JPS58143890A - Purification of organic waste water - Google Patents

Purification of organic waste water

Info

Publication number
JPS58143890A
JPS58143890A JP2716382A JP2716382A JPS58143890A JP S58143890 A JPS58143890 A JP S58143890A JP 2716382 A JP2716382 A JP 2716382A JP 2716382 A JP2716382 A JP 2716382A JP S58143890 A JPS58143890 A JP S58143890A
Authority
JP
Japan
Prior art keywords
liquid
anaerobic
aerobic
tank
bod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2716382A
Other languages
Japanese (ja)
Other versions
JPH0134117B2 (en
Inventor
Yoshitaka Matsuo
松尾 吉高
Toshihiro Tanaka
俊博 田中
Akira Kawakami
彰 川上
Yutaka Yoneyama
豊 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP2716382A priority Critical patent/JPS58143890A/en
Publication of JPS58143890A publication Critical patent/JPS58143890A/en
Publication of JPH0134117B2 publication Critical patent/JPH0134117B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the SS-decreased limpid purified water from which phosphorus and BOD are removed with high efficiency, by letting an overflowing liquid from the precipitation pool of an anaerobic-aerobic active sludge process flow through a sand filter cell, and returning a part of captured SS to an anaerobic or aerobic cell. CONSTITUTION:An organic waste liquid as a liquid 11 to be purified is agitated and mixed with precipitating sludge 12 returned from the third step in an anaerobic cell 1 under the anaerobic condition that any of dissolved oxygen, nitric acid and nitrous acid does not exist substantially. The mixed outflow liquid 13 from the anaerobic cell in which soluble phosphorus is increased but BOD is reduced by said first step is introduced into an aerobic cell 2 and aerated with O2-contg. gas through a sparger 2' to oxidize and decompose residual BOD components and to digest soluble phosphorus with active sludge. A mixed outflow liquid 14 from the second step is let flow into a precipitating pool 3, and its overflow liquid 15 is let flow through a sand filter 4. Lightweight flocks retained in the filter 4 are exfoliated by backwashing water, and its part or whole is returned to the cell 1 or 2. On the other hand, the purified liquid 16 is drained as such or after being highly purified in succession.

Description

【発明の詳細な説明】 本発明は、家庭下水ないし、産業廃液、それに類する有
機性廃水などの有機物とリンを含む廃水の処理法に関す
るもので、特に嫌気−好気−5− 活性汚泥法と言われる生物脱リン技術の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing organic matter and phosphorus, such as domestic sewage, industrial wastewater, and similar organic wastewater, and particularly relates to an anaerobic-aerobic-activated sludge method. This is related to the improvement of biological dephosphorization technology.

一般に、嫌気−好気活性汚泥法とは、従来の活性汚泥性
施設における曝気槽の原液流入端を溶存酸素(Do)も
硝酸根あるいは亜硝酸根(NOX )が実質的に存在し
ない嫌気性状態の帯域(以下これを嫌気槽という)にし
、ここで被処理液と返送汚泥を混合し、しかるのちにこ
の混合液を後段の気曝された帯域(以下これを好気槽と
いう)に導いて気曝処理し、さらに沈殿池で固液分離を
はかる技術である。このような特徴のある嫌気−好気活
性汚泥法の工程構成では、標準活性汚泥法で生成される
活性汚泥よりもリン摂取能力の高い活性汚泥が生成され
、BOD、SSなどの汚濁物の除去と同時に原液中に存
在する溶解性リンの大部分を活性汚泥に吸収せしめるこ
とができる。
In general, the anaerobic-aerobic activated sludge method refers to the inflow end of the raw solution in the aeration tank in conventional activated sludge facilities to an anaerobic state in which there is virtually no dissolved oxygen (Do) or nitrate or nitrite (NOX). zone (hereinafter referred to as the anaerobic tank), where the liquid to be treated and the returned sludge are mixed, and then this mixed liquid is led to the subsequent aerobic zone (hereinafter referred to as the aerobic tank). This technology involves aeration, followed by solid-liquid separation in a settling tank. The process configuration of the anaerobic-aerobic activated sludge method, which has such characteristics, produces activated sludge that has a higher phosphorus uptake capacity than the activated sludge produced by the standard activated sludge method, and removes pollutants such as BOD and SS. At the same time, most of the soluble phosphorus present in the stock solution can be absorbed into the activated sludge.

発明者らも、家庭下水を日あたりs M3/日処iする
パイロットプラシトによって実験的に検討した結果1本
法で生成される活性汚泥は確かに溶解性リンの摂取能力
が高く、系全体に流入するB OD (F)量と好気槽
に存在する活性汚泥量(MLSS量)(M)の比、即ち
F/M比を02〜0.7(7日)に維持しさえすれば処
理水中にほとんど溶解性リンが存在しない処理液を得る
とともにBODも除去できることを確認した。
The inventors also conducted an experimental study using a pilot plant in which domestic sewage was treated at s M3/i per day. As long as the ratio of the amount of BOD (F) flowing into the aerobic tank and the amount of activated sludge (MLSS amount) (M) existing in the aerobic tank, that is, the F/M ratio, is maintained at 02 to 0.7 (7 days). It was confirmed that it was possible to obtain a treatment solution in which almost no soluble phosphorus was present in the treatment water, and also to remove BOD.

