillary pressure difference caused by the difference in the liquid curved surface, where 18 is the liquid curved surface near the heat generating portion 11, 19 is the liquid curved surface near the cooling portion 12, and 20 is the radius of curvature at the liquid curved surface. Show. The difference between the vapor pressure and the liquid pressure is inversely proportional to the radius of curvature, and the gas-liquid pressure difference becomes large in the heat generating portion 11. Comparing the radii of curvature of the liquid when the heat generating part and the cooling part are close to each other as shown in FIG. 10, the radius of the heat generating part is smaller than the radius of the cooling part. When there is a space in the upper part of the pipe, steam easily moves to the cooling part, so that the steam pressure is almost equal between the heat generating part and the cooling part. Therefore, the liquid pressure in the cooling unit 12 becomes larger than that in the heat generating unit 11, and the condensable hydraulic fluid returns to the heat generating unit 11.

【0005】ただし、管が太い場合には作動液が波立つ
際に管の断面を閉塞するようなスラグ流になることは困
難で、凝縮性の作動液は重力によって下部に溜まり、上
部にできた空間を蒸気が通過して冷却部まで移動するた
め、流体は二相に分れて流れる状態となる。この流動状
態では下部に溜まった凝縮性の作動液の温度が低いた
め、通過する蒸気が液に凝縮されて蒸気圧力が落ちる。
すると冷却部にある液溜まりが蒸発部へ帰還する力が小
さくなり、管径が大きいため、毛細管圧力が弱くなって
液が帰還できる量も少なくなる。すなわち、多量の熱量
を輸送することが困難となる。
However, when the pipe is thick, it is difficult to form a slug flow that blocks the cross section of the pipe when the working liquid swells, and the condensable working liquid collects in the lower part by gravity and forms in the upper part. Since the steam passes through the space and moves to the cooling unit, the fluid is divided into two phases and flows. In this flowing state, the temperature of the condensable hydraulic fluid accumulated in the lower portion is low, so the vapor passing therethrough is condensed into the fluid and the vapor pressure drops.
Then, the force for returning the liquid pool in the cooling unit to the evaporation unit becomes small, and since the pipe diameter is large, the capillary pressure becomes weak and the amount of liquid that can be returned becomes small. That is, it becomes difficult to transport a large amount of heat.

【0006】[0006]

【発明が解決しようとする課題】図8の熱輸送パイプで
は、熱伝導率が流体の循環速度によって決定され、循環
速度が遅い場合には発熱体と冷却部12間で温度差が大
きくなってしまい有効な冷却効果が得られない。循環速
度は沸騰圧力に依存し、沸騰する液が多い場合には循環
速度も大きくなる。しかし、発熱体と接触している細管
13の径は細いため、内部に存在する液量も少なくなっ
て流体を循環させるだけの圧力を得られない。図8の場
合では発熱体から冷却部12まで細管13を複数本並列
に配置することによって沸騰圧力を得ている。しかし、
発熱体の面積が細管13より極度に広い場合や発熱が大
きい場合には、接触させる細管のターン数を多くして熱
を奪う必要があり、並列にする細管の数が増えて熱輸送
パイプのサイズが大きくなってしまう。また、ターン数
を増加させることによって逆止弁を多くしても流れが複
雑になって流れ方向の制御ができず、流体が常に循環す
る状態にできない。さらに、逆止弁を取付ける際にも高
度な加工技術が必要となる。たとえば内径3mmあるい
は2mmの細管内に直径1mmの球を挿入して、かつス
トッパーやスロートを取付けることは精密加工が必要と
なり、製作工程が複雑で困難となり、さらに複数の逆止
弁を環状である細管に装着することは熔接箇所も多くな
り、熱輸送パイプを長期使用する場合に信頼性が低下す
る。
In the heat transport pipe of FIG. 8, the thermal conductivity is determined by the circulation speed of the fluid, and when the circulation speed is slow, the temperature difference between the heating element and the cooling unit 12 becomes large. Therefore, effective cooling effect cannot be obtained. The circulation speed depends on the boiling pressure, and when there is a large amount of liquid boiling, the circulation speed also increases. However, since the diameter of the thin tube 13 that is in contact with the heating element is small, the amount of liquid existing inside is small and it is not possible to obtain a pressure sufficient to circulate the fluid. In the case of FIG. 8, the boiling pressure is obtained by arranging a plurality of thin tubes 13 in parallel from the heating element to the cooling section 12. But,
When the area of the heating element is extremely larger than that of the thin tubes 13 or when the heat generation is large, it is necessary to increase the number of turns of the thin tubes to be contacted to remove heat, and thus the number of thin tubes to be arranged in parallel increases. The size becomes large. Moreover, even if the number of check valves is increased by increasing the number of turns, the flow becomes complicated and the flow direction cannot be controlled, so that the fluid cannot always circulate. Furthermore, a high level of processing technology is required when installing the check valve. For example, inserting a sphere with a diameter of 1 mm into a thin tube with an inner diameter of 3 mm or 2 mm and attaching a stopper or throat requires precision processing, which complicates the manufacturing process and makes the check valves annular. Attaching to a thin tube increases the number of welding points, and reduces reliability when the heat transport pipe is used for a long period of time.

