JPS6218236B2 - - Google Patents

Info

Publication number
JPS6218236B2
JPS6218236B2 JP54088493A JP8849379A JPS6218236B2 JP S6218236 B2 JPS6218236 B2 JP S6218236B2 JP 54088493 A JP54088493 A JP 54088493A JP 8849379 A JP8849379 A JP 8849379A JP S6218236 B2 JPS6218236 B2 JP S6218236B2
Authority
JP
Japan
Prior art keywords
denitrification
treatment
activated carbon
water
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54088493A
Other languages
Japanese (ja)
Other versions
JPS5613094A (en
Inventor
Itsuhito Ikebukuro
Katsuyuki Kataoka
Kazuyuki Suzuki
Iwao Seto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP8849379A priority Critical patent/JPS5613094A/en
Publication of JPS5613094A publication Critical patent/JPS5613094A/en
Publication of JPS6218236B2 publication Critical patent/JPS6218236B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、有機性廃水を処理する方法に関する
ものである。 有機性廃水、殊に下水およびし尿の高度処理に
おいては、放流先の環境問題から、その最終放流
水の濃度をBOD10mg/以下、COD30mg/以
下、T―N10mg/および色度30度以下等にする
ことが求められている。このような処理水を得る
には、生物処理、凝集沈殿処理等のいわゆる二次
処理の後段にポリツシヤーとしての活性炭吸着処
理が不可欠である。 この活性炭吸着処理において、従来、二次処理
水を活性炭吸着塔に長期間通水する場合、通水日
数の経過と共に、汚水中の有機物が活性炭に吸着
され、蓄積されてくると活性炭層内が嫌気状態と
なり、硫化水素等の硫黄化合物が発生し悪臭を放
つてくる。また処理水が白濁したり、着色したり
し、目標とする処理水質が得られない場合がしば
しば起こつている。これらの原因は確証されてい
ないが、汚水中に含有されている硫酸イオンが嫌
気状態下で発生した硫酸還元菌によつて還元され
ることと、活性炭に吸着した有機物が嫌気性消化
を受けるためと考えられている。 この活性炭層内の硫酸還元菌の発生を防止する
には、活性炭吸着塔流入水中に硝酸イオンが存在
しておれば防止できることがわかつている。その
方法の1つとして硝酸ナトリウム、硝酸カリウム
等の薬品を活性炭吸着塔流入水中に連続的に添加
する等が行なわれている。 本発明は、有機性廃水の処理工程中に発生する
NO2 -,NO3 -(以下NOxと略す)を有効に利用す
ることにより、系外から硝酸ナトリウム,硝酸カ
リウム等の薬品を添加することなく、これらの問
題を解決することを目的とするものである。即
ち、有機性廃水の生物学的硝化脱窒素処理工程の
硝化工程流出水中には、原水中に含まれている
NH4 +が好気性状態のもとで硝化菌の作用により
酸化されNOxとしてかなりの量が生成されてい
る。本発明は、このNOxをそのまま活性炭処理
工程の流入水中に存在せしめた状態下で活性炭処
理することを特徴とするものである。 し尿を生物学的硝化脱窒素法によつて処理する
硝化脱窒素工程は、硝化工程と脱窒素工程とから
なるが、硝化工程では、好気性状態のもとで、硝
化菌が汚水中のNH4 +をNO2 -を経由してNO3 -
酸化し、脱窒素工程では、硝化液即ちNO3 -に富
む液を嫌気状態下に導き、脱窒素菌の脱窒素作用
を利用してNO3 -をN2に還元する。 この生物学的硝化脱窒素法の最も効果的なもの
として硝化液循環式硝化脱窒素法が開発されてい
る。この硝化脱窒素法では従来は一段であつた脱
窒素工程が、硝化工程の前後に位置する第一脱窒
素工程と第二脱窒素工程の二段に分けられ、硝化
工程で生成されるNO3 -の大部分は混合液と共に
第一脱窒素工程に返送され、ここに流入する生し
尿のBODを還元用有機物として脱窒素される。
残余のNO3 -は第二脱窒素工程で、添加メタノー
ルを利用して脱窒素(NOx,1〜2.0mg/ま
で)される機構になつている。 このような処理工程において、生し尿のBOD
の大部分は第一脱窒素工程における脱窒素の際に
酸化除去されること、第二脱窒素工程は残余の
NO3 -を除去するための工程であることから、こ
の第二脱窒素処理工程を省くことによつて、活性
炭吸着処理工程の流入水中にBOD含有量が少な
く、しかもNOxを含有させることが可能である
ことを見い出したのである。そして活性炭処理水
に残留するNOxは、活性炭処理後さらに生物学
的脱窒素することにより完全に除去することがで
きる。 さらに本発明の一実施態様を説明すれば、し尿
をまず生物学的硝化脱窒素によつて処理する。前
記生物学的硝化脱窒素処理は脱窒素工程、続いて
硝化工程とからなり、実施例に示す如く、脱窒素
槽上澄水のBOD1.365mg/,COD580mg/,
NOx―N3.2mg/,沈殿池上澄水のBOD420mg/
,COD460mg/,NOx―N46.5mg/であつ
た。 次に生物学的硝化脱窒素工程流出液と余剰汚泥
とを混合したスラリー状態の液にカチオンポリマ
ーを添加して脱水機によつて脱水ケーキと脱水分
離液とを得る。 次に、脱水分離液について凝集沈殿および砂
過した後、活性炭処理流入水とする。 生物処理後の固液分離工程はNOxの増減に何
んら影響を与えないから、固液分離工程は凝集沈
殿、浮上分離、超過膜処理又は砂過等のいず
れでも利用可能である。 各処理工程の処理水質は表―2に示す如くであ
つた。活性炭吸着塔流入水である凝集沈殿上澄水
(厳密にはこれを砂過した砂過水であるが処
理水質はほぼ同じである)は、BOD40mg/,
COD125mg/,NOx―N46.4mg/であつた。 従来の処理方法では前記のように生物処理流出
液中には微量のNOxしか含有されておらず、そ
れがそのまま活性炭吸着塔流入水となることか
ら、前記のような活性炭層内での嫌気状態下によ
るトラブルが発生することになる。 活性炭吸着塔の処理水は表―2に示す如く、
BOD3.7mg/,COD3.1mg/,NOx―N30.4
mg/であつた。目標とする最終処理水の水質が
これで満足するものであれば、更に処理する必要
はないが、最近では窒素含有量をできるだけ低く
するようにとの要望が強い場合があるので、
NOx―N含有量を少なくするために、活性炭処
理水を更に脱窒素処理を行ないNOx―Nの含有
量に応じたメタノールを添加することにより効率
的にNOx―Nが除去できる。 脱窒素処理は公知の生物学的脱窒素方式を使用
するが、流動床方式、回転円板方式、重力砂過
方式等の生物膜を利用した方式はコントロールし
やすいので好ましい。 本発明は、このように生物学的硝化脱窒素工程
を脱窒素工程、続いて硝化工程とすることによつ
て、活性炭処理工程流入水中にNOxを存在せし
めた状態下で活性炭処理することにより、活性炭
塔内の嫌気状態を抑止し、活性炭本来の吸着作用
を充分に利用でき、また活性炭処理水に残留する
NOxは、活性炭処理に後続して脱窒素処理を行
うことによつて、窒素を除去し、目標とする処理
水質を常時得ることを可能としたものである。 本発明の一実施例を示す。 実施例 表―1に示す水質を有するし尿を第1図に示す
フローにて実験した。 原水処理量0.5m3/日の場合、実験装置の諸元
を次のように設定した。 1 生物処理 (1) 滞留時間 脱窒素槽 14時間 硝化槽 18〃 (2) 硝化槽負荷 汚泥負荷 V―Nベース
0.05Kg―N/Kg・SS・日 BODベース
0.12 〃 容積負荷 T―Nベース
0.32Kg―N/m3・日 BODベース
0.78 〃 (3) その他 MLSS 9000〜10000mg/ 希釈倍率 7倍 水 温 25〜27℃ 2 脱水機 処理能力 1m3/日(MAX) 回転数 3000rpm カチオンポリマー添加量 1.5〜2.0% (フローナツク) (対SS) 3 凝集沈殿処理 塩化第二鉄(6水塩300〜350mg/) ポリマー(サンポリN―500) 1mg/ 撹拌滞留時間 0.2時間 沈殿池 〃 4 〃 4 砂過 アンスラサイト+砂 二層 通水速度 LV=2〜5m/H 5 活性炭処理 カラム大きさ 5.0cm〓×100cmL 流 速 SV=2 A,C 1 6 生物膜による脱窒素 流動床式脱窒素法 生物媒体(充填剤),砂(粒径0.6mm)深さ1m メタノール添加比 CH3OH/N=2.5〜3.0 容積負荷 NO3―N,5KgN/m3・日 滞留時間 7〜10分間 以上のような諸元でし尿を2倍希釈処理した結
果、生物学的硝化脱窒素工程の処理水質は表―1
の如くであつた。