しかし、一方で発明者らは1本法で生成される活性汚泥
は重力沈殿の際に特異的な挙動を示し、それ故に、沈殿
池から流出する処理液が濁り易いことも見出した。すな
わちこの活性汚泥のブロックの大部分は従来の活性汚泥
法で生成されるそれに比べてより稠密であり、沈降速度
ハ50 M/日以上もあるが、粘着性に乏しいので沈降
に際して易沈降性の重質フロック周辺に存在する軽質フ
ロックを捕捉できない。このために、沈殿池の底部・よ
り引抜かられる返送汚泥は4.5%を越えるほど濃厚で
ありながら、溢流液のSSa度は往々にして501n9
/lを越え。
However, on the other hand, the inventors also discovered that the activated sludge produced by this single method exhibits specific behavior during gravity sedimentation, and that the treated liquid flowing out from the settling tank is therefore likely to become cloudy. In other words, most of the blocks of this activated sludge are more dense than those produced by the conventional activated sludge method, and have a settling rate of more than 50 M/day, but because of their poor cohesiveness, they do not easily settle during settling. It is not possible to capture the light flocs that exist around the heavy flocs. For this reason, although the returned sludge drawn from the bottom of the settling tank is so thick as to exceed 4.5%, the SSa degree of the overflow liquid is often 501n9.
Exceed /l.

透視度は10crrL以下になる。このような現象のた
めに溢流液には溶解性リンはほとんど検出さ 5− れないにもかかわらず、固型性リンを含めた全リン量を
測定すると被処理液の全リン量と大差のないものになり
、更に好ましくないことは。
The visibility will be 10 crrL or less. Due to this phenomenon, almost no soluble phosphorus is detected in the overflowing liquid.5- Even though the total phosphorus amount, including solid phosphorus, is measured, there is a large difference from the total phosphorus amount in the liquid to be treated. What is even more undesirable is that it becomes something without.

家庭下水などの処理液量あたりの余剰汚泥発生量が少な
い稀薄廃液を被処理液とした場合、このようなSS流出
が継続すると、ついには好気槽に所要量の活性汚泥量が
維持できず、その結果として好気槽のF、/’M比も適
切範囲を越え。
If the liquid to be treated is a diluted waste liquid such as domestic sewage that generates a small amount of surplus sludge per amount of treated liquid, if this type of SS outflow continues, it will eventually become impossible to maintain the required amount of activated sludge in the aerobic tank. As a result, the F,/'M ratio in the aerobic tank also exceeded the appropriate range.

溶解性リンばかりでな(BODまでも残留するようにな
る。これを防止するには、沈殿池における上昇流速を微
粒状SSの沈降速度より小さくすることであるが、それ
には広大な水面積の沈殿池が必要になり、施設所要面積
の点から実現性に乏しく満足するものでなかったのが実
情であった。
Not only soluble phosphorus (even BOD) remains. To prevent this, the upward flow rate in the sedimentation tank must be made lower than the sedimentation rate of fine SS, but this requires a vast water area. The reality was that a sedimentation tank was required, and the facility was unsatisfactory due to the lack of feasibility due to the required area.

本発明は、従来の嫌気−好気活性汚泥法におけるこのよ
うな問題点の解消しようとするもので、嫌気−好気活性
汚泥法の沈殿池溢流液に含まれる軽質フロックが、従来
の活性汚泥法部理水に含まれる微粒状SSに比べるとき
わめて砂= 6− j″′i過処理が容易であることに基づいて嫌気−好気
活性汚泥法の溢流液を360 M7日の1過速度で処理
しても、P材当りのss捕捉量が12に9.物までは9
0チ以上の88除去が可能である有効な処理方法を提供
することを目的としたものである。
The present invention aims to solve these problems in the conventional anaerobic-aerobic activated sludge method, and the light flocs contained in the settling tank overflow of the anaerobic-aerobic activated sludge method are Sludge process The overflow of the anaerobic-aerobic activated sludge process was used at 360 M7 days, based on the fact that it is extremely sandy compared to the fine-grained SS contained in the treated water. Even when processed at overspeed, the amount of ss captured per P material is 12 to 9.
The purpose of this invention is to provide an effective processing method that is capable of removing 0 or more 88 characters.

すなわち0本発明は嫌気−好気活性汚泥法の沈殿池から
の溢流液を砂f過器に通水し、そこで捕捉されるSSの
少なくとも一部を嫌気−好気活性汚泥法の嫌気槽ないし
好気槽に返流することを特徴とするものである。このよ
うな操作によって、SSの少ない清澄な、しかも実質的
にリンの存在しない(全リン濃度として0.3■l以下
)の処理液を得られるとともに、家庭下水のように稀薄
な廃液を対象としても、好気槽に所要の活性汚泥量が容
易に維持でき、そのことによって安定して高率のBOD
除去を達成し得る。
In other words, the present invention passes the overflow from the settling tank of the anaerobic-aerobic activated sludge process to a sand filter, and at least part of the SS captured there is transferred to the anaerobic tank of the anaerobic-aerobic activated sludge process. It is characterized by returning the water to an aerobic tank. Through such operations, it is possible to obtain a clear treated liquid with low SS content and virtually no phosphorus (total phosphorus concentration of 0.3 μl or less), and it is also suitable for use with dilute waste liquids such as domestic sewage. However, the required amount of activated sludge can be easily maintained in the aerobic tank, thereby maintaining a stable and high rate of BOD.
removal can be achieved.