【0007】本発明の目的は、沸騰圧力が大きく、かつ
逆止弁のない熱輸送パイプを提供することにある。
An object of the present invention is to provide a heat transport pipe having a large boiling pressure and no check valve.

【0008】[0008]

【課題を解決するための手段】本発明の熱輸送パイプ
は、発熱部と、冷却部と、該発熱部と該冷却部とを連結
する環状になった細管と、該細管内に封入された凝縮性
の作動液と、前記細管の途中で、前記発熱部の近傍に設
けられ、前記作動液を貯めるためのリザーバを含み、前
記発熱部と前記細管が一体となっている。
A heat-transporting pipe of the present invention has a heat-generating portion, a cooling portion, an annular thin tube connecting the heat-generating portion and the cooling portion, and a heat-sealing pipe enclosed in the thin tube. The condensable working fluid and a reservoir for storing the working fluid, which is provided in the vicinity of the heat generating section in the middle of the thin tube, include a heat generating section and the thin tube.

【0009】[0009]

【作用】発熱体を取付けるためのたとえば箱型となって
いる発熱部に細管を一体化させて連結することにより、
発熱部を発熱体の大きさに合わせることができ発熱部の
内容積も厚さ方向(細管の横断面方向)に変化させるこ
とができ、作動液量を発熱量に応じた液量に調整でき
る。排熱量が多く細管を複数本並列に配置するときも、
ひとつの発熱部に複数本の細管を接続することによっ
て、発熱体を発熱部に設置することも容易になり、沸騰
空間がひとつであるため、発熱部寸法の決定が容易にな
る。これによって沸騰圧力が増大して作動液が循環する
ための大きな駆動量を得ることができる。また、発熱部
の近傍にリザーバを取付けることによって、発熱部から
の作動液は冷却部を通ってリザーバに貯められる。そし
て、リザーバに常に作動液が存在するため、発熱部に作
動液を送り易い構造となる。このようにして、作動液の
循環方向が決定され、逆止弁は不要となる。
[Function] By connecting the thin tube integrally with the box-shaped heat generating portion for attaching the heat generating element,
The heat generating part can be adjusted to the size of the heat generating element, the inner volume of the heat generating part can be changed in the thickness direction (the cross-sectional direction of the thin tube), and the working fluid amount can be adjusted to a liquid amount according to the heat generating amount. . When arranging multiple thin tubes in parallel with a large amount of waste heat,
By connecting a plurality of thin tubes to one heat generating part, it becomes easy to install the heat generating element in the heat generating part, and since there is only one boiling space, it becomes easy to determine the size of the heat generating part. As a result, the boiling pressure is increased and a large driving amount for circulating the hydraulic fluid can be obtained. Further, by mounting the reservoir near the heat generating portion, the working fluid from the heat generating portion is stored in the reservoir through the cooling portion. Since the working fluid is always present in the reservoir, the working fluid can be easily sent to the heat generating portion. In this way, the circulation direction of the hydraulic fluid is determined, and the check valve is unnecessary.