The present invention relates to a method for treating organic wastewater. In the advanced treatment of organic wastewater, especially sewage and human waste, due to environmental issues at the destination, the concentration of the final effluent should be BOD 10 mg/or less, COD 30 mg/or less, T-N 10 mg/or less, and chromaticity 30 degrees or less. That is what is required. In order to obtain such treated water, activated carbon adsorption treatment as a polisher is essential after so-called secondary treatment such as biological treatment and coagulation-sedimentation treatment. In this activated carbon adsorption treatment, conventionally, when secondary treated water is passed through an activated carbon adsorption tower for a long period of time, organic matter in the wastewater is adsorbed to the activated carbon and accumulated as the number of days the water passes through the activated carbon layer. It becomes anaerobic, and sulfur compounds such as hydrogen sulfide are generated, emitting a foul odor. Furthermore, the treated water often becomes cloudy or colored, and the target quality of the treated water cannot be obtained. The causes of these are not confirmed, but it is believed that sulfate ions contained in wastewater are reduced by sulfate-reducing bacteria generated under anaerobic conditions, and that organic matter adsorbed on activated carbon undergoes anaerobic digestion. It is believed that. It is known that the generation of sulfate-reducing bacteria in the activated carbon layer can be prevented if nitrate ions are present in the water flowing into the activated carbon adsorption tower. One of the methods is to continuously add chemicals such as sodium nitrate and potassium nitrate to the water flowing into the activated carbon adsorption tower. The present invention deals with the treatment of organic wastewater generated during the treatment process.
The aim is to solve these problems by effectively utilizing NO 2 - and NO 3 - (hereinafter abbreviated as NOx) without adding chemicals such as sodium nitrate and potassium nitrate from outside the system. be. In other words, in the nitrification process effluent of the biological nitrification and denitrification treatment process of organic wastewater, the amount of water contained in the raw water is
NH 4 + is oxidized by the action of nitrifying bacteria under aerobic conditions, and a considerable amount of NOx is produced. The present invention is characterized in that the activated carbon treatment is carried out under the condition that this NOx is allowed to exist as it is in the inflow water of the activated carbon treatment process. The nitrification and denitrification process, in which human waste is treated by the biological nitrification and denitrification method, consists of a nitrification process and a denitrification process. 4 + is oxidized to NO 3 - via NO 2 - , and in the denitrification process, the nitrifying solution, that is, the NO 3 --rich liquid, is brought to an anaerobic state, and the denitrifying action of denitrifying bacteria is used to release NO. 3 - is reduced to N2 . The nitrification liquid circulation type nitrification and denitrification method has been developed as the most effective biological nitrification and denitrification method. In this nitrification and denitrification method, the conventional one-stage denitrification process is divided into two stages: a first denitrification process and a second denitrification process, which are located before and after the nitrification process, and NO 3 produced in the nitrification process is Most of the - is returned to the first denitrification process along with the mixed liquid, where it is denitrified using the BOD of raw human waste that flows in as reducing organic matter.
The remaining NO 3 - is denitrified (NOx, up to 1 to 2.0 mg/) in the second denitrification step using added methanol. In such a processing process, the BOD of raw human waste
The majority of this is removed by oxidation during denitrification in the first denitrification process, and the remaining part is removed in the second denitrification process.
Since this is a process for removing NO 3 - , by omitting this second denitrification treatment process, it is possible to reduce the BOD content in the influent water of the activated carbon adsorption treatment process, and also allow it to contain NOx. I found that. The NOx remaining in the activated carbon-treated water can be completely removed by further biological denitrification after the activated carbon treatment. Further describing one embodiment of the present invention, human waste is first treated by biological nitrification and denitrification. The biological nitrification and denitrification treatment consists of a denitrification step followed by a nitrification step, and as shown in the example, the BOD of the denitrification tank supernatant water is 1.365 mg/, COD 580 mg/,