また本発明の沈殿池は、微粒状SSに対して完全な沈降
分離を配慮する必要がなく、もっば−7− ら嫌気−好気活性汚泥法で特異的に生成される沈降濃縮
性の良い活性汚泥フロックを沈降分離するに足るだけの
水面積があればよく、砂沢過施設を含めても、固液分離
に要する施設の面積は、沈殿池のみで固液分離をはかる
従来の嫌気−好気活性汚泥法技術に比して小さくて済む
ので比較的小さな沈殿池と砂1過器の組合わせで嫌気−
好気活性汚泥法における固液分離法として施設面積や固
液分離効率の点で著しく効果的である。
In addition, the sedimentation tank of the present invention does not require consideration for complete sedimentation separation of fine particulate SS, and has good sedimentation and concentration properties that are specifically produced by the anaerobic-aerobic activated sludge method. It is sufficient to have enough water area to sediment and separate activated sludge flocs, and even if a sand filter facility is included, the area required for solid-liquid separation is smaller than that of the conventional anaerobic-preferential method, which separates solid-liquid using only a sedimentation tank. Since it is smaller than the air activated sludge technology, it can be used in combination with a relatively small settling tank and sand filter.
As a solid-liquid separation method in the aerobic activated sludge process, it is extremely effective in terms of facility area and solid-liquid separation efficiency.

本発明法の一実施態様を図面に基づいて説明すると、家
庭下水などの有機性廃液である被処理液11は沈殿返送
汚泥12とともに嫌気槽1に導かれ攪拌機11′で混合
される第1工程で処理される。活性汚泥はここでその細
胞内に貯留した高分子リン化合物(ポリリン酸)を加水
分解し溶液側に放出するとともにこの際に得られるエネ
ルギーを利用して、被処理液に含まれるBODの一部を
細胞内に摂取し、細胞内貯留有機物とする。これらの第
1工程処理の反応を行わせしめる嫌気槽1の規模は被処
理液の組成や濃度C(よって異なるが、家庭下水を被処
理液とした場合には、被処理液流入量の05〜2.5時
間分でよい。
One embodiment of the method of the present invention will be described based on the drawings. In the first step, the liquid to be treated 11, which is an organic waste liquid such as domestic sewage, is led to the anaerobic tank 1 together with the sedimentation return sludge 12 and mixed by a stirrer 11'. will be processed. Activated sludge hydrolyzes the high molecular phosphorus compound (polyphosphoric acid) stored in its cells and releases it into the solution, and uses the energy obtained at this time to remove a portion of the BOD contained in the liquid to be treated. is taken into cells and becomes an intracellular stored organic matter. The scale of the anaerobic tank 1 in which these reactions in the first step are carried out varies depending on the composition and concentration C of the liquid to be treated (depending on the composition and concentration C of the liquid to be treated, but when domestic sewage is used as the liquid to be treated, the scale of the inflow of the liquid to be treated is 05 to 2.5 hours is enough.

このようにして溶解性リンが増加し−BODが減少した
嫌気槽流出混合液13は連設又は連通状態下に区画され
た好気槽2に導かれる。この好気槽2は空気2″ないし
それに準する酸素含有性気体を散気器2′から給気して
気曝されて?す、嫌気槽流出混合液13に含まれる活性
汚泥は嫌気槽1で摂取しきれなかったBOD成分を摂取
し、酸化分解するとともに細胞内貯留有機物も酸化分解
する第2工程で処理される。
The anaerobic tank effluent mixed liquid 13 in which soluble phosphorus has increased and -BOD has decreased in this way is led to the aerobic tank 2 which is partitioned in a continuous or communicating state. This aerobic tank 2 is aerated by supplying air 2'' or a similar oxygen-containing gas from an aeration diffuser 2'.The activated sludge contained in the mixed liquid 13 flowing out of the anaerobic tank is In the second step, the BOD components that cannot be ingested are ingested and oxidized and decomposed, and the organic matter stored in the cells is also oxidized and decomposed.

該活性汚泥は、この有機物の酸化代謝の際に生成される
エネルギーの一部を利用して、細胞外に存在する溶解性
リンを細胞内に摂取しつつ細胞内高分子リン化合物(ポ
IJ IJン酸)を合成する。この際に嫌気槽1で放出
された以上の溶解性リン量が摂取され、混合液中の溶解
性リン濃度は被処理液のそれよりも低くなる。完全な溶
 9− 解性リン除去を行なうためには、被処理液のP/BOD
比が日間平均値が006以下であることが必要であるが
、家庭下水の多くはその条件を満たす。この場合、BO
Dの酸化分解と溶解性リン除去を完遂せしめるためには
、好気槽のVM比を02〜0.7(7日)、好ましくは
0.3〜0.5(7日)の範囲に制御する必要がある。
The activated sludge utilizes a part of the energy generated during the oxidative metabolism of organic matter to absorb soluble phosphorus present outside the cells into the cells, while also converting intracellular polymeric phosphorus compounds (PoIJ IJ Synthesize phosphoric acid). At this time, an amount of soluble phosphorus greater than that released in the anaerobic tank 1 is ingested, and the concentration of soluble phosphorus in the mixed liquid becomes lower than that of the liquid to be treated. 9- In order to completely remove soluble phosphorus, the P/BOD of the liquid to be treated must be
It is necessary that the daily average value of the ratio be 0.06 or less, and most domestic sewage satisfies this condition. In this case, B.O.
In order to complete the oxidative decomposition of D and the removal of soluble phosphorus, the VM ratio of the aerobic tank should be controlled within the range of 0.2 to 0.7 (7 days), preferably 0.3 to 0.5 (7 days). There is a need to.