【0010】また、発熱体の冷却効果は発熱体と冷却部
間の熱抵抗が小さくなるほど大きい。誘電率の小さい凝
縮性の液体を作動液として用いることができれば、発熱
体を発熱部内に設置して、発熱体を作動液と直接接触さ
せることができ、発熱体からの熱を発熱部の管壁を介さ
ずして作動液を蒸発させることができる。すなわち、凝
縮性の作動液と発熱体間の熱抵抗を小さくできる。した
がって、発熱体から冷却部までの熱抵抗は、発熱体から
発熱部の管壁、および発熱部の管壁と作動液間の熱抵抗
を取り除いた分だけ小さくなり、冷却効果も増大する。
Further, the cooling effect of the heating element becomes greater as the thermal resistance between the heating element and the cooling section becomes smaller. If a condensable liquid with a low dielectric constant can be used as the working fluid, the heating element can be installed in the heating section and the heating element can be brought into direct contact with the working fluid, and the heat from the heating element can be piped into the heating section. The hydraulic fluid can be evaporated without going through the wall. That is, the thermal resistance between the condensable hydraulic fluid and the heating element can be reduced. Therefore, the thermal resistance from the heating element to the cooling portion is reduced by the amount obtained by removing the thermal resistance between the heating element tube wall and the heating element tube wall and the working fluid, and the cooling effect is also increased.

【0011】さらに、発熱体からの発熱量が大きくなる
場合には発熱体と冷却部を接続する細管が1本だけでは
内径が小さく、発熱部へ帰還する液流量が制限される。
そこで、発熱量が大きい場合にはリザーバと発熱部間に
複数本の細管を接続することにより、凝縮性の作動液が
帰還する流量を大きくできる。リザーバと発熱部間では
作動液の帰還を容易にするため、細管の内径を小さくし
て毛細管圧力を高める。また、発熱部と冷却部間、およ
び冷却部とリザーバ間では毛細管圧力効果はリザーバと
発熱部間での細管ほどは重要でなくなるため、細管は作
動液が管内部を閉塞するだけの内径があればよい。この
内径のものを複数本並列に配置することによって蒸気や
作動液の流量を多くできるため、発熱量が大きい発熱体
でも冷却効果を大きくすることができる。
Further, when the amount of heat generated from the heating element is large, the inner diameter is small when only one thin tube connects the heating element and the cooling section, and the liquid flow rate returning to the heating section is limited.
Therefore, when the calorific value is large, by connecting a plurality of thin tubes between the reservoir and the heat generating portion, the flow rate at which the condensable hydraulic fluid returns can be increased. In order to facilitate the return of the hydraulic fluid between the reservoir and the heat generating portion, the inner diameter of the thin tube is reduced to increase the capillary pressure. In addition, since the capillary pressure effect between the heat generating part and the cooling part and between the cooling part and the reservoir is not as important as that between the reservoir and the heat generating part, the capillary has an inner diameter enough to block the working fluid inside the pipe. Good. By arranging a plurality of those having the inner diameter in parallel, the flow rates of the steam and the working liquid can be increased, so that the cooling effect can be increased even for a heating element having a large heating value.

【0012】[0012]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0013】図1は本発明の第1の実施例の熱輸送パイ
プの平面図であり、図2はその斜視図である。なお、図
2(1),(2)では一部が破断されている。発熱部4
は細管3と一体化して製造されており、発熱体1を設置
できるサイズである。冷却部2は細管3と接触してお
り、その寸法は発熱する熱量と熱輸送能力によって決定
できる。細管3の、発熱部4の近傍にリザーバ5が取付
けられており、ここに冷却部2で凝縮した作動液を貯め
ておくことができる。
FIG. 1 is a plan view of a heat transport pipe according to a first embodiment of the present invention, and FIG. 2 is a perspective view thereof. In addition, in FIGS. 2A and 2B, a part is broken. Heating part 4
Is manufactured integrally with the thin tube 3, and has a size capable of installing the heating element 1. The cooling part 2 is in contact with the thin tube 3, and its size can be determined by the amount of heat generated and the heat transport capacity. A reservoir 5 is attached to the thin tube 3 in the vicinity of the heat generating portion 4, and the working liquid condensed in the cooling portion 2 can be stored therein.