NOx―N3.2mg/, BOD of sedimentation tank supernatant water420mg/
, COD460mg/, and NOx-N46.5mg/. Next, a cationic polymer is added to a slurry of the biological nitrification and denitrification process effluent and excess sludge, and a dehydrated cake and a dehydrated separated liquid are obtained by a dehydrator. Next, the dehydrated separated liquid is subjected to coagulation sedimentation and sand filtration, and then used as activated carbon treated influent water. Since the solid-liquid separation process after biological treatment has no effect on the increase or decrease of NOx, any of the solid-liquid separation processes, such as coagulation sedimentation, flotation separation, excess membrane treatment, or sand filtration, can be used. The quality of treated water in each treatment process was as shown in Table 2. The flocculation-sedimentation supernatant water that flows into the activated carbon adsorption tower (strictly speaking, it is sand-filtered water, but the treated water quality is almost the same) has a BOD of 40 mg/,
COD was 125 mg/, NOx-N was 46.4 mg/. In the conventional treatment method, as mentioned above, the biological treatment effluent contains only a trace amount of NOx, and this becomes the inflow water to the activated carbon adsorption tower. Trouble will occur due to the following. The treated water from the activated carbon adsorption tower is as shown in Table 2.
BOD3.7mg/, COD3.1mg/, NOx―N30.4
mg/. If the target quality of the final treated water is satisfactory, there is no need for further treatment, but recently there has been a strong desire to reduce the nitrogen content as much as possible.
In order to reduce the NOx-N content, NOx-N can be efficiently removed by further denitrifying the activated carbon-treated water and adding methanol according to the NOx-N content. Denitrification treatment uses a known biological denitrification method, but methods using biofilms such as a fluidized bed method, a rotating disk method, and a gravity sand filter method are preferred because they are easy to control. In this way, the present invention makes the biological nitrification and denitrification process a denitrification process, followed by a nitrification process, and performs the activated carbon treatment in a state where NOx is present in the inflow water of the activated carbon treatment process. It suppresses the anaerobic state inside the activated carbon tower, makes full use of the adsorption effect of activated carbon, and does not remain in the activated carbon treated water.
By performing denitrification treatment following activated carbon treatment, NOx can be removed and the target quality of treated water can be obtained at all times. An example of the present invention is shown. Example An experiment was conducted using human waste having the water quality shown in Table 1 according to the flow shown in Figure 1. In the case of raw water treatment amount of 0.5 m 3 /day, the specifications of the experimental equipment were set as follows. 1 Biological treatment (1) Residence time Denitrification tank 14 hours Nitrification tank 18〃 (2) Nitrification tank load Sludge load V-N base
0.05Kg-N/Kg・SS・Japan BOD base
0.12 〃 Volume load T-N base
0.32Kg―N/m 3・day BOD base
0.78 〃 (3) Others MLSS 9000~10000mg/ Dilution ratio 7 times Water temperature 25~27℃ 2 Dehydrator Processing capacity 1m3 /day (MAX) Rotation speed 3000rpm Cationic polymer addition amount 1.5~2.0% (Flownatsu) (vs. SS) ) 3 Coagulation and precipitation treatment Ferric chloride (hexahydrate 300-350mg/) Polymer (Sunpoly N-500) 1mg/ Stirring residence time 0.2 hours Sedimentation tank 〃 4 〃 4 Sand filter Anthracite + sand 2 layers Water flow rate LV =2~5m/H 5 Activated carbon treatment Column size 5.0cm〓×100cm L flow rate SV=2 A, C 1 6 Denitrification using biofilm Fluidized bed denitrification method Biological media (filling material), sand (particle size 0.6mm) depth 1m Methanol addition ratio CH 3 OH/N = 2.5 to 3.0 Volume load NO 3 -N, 5KgN/m 3 -day residence time 7 to 10 minutes Human waste is diluted 2 times with the above specifications As a result, the treated water quality of biological nitrification and denitrification process is shown in Table 1.
It was like that.