なおFは被処理液がシステム全体【持込む1日あたりの
BOD量(kg−BOD/日)であり1Mは好気槽に存
在するIJLssで表示した活性汚泥量(神−MLSS
)である。そしてF/M比が余り低いと余剰汚泥の発生
量が流入リン量に比して相対的に少なすぎ完全な溶解性
リン除去ができなくなるし、また、 F/M比が余り高
いと、速度論的にBODの酸化分解と溶解性リンの摂取
が不完全になるので、前記F/M比の範囲にすべぎであ
り、この最適F/M比は水温にも支配され、冬期には比
較的低いF/M値が好ましく、夏期には高いF/M値が
好ましい。従来の嫌気−好気活性汚泥法では、沈殿池溢
流液に含まれる軽質フロックとして大量の活性汚泥が不
可抗力的に排出され、とりわけ冬期における所要のF/
M値を維持することが困難になるが、この本発明法にあ
っては、沈殿/(12浴流液の軽質フロックは後述する
砂l:i過器で回収され、逆洗返送汚泥として直接もし
くは嫌気槽を経由して好気槽にもどされるので容易に所
要のF/M比を維持できるかくして前記好気槽2で生成
されるBODと溶解性リンが減じた好気槽流出混合液1
4は沈殿池6に送られ、ここで1穎い固液分離1、を受
ける。
In addition, F is the amount of BOD per day (kg-BOD/day) that the liquid to be treated brings into the entire system, and 1M is the amount of activated sludge (K-MLSS) expressed by IJLss present in the aerobic tank.
). If the F/M ratio is too low, the amount of surplus sludge generated will be too small compared to the amount of inflowing phosphorus, making it impossible to completely remove soluble phosphorus, and if the F/M ratio is too high, the rate of Theoretically, the oxidative decomposition of BOD and the uptake of soluble phosphorus will be incomplete, so the F/M ratio should be within the range mentioned above.This optimal F/M ratio is also controlled by water temperature, and in winter A low F/M value is preferred, and a high F/M value is preferred in the summer. In the conventional anaerobic-aerobic activated sludge method, a large amount of activated sludge is unavoidably discharged as light flocs contained in the sedimentation tank overflow, and the required F/
Although it becomes difficult to maintain the M value, in the method of the present invention, the light flocs of the precipitate/(12 bath flow liquid) are recovered in the sand l:i filter described later and directly recycled as backwash return sludge. Alternatively, since it is returned to the aerobic tank via the anaerobic tank, the required F/M ratio can be easily maintained. Thus, the aerobic tank effluent mixed liquid 1 with reduced BOD and soluble phosphorus produced in the aerobic tank 2
4 is sent to a settling tank 6, where it undergoes solid-liquid separation 1.

すなわち、この沈殿池3では容易に沈降分離する重質フ
ロックのみが分離され、それは沈殿返送汚泥12として
前記嫌気槽1に戻される。第3工程を構成するこれらの
易沈降性フロックが分離された沈殿/l!2溢流液15
にはなお多くの活性汚泥が微粒フロックとして存在し、
この液の固型性BODを含めた全BOD濃度、SS濃度
That is, only heavy flocs that are easily settled and separated are separated in the settling tank 3, and are returned to the anaerobic tank 1 as settled return sludge 12. These easily settled flocs constituting the third step are separated and precipitated/l! 2 overflow liquid 15
There is still a lot of activated sludge in the form of fine flocs,
Total BOD concentration including solid BOD and SS concentration of this liquid.