【0014】作動液を保持したリザーバ5が発熱部4の
近傍に存在することによって、発熱部4から発生した蒸
気はリザーバ5がない方向から冷却部2へ流れ、作動液
が冷却部2で凝縮される。凝縮された作動液はリザーバ
5へ毛細管圧力と沸騰圧力の伝播作用によって流れ、さ
らに発熱部4で発生した蒸気を補うため、リザーバ5と
発熱部4の近傍での細管3’にある作動液の曲率から生
じる毛細管圧力差によってリザーバ5から発熱部4へ作
動液が流れる。
Since the reservoir 5 holding the working fluid is present in the vicinity of the heat generating portion 4, the vapor generated from the heat generating portion 4 flows from the direction without the reservoir 5 to the cooling portion 2, and the working fluid is condensed in the cooling portion 2. To be done. The condensed working fluid flows to the reservoir 5 by the action of propagating the capillary pressure and the boiling pressure, and in order to supplement the vapor generated in the heat generating section 4, the working fluid in the thin tube 3 ′ near the reservoir 5 and the heat generating section 4 is The hydraulic fluid flows from the reservoir 5 to the heat generating portion 4 due to the capillary pressure difference caused by the curvature.

【0015】本実施例では、発熱部4が細管3と一体的
に接続されているので発熱体1のサイズに合わせて発熱
部4を製作でき、かつ作動液の封入量を厚さによって決
定できるため、沸騰圧力が増大して作動液を駆動するた
めの大きな駆動力が得られる。
In the present embodiment, since the heat generating portion 4 is integrally connected to the thin tube 3, the heat generating portion 4 can be manufactured in accordance with the size of the heat generating body 1, and the amount of the working fluid filled can be determined by the thickness. Therefore, the boiling pressure is increased and a large driving force for driving the hydraulic fluid is obtained.

【0016】図3は本発明の第2の実施例の熱輸送パイ
プの平面図である。本実施例は、蒸気が送り出される、
発熱部4とリザーバ5間を2本の細管3で連結し、作動
液が発熱部4に帰還される、リザーバ5と発熱部4間を
細管3より内径が小さい3本の細管3’で連結したもの
である。管内に働く毛細管圧力は管の内径が小さいほど
大きくなるため、またリザーバ5では作動液が溜まって
おり、細管3’と発熱部4の接続部では作動液が発熱部
4へ流れ込んでいるため、そこでの細管3’内にある曲
率を持った液面形状ができる。毛細管圧力はこの曲率半
径に反比例するため、細管3の内径を小さくすることに
よってリザーバ5と発熱部4間の毛細管圧力差が大きく
なり、リザーバ5からの作動液の発熱部4への帰還が容
易である。また、細管3,3’の本数が多いため帰還す
べき液量が多くなる。したがって、冷却効果が大きくな
る。
FIG. 3 is a plan view of the heat transport pipe of the second embodiment of the present invention. In this embodiment, steam is delivered,
The heat generating part 4 and the reservoir 5 are connected by two thin tubes 3, and the working fluid is returned to the heat generating part 4. The reservoir 5 and the heat generating part 4 are connected by three thin tubes 3'having an inner diameter smaller than that of the thin tube 3. It was done. Since the capillary pressure acting on the inside of the tube increases as the inside diameter of the tube decreases, the working fluid is accumulated in the reservoir 5, and the working fluid flows into the heating portion 4 at the connection between the thin tube 3 ′ and the heating portion 4, A liquid surface shape having a certain curvature in the thin tube 3 ′ there is formed. Since the capillary pressure is inversely proportional to this radius of curvature, the capillary pressure difference between the reservoir 5 and the heat generating part 4 becomes large by reducing the inner diameter of the capillary 3, and the return of the hydraulic fluid from the reservoir 5 to the heat generating part 4 is easy. Is. Also, since the number of thin tubes 3 and 3'is large, the amount of liquid to be returned is large. Therefore, the cooling effect is increased.