【表】 次に沈殿池上澄水S1の溢流水に生物処理工程か
ら発生する余剰汚泥を混和したスラリー液に
(SSとして10000〜12000mg/)カチオンポリマ
ー(商品名,フローナツク)を1.5〜2.0%(対
SS)添加してデカンター型遠水脱水機で脱水し
た。 次に表―2に示す水質を有する脱水機分離液に
塩化第二鉄(6水塩)200mg/を添加して凝集
処理した。その沈殿池上澄水S2を砂過処理した
後、活性炭吸着塔流入水とした。 更に該活性炭処理水を流動床式による生物膜法
によつて脱窒素処理した後、砂過塔を経由して
放流した。その結果を表―2に示す。
[Table] Next, add 1.5 to 2.0% (10,000 to 12,000 mg of SS) of a cationic polymer (trade name, Flownatsu) to the slurry liquid obtained by mixing surplus sludge generated from the biological treatment process with the overflow water of the sedimentation tank supernatant water S1 (10,000 to 12,000 mg/SS). versus
SS) was added and dehydrated using a decanter-type centrifugal dehydrator. Next, 200 mg of ferric chloride (hexahydrate) was added to the dehydrator separated liquid having the water quality shown in Table 2 for flocculation treatment. The clear water S2 from the sedimentation tank was subjected to sand filter treatment, and then used as inflow water to the activated carbon adsorption tower. Furthermore, the activated carbon-treated water was subjected to denitrification treatment by a fluidized bed biofilm method, and then discharged via a sand filter tower. The results are shown in Table-2.