固型性リン濃度等はきわめて高いが、この液を最終処理
液としない本発明にあっては、そのことは余り大きな問
題ではない。前記沈殿池6の−11− 構造としてはフライト・コンベヤを設けた横流式でもよ
いが、沈殿池内の沈降汚泥量を容易に管理できる点でも
、また濃厚な返送汚泥が得られる点でもクラリファイヤ
形式の円形沈殿池が好ましい。沈殿池水面積に対する溢
流液量、すなわち水面積負荷は好気槽流出混合液のML
SS濃度によっても異なるが、標準活性汚泥法や従来の
嫌気−好気活性汚泥法に較べてかなり高くてよい。たと
えば、好気槽流出混合液のMLSS濃度が2500〜3
000 rn9/l程度の場合、沈殿池水面積負荷は4
0m/日以上でもよい。沈殿池溢流液の軽質フロックを
不問にできない従来の嫌気−好気活性汚泥法では、沈殿
池水面積負荷は25m/日が限界であるのに比べると、
これは大巾な施設規模の縮少となる。
Although the solid phosphorus concentration is extremely high, this is not a big problem in the present invention, where this liquid is not used as the final treatment liquid. -11- The structure of the sedimentation tank 6 may be a cross-flow type equipped with a flight conveyor, but the clarifier type is preferable because it allows easy control of the amount of settled sludge in the sedimentation tank and the ability to obtain thick return sludge. A circular settling basin is preferred. The amount of overflow liquid relative to the water area of the sedimentation tank, that is, the water area load is the ML of the aerobic tank outflow mixture.
Although it varies depending on the SS concentration, it may be considerably higher than the standard activated sludge method or the conventional anaerobic-aerobic activated sludge method. For example, if the MLSS concentration of the aerobic tank effluent mixture is 2500-3
000 rn9/l, the sedimentation basin water area load is 4
It may be 0 m/day or more. In the conventional anaerobic-aerobic activated sludge method, which cannot eliminate light flocs from the settling tank overflow, the water area load on the settling tank is limited to 25 m/day.
This will result in a significant reduction in the scale of the facility.

このようにして沈殿池6で易沈降性の重質フロックを分
離することにより生成された沈殿池溢流液15はf材4
′を充填した砂f過器4に送られる。この砂1過器の構
造は従来より利用されてきたものが全て利用できるが、
家庭下水処理の場合のように被処理液量が大量であると
きは、圧力式よりも本実施例のような重力式の方が好ま
しい。また、被処理液量が安定している場合には上向流
式でもよいが、変動の大きい場合には本実施例のような
下向流式が好ましい。
The sedimentation tank overflow liquid 15 generated by separating the easily-sedimentable heavy flocs in the sedimentation tank 6 in this way is
' is sent to a sand filter 4 filled with sand. All of the structures that have been used in the past can be used for this sand filter, but
When the amount of liquid to be treated is large, such as in the case of domestic sewage treatment, a gravity type as in this embodiment is preferable to a pressure type. Further, an upward flow type may be used when the amount of liquid to be treated is stable, but a downward flow type as in this embodiment is preferable when there is a large fluctuation.

また取扱う被処理液量が小量の場合には並流式ないし移
動床式砂沢過器も使用できる。この砂p過器を設計する
際に最も重要な点は、P材4′とりわけその中心をなす
砂の粒径の選定である。
In addition, when the amount of liquid to be treated is small, a parallel flow type or moving bed type sand filter can also be used. The most important point in designing this sand filter is the selection of the grain size of the sand forming the center of the P material 4'.

例えば沈殿池浴流液15に含まれる軽質フロックは、き
わめて砂1過し易い固型物であるので。
For example, the light flocs contained in the sedimentation tank bath liquid 15 are solid substances that can be easily filtered through sand.

従来の砂1過技術で利用されてきたような有効径05〜
071rnnの細砂を1材とする必要はなく。
Effective diameter 05 ~ as used in conventional sand 1-pass technology
There is no need to use 071rnn fine sand as one material.

有効径0.9〜2.0叫程度の比較的粗大な砂でよい。Relatively coarse sand with an effective diameter of about 0.9 to 2.0 mm may be used.

このようなf材を選定することによって360 m/日
以上の1過速度が確保でき、しかも水頭損失を大きくす
ることなくf材あたりのSS捕捉量が8 kg/、1以
上になってもなお90チ程度のSS捕捉率を確保できる
。換言すれば沈殿池溢流液にSS濃度として5o”’v
t程度の−13− 軽質フロックが含まれていても、P材高さ1mのf過材
で1日2回程度の逆洗でSS濃度3m9/を以下の処理
液が得られる。このようにして沈殿池溢流液から軽質フ
ロックを除去することによって生成される処理液16は
そのまま放流されるか、もしその必要があれば更に高度
の処理を受ける。
By selecting such f-materials, it is possible to secure an overspeed of 360 m/day or more, and even if the SS capture amount per f-material becomes 8 kg/1 or more without increasing the water head loss. It is possible to secure an SS capture rate of about 90 inches. In other words, the SS concentration in the sedimentation tank overflow is 5o'''v.
-13- Even if light flocs of about t are included, a treatment solution with an SS concentration of 3 m9/ or less can be obtained by backwashing about twice a day using a P material with a height of 1 m. The treated liquid 16 thus produced by removing light flocs from the sedimentation tank overflow is either discharged as is or undergoes further advanced treatment if necessary.

他方砂f過器4に保留された軽質フロックは。On the other hand, the light flocs retained in the sand filter 4.

逆洗過程で逆洗水によってf材4′より剥離される。こ
の逆洗排水の全部、もしくはそのうち高濃度のSSを含
む部分は逆洗返送汚泥17として直接、もしくは嫌気槽
1を経由して好気槽2に返送され、そこのF/M比を所
要値以下に維持すべき汚泥量の一部として帰与する第4
工程を経て処理するようになっている。この場合逆洗返
送汚泥17は直接に嫌気槽1もしくは好気槽2に送って
もよいが、水量均等化のために貯留槽5を経由して送る
ことがより好ましい。
During the backwashing process, it is peeled off from the f material 4' by backwashing water. All of this backwash wastewater, or a portion of it that contains a high concentration of SS, is returned to the aerobic tank 2 either directly as backwash return sludge 17 or via the anaerobic tank 1, and the F/M ratio there is adjusted to the required value. The fourth amount to be attributed as part of the sludge amount to be maintained below.
It is processed through a process. In this case, the backwash return sludge 17 may be sent directly to the anaerobic tank 1 or the aerobic tank 2, but it is more preferable to send it via the storage tank 5 in order to equalize the amount of water.