【0017】図4は本発明の第3の実施例の熱輸送パイ
プの平面図、図5はその斜視図である。なお、図5
(2),(3)では一部が破断されている。本実施例
は、図5(2)に示すように、発熱体1を発熱部4内部
へ装着したものであり、小面積で高発熱する発熱体1を
熱制御するための実施例である。発熱体1を発熱部4の
外側に取付けた場合には接触の熱抵抗がこの間に存在
し、この値が大きく発熱体1と発熱部4間の温度差が著
しくなる。発熱体1がある程度の大きさでも発熱部4を
設けることによって内部への装着が可能となる。本実施
例では、発熱体1が作動液と直接接触するため、作動液
と発熱体1間の熱抵抗が小さくなり、発熱体1と冷却部
2間の熱抵抗も小さくなり、冷却効果が大きくなる。
FIG. 4 is a plan view of a heat transport pipe according to a third embodiment of the present invention, and FIG. 5 is a perspective view thereof. Note that FIG.
A part is broken in (2) and (3). In this embodiment, as shown in FIG. 5 (2), the heating element 1 is mounted inside the heating portion 4, and is an example for controlling the heat of the heating element 1 which generates a large amount of heat in a small area. When the heating element 1 is attached to the outside of the heating portion 4, the thermal resistance of contact exists between them, and this value is large, and the temperature difference between the heating element 1 and the heating portion 4 becomes significant. Even if the heating element 1 has a certain size, it can be mounted inside by providing the heating portion 4. In this embodiment, since the heating element 1 is in direct contact with the working fluid, the thermal resistance between the working fluid and the heating element 1 is small, the thermal resistance between the heating element 1 and the cooling unit 2 is also small, and the cooling effect is large. Become.

【0018】図6及び図7はリザーバ5の内部構造を説
明する図であって、その一部が破断して示されている。
作動液を毛細管圧力によって保持できるようにたとえば
メッシュ6をリザーバ5の内面に装着したり(図6)、
薄板7をリザーバ5の内部に並べることによって(図
7)毛細管圧力を大きくでき、作動液を冷却部2からリ
ザーバ5へ流動し易くして作動液をリザーバ5に常に保
持できる。
FIG. 6 and FIG. 7 are views for explaining the internal structure of the reservoir 5 and a part thereof is shown broken away.
For example, a mesh 6 is attached to the inner surface of the reservoir 5 so that the hydraulic fluid can be held by the capillary pressure (FIG. 6),
By arranging the thin plates 7 inside the reservoir 5 (FIG. 7), the capillary pressure can be increased and the working fluid can easily flow from the cooling unit 2 to the reservoir 5 so that the working fluid can be always retained in the reservoir 5.

【0019】[0019]

【発明の効果】以上説明したように本発明は、以下の効
果がある。 (1)請求項1の発明 発熱部と細管を一体的に接続することによって発熱体の
サイズに合わせて発熱部を製作でき、かつ凝縮性の作動
液の封入量を発熱部の厚さによって決定できる。これに
よって、沸騰圧力が増大して流体が循環するための大き
な駆動力を得ることができる。また、リザーバを発熱部
近傍に設置することによって流体の流れの方向を規定で
き、逆止弁のない循環型の熱輸送パイプを実現できる。 (2)請求項2の発明 発熱体を凝縮性の作動液と直接接触させることにより、
発熱部の管壁と発熱体間の熱抵抗が取り除かれて作動液
と発熱体間の熱抵抗が小さくなることにより、発熱体と
冷却部間の熱抵抗も小さくなり、冷却効果も大きくな
る。 (3)請求項3の発明 発熱量が大きい場合には、リザーバと発熱部間の、作動
液を帰還させる細管の内径と本数を、発熱部とリザーバ
間の、蒸気を送り出す細管の内径よりも小さくし、本数
を多くし、細管を細くして毛細管圧力を高めることによ
り、凝縮性の作動液が帰還する流量を大きくできる。ま
た、発熱部と冷却部間、および冷却部とリザーバ間には
作動液が管内部を閉塞する内径の細管を複数本並列に配
置することによって蒸気や作動液の流量が多くできるた
め、冷却効果を大きくできる。
As described above, the present invention has the following effects. (1) The invention of claim 1 By integrally connecting the heat-generating part and the thin tube, the heat-generating part can be manufactured in accordance with the size of the heat-generating body, and the amount of condensable hydraulic fluid enclosed is determined by the thickness of the heat-generating part. it can. As a result, a large driving force for increasing the boiling pressure and circulating the fluid can be obtained. Also, by disposing the reservoir in the vicinity of the heat generating portion, the direction of fluid flow can be regulated, and a circulation type heat transport pipe without a check valve can be realized. (2) Invention of Claim 2 By directly contacting the heating element with the condensable hydraulic fluid,
Since the thermal resistance between the heating fluid and the heating element is reduced by removing the thermal resistance between the heating element tube wall and the heating element, the thermal resistance between the heating element and the cooling section is also reduced and the cooling effect is increased. (3) Invention of Claim 3 When the calorific value is large, the inner diameter and the number of the thin tubes for returning the working fluid between the reservoir and the heat generating portion are set to be larger than the inner diameter of the thin tube for sending vapor between the heat generating portion and the reservoir. The flow rate of the condensable hydraulic fluid returned can be increased by reducing the number, increasing the number, and increasing the capillary pressure by narrowing the capillaries. Also, by arranging multiple thin tubes with an inner diameter that block the inside of the working fluid in parallel between the heat generating part and the cooling part, and between the cooling part and the reservoir, the flow rate of steam and working fluid can be increased, so the cooling effect Can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の熱輸送パイプの平面図
である。
FIG. 1 is a plan view of a heat transport pipe according to a first embodiment of the present invention.