【表】【table】

【表】 の平均値である。
表―2に示す如く、活性炭吸着塔においては従
来の処理方法で懸念される悪臭の発生もなく、着
色水の流出もなかつた。また最終放流水の水質は
BOD4.2mg/,COD3.2mg/,T―N2.3mg/
であり、目標とする処理水質を得ることができ
た。
This is the average value of [Table].
As shown in Table 2, the activated carbon adsorption tower did not generate any bad odor, which is a concern with conventional treatment methods, and there was no outflow of colored water. Also, the quality of the final discharged water is
BOD4.2mg/, COD3.2mg/, T-N2.3mg/
The target treated water quality was achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフローシート
である。 1…し尿、2…脱窒素槽、3…硝化槽、4…沈
殿池上澄水(S1)、5…カチオンポリマー、6…
脱水機、7…塩化第二鉄等、8…凝集槽、9…沈
殿池上澄水(S2)、10…砂過塔、11…活性
炭塔、12…生物膜脱窒素、13…砂過塔、1
4…処理水、15…硝化液循環、16…返送汚
泥、17…余剰汚泥、18…ケーキ。
FIG. 1 is a flow sheet showing one embodiment of the present invention. 1... Human waste, 2... Denitrification tank, 3... Nitrification tank, 4... Sedimentation tank supernatant water (S 1 ), 5... Cationic polymer, 6...
Dehydrator, 7... Ferric chloride etc., 8... Coagulation tank, 9... Sedimentation tank supernatant water (S 2 ), 10... Sand filter tower, 11... Activated carbon tower, 12... Biofilm denitrification, 13... Sand filter tower, 1
4... Treated water, 15... Nitrification liquid circulation, 16... Returned sludge, 17... Excess sludge, 18... Cake.

Claims (1)