なお、前記砂f過器4に大量の軽質フロックが保留され
ると1通水過程でr過器内液が嫌気−14= 化し、そのことにより、保留された活性汚泥から溶解性
リンが放出され処理液16の溶解性リン濃度が沈殿池溢
流液15のそれよりも高くなることがある。この防止策
としては、沈殿池溢流液15を酸素含有気体であらがじ
め気曝することも有効であるが、砂f過器の形式が重力
下向流式の場合には、1材底部より酸素含有気体を通気
する方法も有効である。
Note that when a large amount of light flocs is retained in the sand filter 4, the liquid in the filter becomes anaerobic -14= during one water flow process, and as a result, soluble phosphorus is released from the retained activated sludge. The concentration of soluble phosphorus in the treatment liquid 16 may be higher than that in the sedimentation tank overflow liquid 15. As a preventive measure, it is also effective to pre-aerate the sedimentation tank overflow liquid 15 with oxygen-containing gas, but if the type of sand filter is a gravity counterflow type, one material A method of venting oxygen-containing gas from the bottom is also effective.

次に本発明の実施例及び比較例を示す。Next, Examples and Comparative Examples of the present invention will be shown.

(比較例) 住宅団地より排出される家庭下水を被処理液として従来
の嫌気−好気活性汚泥法の処理実験を行った。この実験
施設は、娠気槽、好気槽。
(Comparative Example) A treatment experiment using the conventional anaerobic-aerobic activated sludge method was conducted using domestic sewage discharged from a housing complex as the liquid to be treated. This experimental facility has an aerobic tank and an aerobic tank.

沈殿池より成り、それぞれの装置仕様は第1表通りであ
った。
It consisted of a settling tank, and the specifications of each device were as shown in Table 1.

第1表 比較例(従来の嫌気−好気活性汚泥法)実験施
設 j□ −15− このような施設を用いて、被処理液量5.45靜/日、
沈殿池返送汚泥流量0.63 d7日で処理したとこす
、沈殿池溢流液に常時40〜50m9/lのSS(軽質
活性汚泥フロック)が流失し。
Table 1 Comparative example (conventional anaerobic-aerobic activated sludge method) experimental facility j□ -15- Using such a facility, the amount of liquid to be treated was 5.45 m/day,
Sedimentation tank return sludge flow rate 0.63 When treated for 7 days, 40 to 50 m9/l of SS (light activated sludge floc) was constantly washed away in the sedimentation tank overflow liquid.

全く余剰汚泥を排出しないにもかかわらず、嫌気槽と好
気槽におけるMLSS濃度は85 o m971〜11
00m9/lの範囲(平均950m9/7)Kしか維持
できず、好気槽のF/M比は1.1(7日)前後になっ
てしまった。この時の処理成績を第2表に示す。
Despite not discharging any excess sludge, the MLSS concentration in the anaerobic tank and aerobic tank was 85 o m971~11
K could only be maintained in the range of 00 m9/l (average 950 m9/7), and the F/M ratio of the aerobic tank was around 1.1 (7 days). The treatment results at this time are shown in Table 2.

第2表  比較例の処理成績 (実施例−1) このような処理成績の悪化にかんがみ沈殿池溢流液中の
軽質活性汚泥フロックを回収するために第1表の施設に
、第3表に示される重力下向流式の砂濾過器を付設し、
16時間の間隔で第3表 実施例1および2の砂1過器
仕様0、2 nl/7の逆洗水を用いて逆洗し、その排
水(逆洗返送汚泥)を貯留しそれを好気槽に定量的に返
送した。その結果、徐々に好気槽のM LSS濃度は増
加していった。以後はMLSSi度が2100m9/l
〜2500 m9/iの範囲、即ち好気槽のF/M比が
0.4(7日)前後になるように沈殿池からの排泥を制
御したところ、第4表の    ′ 17− ような処理成績を得た。
Table 2 Treatment results of comparative example (Example-1) In view of such deterioration in treatment results, in order to recover light activated sludge flocs in the sedimentation tank overflow, the facilities in Table 1 and the facilities in Table 3 were installed. Equipped with a gravity counterflow type sand filter as shown,
Backwashing was performed at intervals of 16 hours using backwash water of 0 and 2 nl/7 of the sand 1 filter specifications of Examples 1 and 2 in Table 3, and the wastewater (backwash return sludge) was stored and used for preferential treatment. It was quantitatively returned to the air tank. As a result, the MLSS concentration in the aerobic tank gradually increased. After that, the MLSSi degree is 2100m9/l
When the sludge discharge from the sedimentation tank was controlled so that the F/M ratio of the aerobic tank was around 0.4 (7 days), the results were as shown in Table 4. Obtained processing results.