【図2】第1の実施例の熱輸送パイプ(図2(1))、
発熱部4、リザーバ5の一部を破断した斜視図(図2
(2),(3))である。
FIG. 2 is a heat transport pipe of the first embodiment (FIG. 2 (1)),
A perspective view in which a part of the heat generating portion 4 and the reservoir 5 is cut away (see FIG.
(2) and (3)).

【図3】本発明の第2の実施例の熱輸送パイプの平面図
である。
FIG. 3 is a plan view of a heat transport pipe according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の熱輸送パイプの平面図
である。
FIG. 4 is a plan view of a heat transport pipe according to a third embodiment of the present invention.

【図5】第3の実施例の熱輸送パイプ(図5(1))、
発熱部4、リザーバ5の一部を破断した斜視図(図5
(2),(3))である。
FIG. 5 is a heat transport pipe of the third embodiment (FIG. 5 (1)),
A perspective view in which a part of the heat generating portion 4 and the reservoir 5 is cut away (see FIG.
(2) and (3)).

【図6】リザーバ5の内部構造の一例を示す斜視図であ
る。
6 is a perspective view showing an example of the internal structure of the reservoir 5. FIG.

【図7】リザーバ5の内部構造の他の例を示す斜視図で
ある。
7 is a perspective view showing another example of the internal structure of the reservoir 5. FIG.

【図8】熱輸送パイプの従来例の平面図である。FIG. 8 is a plan view of a conventional example of a heat transport pipe.

【図9】図8中の逆止弁14の断面図である。9 is a cross-sectional view of the check valve 14 in FIG.

【図10】従来の熱輸送パイプにおける凝縮部から発熱
部へ液が帰還する原理を説明する図である。
FIG. 10 is a diagram for explaining the principle of the liquid returning from the condensing part to the heat generating part in the conventional heat transport pipe.

【符号の説明】[Explanation of symbols]

1,11 発熱体 2,12 冷却部 3,3’,13 細管 4 発熱部 5 リザーバ 6 メッシュ 7 薄板 14 逆止弁 15 球 16 スロート 17 ストッパ 18 発熱部近傍での液曲面 19 冷却部近傍での液曲面 20 液曲面での曲率半径 1,11 Heating element 2,12 Cooling part 3,3 ', 13 Capillary tube 4 Heating part 5 Reservoir 6 Mesh 7 Thin plate 14 Check valve 15 Ball 16 Throat 17 Stopper 18 Liquid curved surface in the vicinity of the heating part 19 In the vicinity of the cooling part Liquid surface 20 Radius of curvature on liquid surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発熱部と、冷却部と、該発熱部と該冷却
部とを連結する環状になった細管と、該細管内に封入さ
れた凝縮性の作動液と、前記細管の途中で、前記発熱部
の近傍に設けられ、前記作動液を貯めるためのリザーバ
を含み、前記発熱部と前記細管が一体となっている熱輸
送パイプ。
1. A heat-generating part, a cooling part, an annular thin tube connecting the heat-generating part and the cooling part, a condensable hydraulic fluid enclosed in the thin tube, and an intermediate part of the thin tube. A heat transport pipe provided in the vicinity of the heat generating portion, including a reservoir for storing the working fluid, wherein the heat generating portion and the thin tube are integrated.
【請求項2】 発熱体が前記発熱部内に設置され、前記
作動液と接触する、請求項1記載の熱輸送パイプ。
2. The heat transport pipe according to claim 1, wherein a heating element is installed in the heating section and is in contact with the working fluid.
【請求項3】 前記発熱部と前記リザーバの間に接続さ
れ、前記作動液を前記発熱部に帰還させる細管の内径と
本数が、前記リザーバと前記発熱部の間に接続され、蒸
気を送り出す細管の内径よりも小さく、本数よりも多
い、請求項1または2記載の熱輸送パイプ。
3. A thin tube which is connected between the heat generating part and the reservoir, and which has the inner diameter and the number of thin tubes for returning the hydraulic fluid to the heat generating part, is connected between the reservoir and the heat generating part and which sends out vapor. The heat transport pipe according to claim 1 or 2, wherein the heat transport pipe is smaller than the inner diameter and larger than the number.
JP27543393A 1993-11-04 1993-11-04 Heat transfer pipe Pending JPH07127982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27543393A JPH07127982A (en) 1993-11-04 1993-11-04 Heat transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27543393A JPH07127982A (en) 1993-11-04 1993-11-04 Heat transfer pipe