【特許請求の範囲】 1 有機性廃水を生物学的硝化脱窒素法で処理し
た処理水を固液分離したのち活性炭処理する方法
において、前記生物学的硝化脱窒素法の処理工程
を脱窒素工程を先に、続いて硝化工程とすること
によつて前記活性炭処理における流入水中に亜硝
酸性窒素または硝酸性窒素を存在せしめたことを
特徴とする有機性廃水の高度処理方法。 2 活性炭処理に後続して脱窒素工程を付設した
特許請求の範囲第1項記載の有機性廃水の高度処
理方法。 3 活性炭処理に後続する脱窒素工程が生物膜を
利用したものである特許請求の範囲第2項記載の
有機性廃水の高度処理方法。
[Scope of Claims] 1. In a method in which organic wastewater is treated by a biological nitrification-denitrification method, treated water is subjected to solid-liquid separation and then treated with activated carbon, the treatment step of the biological nitrification-denitrification method is a denitrification step. 1. A method for advanced treatment of organic wastewater, characterized in that nitrite nitrogen or nitrate nitrogen is caused to exist in the inflow water in the activated carbon treatment by first carrying out a nitrification step. 2. The method for advanced treatment of organic wastewater according to claim 1, wherein a denitrification step is added subsequent to the activated carbon treatment. 3. The advanced treatment method for organic wastewater according to claim 2, wherein the denitrification step subsequent to the activated carbon treatment utilizes a biofilm.
JP8849379A 1979-07-11 1979-07-11 High degree treating method of organic waste water Granted JPS5613094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8849379A JPS5613094A (en) 1979-07-11 1979-07-11 High degree treating method of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8849379A JPS5613094A (en) 1979-07-11 1979-07-11 High degree treating method of organic waste water

Publications (2)

Publication Number Publication Date
JPS5613094A JPS5613094A (en) 1981-02-07
JPS6218236B2 true JPS6218236B2 (en) 1987-04-22

Family

ID=13944331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8849379A Granted JPS5613094A (en) 1979-07-11 1979-07-11 High degree treating method of organic waste water

Country Status (1)

Country Link
JP (1) JPS5613094A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187099A (en) * 1981-05-13 1982-11-17 Idemitsu Kosan Co Ltd Preventing method for generation of hydrogen sulfide occuring in microbes
JPS58143890A (en) * 1982-02-22 1983-08-26 Ebara Infilco Co Ltd Purification of organic waste water
KR100386926B1 (en) * 2000-07-26 2003-06-09 대한주택공사 Compact System of the Advanced Wastewater Treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245138A (en) * 1975-10-06 1977-04-09 Seibu Polymer Kasei Kk Bridge pier protective device
JPS5270563A (en) * 1975-12-08 1977-06-11 Japan Gasoline Method of treating waste water
JPS5339651A (en) * 1976-09-21 1978-04-11 Kurita Water Ind Ltd Treatment of waste water containing organic matters
JPS5535986A (en) * 1978-09-07 1980-03-13 Kubota Ltd Biological denitrification of leachate from waste dumping site

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245138A (en) * 1975-10-06 1977-04-09 Seibu Polymer Kasei Kk Bridge pier protective device
JPS5270563A (en) * 1975-12-08 1977-06-11 Japan Gasoline Method of treating waste water
JPS5339651A (en) * 1976-09-21 1978-04-11 Kurita Water Ind Ltd Treatment of waste water containing organic matters
JPS5535986A (en) * 1978-09-07 1980-03-13 Kubota Ltd Biological denitrification of leachate from waste dumping site

Also Published As

Publication number Publication date
JPS5613094A (en) 1981-02-07

Similar Documents

Publication Publication Date Title
US3876536A (en) Waste oxidation process
JPH09122682A (en) Method for treating waste water
JPS6210720B2 (en)
JP2796909B2 (en) Wastewater treatment method
JPS6218236B2 (en)
JPH0788500A (en) Method for treating sewage countercurrent water
JPS5940079B2 (en) Sewage treatment method
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPS6320600B2 (en)
JPS6249118B2 (en)
JPH0125633B2 (en)
JPH09174091A (en) Method for treating organic waste water and apparatus therefor
JP3369915B2 (en) Night soil treatment equipment
JPH0649197B2 (en) Organic wastewater treatment method
JPS6043799B2 (en) How to treat organic waste liquid
JPS5955391A (en) Treatment of activated sludge
KR850001172B1 (en) The method of treatment for organic waste water
JP2004097903A (en) Method of treating sludge returning water
JPH0131960B2 (en)
JPH0661552B2 (en) Organic wastewater treatment method
JPH03270789A (en) Biological treatment of organic sewage
JPS6254080B2 (en)
JPH044098A (en) Treatment of night soil-based sewage
JPS6218237B2 (en)
JPS59154197A (en) Biological denitrification method of organic waste