第4表 実施例−1の処理成績 (実施例−2) 実施例−1で活性汚泥の沈降性を調べたところ1等速沈
降速度は45−/min即ち65m/日もあった。そこ
で、第1表記載施設のうち、沈殿池だけを水容績0.1
5&、水面積0.125 m”ノ円形クラリファイヤに
取替えた。この結果。
Table 4 Treatment Results of Example-1 (Example-2) When the sedimentation property of the activated sludge was investigated in Example-1, the 1 isokinetic sedimentation rate was as high as 45-/min, that is, 65 m/day. Therefore, among the facilities listed in Table 1, only the settling pond has a water volume of 0.1.
5&, it was replaced with a circular clarifier with a water area of 0.125 m''.This result.

沈殿池の上昇流速は46m/日になったが、沈殿池溢流
液のSS濃度は実施例−1とほとんど変らず、砂濾過器
の運転には何らの悪影譬を及ぼさなかった。
Although the upward flow rate of the sedimentation tank was 46 m/day, the SS concentration of the sedimentation tank overflow was almost the same as in Example-1, and the operation of the sand filter was not affected in any way.

−18− (実施例−3) 実施例−1,実施例−2においては、第4表にみるよう
に砂濾過器内でわずかな溶解性リンの増加がみられる。
-18- (Example-3) In Example-1 and Example-2, as shown in Table 4, a slight increase in soluble phosphorus was observed in the sand filter.

一方、砂濾過処理液の酸化還元電位を測定するとEh−
−170ZV (白金−カロメル電極で−400771
V、)にまで低下した。そこで第3表記載の砂濾過器を
取替えて、底部支持床下に多孔板が設置されその多孔板
を経由して”、DOmt 30分毎に60秒間   /m、、nの速度で99%の
酸素ガスを供給する第5表記載の砂1過器を組込んだ。
On the other hand, when measuring the redox potential of the sand filtration solution, Eh-
-170ZV (-400771 with platinum-calomel electrode
V,). Therefore, the sand filter listed in Table 3 was replaced, and a perforated plate was installed under the bottom support bed, and 99% oxygen was passed through the perforated plate at a rate of 60 seconds/m/m/n every 30 minutes. A sand filter according to Table 5 was installed to supply gas.

第5表 実施例3の砂瀝過器仕様 その結果、砂1過処理液の酸化還元電位はEh =+3
20mV (白金−力ロメル電極で+5[177ZV)
−19− まで上昇し、その時の砂濾過処理液の溶解性リン濃度は
005〜o、o7”[であり砂濾過器内での溶解性リン
の増加は全く見られなくなり、むしある。
Table 5 Sand filter specifications of Example 3 As a result, the oxidation-reduction potential of the sand 1 overtreated liquid is Eh = +3
20mV (+5[177ZV at platinum-force Romel electrode)
-19-, and the soluble phosphorus concentration of the sand filtration solution at that time is 005~o, o7'', and no increase in soluble phosphorus in the sand filter is observed at all.

1・・・嫌気槽、2・・・好気槽、6・・・沈殿池、4
・・・砂濾過器、5・・・貯留槽、11・・・被処理液
、12・・・沈殿返送汚泥、16・・・流出混合液、1
4・・・流出混合液、15・・・溢流液、16・・・処
理液、17・・・逆洗返送汚泥−今″・逆↓)K。
1...Anaerobic tank, 2...Aerobic tank, 6...Sedimentation tank, 4
... sand filter, 5 ... storage tank, 11 ... liquid to be treated, 12 ... sedimentation return sludge, 16 ... effluent mixed liquid, 1
4... Effluent mixed liquid, 15... Overflow liquid, 16... Treated liquid, 17... Backwash return sludge - now''/reverse ↓)K.

特許出願人  荏原インフィルコ株式会社代理人弁理士
  端  山  五  −同 弁理士  千  1) 
  稔
Patent applicant Go Hatayama, patent attorney representing Ebara Infilco Co., Ltd. - Patent attorney Sen 1)
Minoru

Claims (1)