Publications (1)

Publication Number Publication Date
JPH07127982A true JPH07127982A (en) 1995-05-19

Family

ID=17555456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27543393A Pending JPH07127982A (en) 1993-11-04 1993-11-04 Heat transfer pipe

Country Status (1)

Country Link
JP (1) JPH07127982A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564861B1 (en) 1999-09-03 2003-05-20 Fujitsu Limited Cooling unit
JP2003269876A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Thin-type loop-like passage device and temperature control equipment using the same
JP4473925B1 (en) * 2008-12-16 2010-06-02 株式会社東芝 Loop heat pipe and electronic equipment
JP2013072627A (en) * 2011-09-29 2013-04-22 Fujitsu Ltd Loop heat pipe and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564861B1 (en) 1999-09-03 2003-05-20 Fujitsu Limited Cooling unit
US7337829B2 (en) 1999-09-03 2008-03-04 Fujitsu Limited Cooling unit
US7828047B2 (en) 1999-09-03 2010-11-09 Fujitsu Limited Cooling unit
JP2003269876A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Thin-type loop-like passage device and temperature control equipment using the same
JP4473925B1 (en) * 2008-12-16 2010-06-02 株式会社東芝 Loop heat pipe and electronic equipment
JP2010144950A (en) * 2008-12-16 2010-07-01 Toshiba Corp Loop heat pipe and electronic device
US7916482B2 (en) 2008-12-16 2011-03-29 Kabushiki Kaisha Toshiba Loop heat pipe and electronic device
JP2013072627A (en) * 2011-09-29 2013-04-22 Fujitsu Ltd Loop heat pipe and electronic apparatus

Similar Documents

Publication Publication Date Title
RU2247912C2 (en) Microcooling device
US20070107878A1 (en) Heat pipe with a tube therein
CN100334931C (en) Plane capillary core evaporimeter with fin for CPL
US20070246193A1 (en) Orientation insensitive thermosiphon of v-configuration
JPH0878588A (en) Boiling/cooling device
JPH10503580A (en) Energy transfer system between hot and cold heat sources
US3677336A (en) Heat link, a heat transfer device with isolated fluid flow paths
US5190098A (en) Thermosyphon with evaporator having rising and falling sections
US6655450B2 (en) Forced oscillatory flow type heat pipe and designing method for the same
CN104634147A (en) Pulsating heat pipe with micro-groove structure
JP2001066080A (en) Loop type heat pipe
JPH07127982A (en) Heat transfer pipe
JP2004020116A (en) Plate type heat pipe
JP2011108685A (en) Natural circulation type boiling cooler
JPH04501458A (en) Heat pipe for regenerating evaporated metals
JPH10238973A (en) Thin composite plate heat pipe
Hu et al. Experimental investigation on flow and thermal characteristics of a micro phase-change cooling system with a microgroove evaporator
JP2002071090A (en) Oil tank equipped with cooler for minimum flow
CN211180879U (en) Phase change heat sink with heat capacity
JPS59142384A (en) Heat pipe container
WO2022267576A1 (en) Evaporator
JP2751051B2 (en) Heat transfer device
JPH0552491A (en) Heat exchanging device
JP2000236055A (en) Cooling device through heat release
KR200337381Y1 (en) cooling equipments using a separated type heatpipes