【特許請求の範囲】 1、被処理液と後記第3工程より返送される沈殿返送汚
泥とを溶存酸素、硝酸、亜硝酸のいずれもが実質的に存
在しない嫌気性状態で混合する第1工程と、該第1工程
で生成された混合液を酸素含有気体で気曝する第2工程
と。 該第2工程で生成された混合液を沈殿分離し該沈殿汚泥
の少な(とも一部を第1工程に供給する沈殿返送汚泥と
なす第3工程と、該第3工程の沈殿池処理液を砂濾過し
て、該砂1過で捕捉された活性汚泥の少なくとも一部を
第1工程又は第2工程に返送する第4工程とからなるこ
とを特徴とする有機性廃水の処理法。 2、前記第2工程が、その被処理液を持込む1日当りの
BOD量(lkcq−BOD/日)(F)と第2工程に
存在する活性汚泥量(ky−MLSS )σ)比 2− を02〜o、7(7日)、好ましくは0.3〜0.5(
7日)に制御して処理するものである特許請求の範囲第
1項記載の方法。 6、前記第3工程が、沈殿池の上昇流速を40m/日以
上として処理する特許請求の範囲第1項又は第2項記載
の方法。 4、 前記第4工程が、P材を充填した重力下向流式砂
1過器で砂濾過するものであって沢材底部より酸素含有
気体を通気して処理する特許請求の範囲第1項、第2項
又は第3項記載の方法。 5、 前記第4工程が、砂r過器で処理されるものであ
ってf過砂の有効径を09〜2. [] msの範囲の
1材に通水処理する特許請求の範囲第1項、第2項、第
3項、又は第4項記載の方法。
[Scope of Claims] 1. A first step of mixing the liquid to be treated and the sedimentation return sludge returned from the third step described below in an anaerobic state in which dissolved oxygen, nitric acid, and nitrous acid are substantially absent. and a second step of aerating the liquid mixture produced in the first step with an oxygen-containing gas. A third step in which the mixed liquid produced in the second step is separated by sedimentation and a small amount of the settled sludge (some of which is supplied to the first step as settled return sludge), and a settling tank treatment liquid in the third step is A method for treating organic wastewater, comprising a fourth step of performing sand filtration and returning at least a portion of the activated sludge captured by the sand filtration to the first step or the second step.2. The second step is the ratio of the daily BOD amount (lkcq-BOD/day) (F) to which the liquid to be treated is brought in and the activated sludge amount (ky-MLSS) σ) present in the second step. ~o, 7 (7 days), preferably 0.3-0.5 (
7 days). 6. The method according to claim 1 or 2, wherein in the third step, the upward flow rate in the settling tank is set to 40 m/day or more. 4. The fourth step is sand filtration using a gravity downward counterflow type sand filtration device filled with P material, and the treatment is carried out by aerating oxygen-containing gas from the bottom of the swamp material. , the method according to item 2 or 3. 5. The fourth step is performed using a sand filter, and the effective diameter of the sand filter is set to 09 to 2. [] The method according to claim 1, 2, 3, or 4, wherein one material is subjected to water flow treatment in the range of ms.
JP2716382A 1982-02-22 1982-02-22 Purification of organic waste water Granted JPS58143890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2716382A JPS58143890A (en) 1982-02-22 1982-02-22 Purification of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2716382A JPS58143890A (en) 1982-02-22 1982-02-22 Purification of organic waste water

Publications (2)

Publication Number Publication Date
JPS58143890A true JPS58143890A (en) 1983-08-26
JPH0134117B2 JPH0134117B2 (en) 1989-07-18

Family

ID=12213383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2716382A Granted JPS58143890A (en) 1982-02-22 1982-02-22 Purification of organic waste water

Country Status (1)

Country Link
JP (1) JPS58143890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443410B1 (en) * 2001-08-11 2004-08-09 주식회사 카보텍 Apparatus for Wastewater treatment with Simultaneous Nitrification/Denitrification and A Treatment method thereof
CN102923845A (en) * 2012-11-13 2013-02-13 常州大学 Chemical processor for sewage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613094A (en) * 1979-07-11 1981-02-07 Ebara Infilco Co Ltd High degree treating method of organic waste water
JPS58299A (en) * 1981-06-23 1983-01-05 Niigata Eng Co Ltd Treatment of wet oxidation treated liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613094A (en) * 1979-07-11 1981-02-07 Ebara Infilco Co Ltd High degree treating method of organic waste water
JPS58299A (en) * 1981-06-23 1983-01-05 Niigata Eng Co Ltd Treatment of wet oxidation treated liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443410B1 (en) * 2001-08-11 2004-08-09 주식회사 카보텍 Apparatus for Wastewater treatment with Simultaneous Nitrification/Denitrification and A Treatment method thereof
CN102923845A (en) * 2012-11-13 2013-02-13 常州大学 Chemical processor for sewage

Also Published As

Publication number Publication date
JPH0134117B2 (en) 1989-07-18

Similar Documents

Publication Publication Date Title
US4073722A (en) Process for the purification of waste water
US4292176A (en) Use of activated carbon in waste water treating process
CN105293833B (en) Comprehensive wastewater treatment device and process for iron and steel integrated enterprise
JPS6230597A (en) Method of separating clarified liquid from biomass on biological treatment of waste water
US4721569A (en) Phosphorus treatment process
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
JP2659167B2 (en) Sewage denitrification dephosphorization method and apparatus
PL121946B1 (en) Sewage treatment method
KR101489134B1 (en) Advanced treatment method for purifying wastewater
Watanabe et al. Removal of Soluble and Particulate Organic Material in Municipal Wastewater by a Chemical Flocculation and Biohlm Processes
JPS58143890A (en) Purification of organic waste water
JPH05185093A (en) Method for purifying water by using membrane
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
JP3270094B2 (en) Sewage treatment method and treatment device
JP2002172400A (en) Method and apparatus for removing nitrogen in sludge return water
JP2607030B2 (en) Wastewater treatment method and apparatus
JPS61242697A (en) Biological treatment of organic waste water
JPS596996A (en) Treatment of organic filthy water of high concentration
JPH04334593A (en) Advanced water treatment system and method for starting up the same
JP3229806B2 (en) Human wastewater treatment equipment
JPH0214120B2 (en)
JPH0454519B2 (en)
JPS63252591A (en) Treatment of sewage
KR100228739B1 (en) Disposal method of organic wastewater using oxygen