JPS62182188A - Process for growing single crystal fiber - Google Patents

Process for growing single crystal fiber

Info

Publication number
JPS62182188A
JPS62182188A JP2476386A JP2476386A JPS62182188A JP S62182188 A JPS62182188 A JP S62182188A JP 2476386 A JP2476386 A JP 2476386A JP 2476386 A JP2476386 A JP 2476386A JP S62182188 A JPS62182188 A JP S62182188A
Authority
JP
Japan
Prior art keywords
crystal
heater
protrusion
heating element
molten liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2476386A
Other languages
Japanese (ja)
Other versions
JPH0419194B2 (en
Inventor
Norio Onishi
大西 紀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2476386A priority Critical patent/JPS62182188A/en
Publication of JPS62182188A publication Critical patent/JPS62182188A/en
Publication of JPH0419194B2 publication Critical patent/JPH0419194B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable direct and ready growth of a single crystal fiber from molten liquid, by contacting a crystal matrix to a heater having a minute protrusion at a part of the surface and pulling up the molten liquid formed near the protrusion to effect the crystallization of the material. CONSTITUTION:A platinum wire 2 is wound to a coil of 5-10 turns to form a heater 1. A thin platinum wire 3 is welded to a part of the upper end of the coil in a manner slightly protruded from the top upward to form a minute protrusion 4. The heater 1 is heated by electric current and a crystal matrix 5 attached to a lower driving shaft 10 is made to contact with the heater 1 from beneath until the heater 1 and the protrusion 4 is wet with the molten liquid 6 filled in the heater 1. A seed crystal 7 freely attached to a driving shaft 9 of a pulling-up device through a chain 11 is lowered until the tip of the crystal is brought into contact with the molten liquid wetting the protrusion 4 to effect partial melting of the seed crystal. The crystal is pulled up at a prescribed growth rate while controlling the temperature to the condition for the growth of a fiber crystal 8. In order to continuously supply the crystal material 5 to the heater 1, the lower part of the heater coil 1 is wound at higher winding density to raise the temperature at the lower part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融液からファイバl状の単結晶を育成する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing a fiber l-shaped single crystal from a melt.

〔従来の技術) 超低損失な石英ガラスのファイバ化技術完成に伴い、オ
プティカルファイバを伝送媒体とした高密度な光通信が
現実のものと成ってきた0このファイバ化技術を非線形
光学効果や電気・音響光学効果の大きな物質の結晶体、
例えばニオブ酸リチウムのような酸化物強誘電体結晶な
どへ発展させてその単結晶ファイバが育成できれば、オ
プティカルファイバの特徴である高い光電界強度や長い
相互作用長に結晶体特有な物性定数の異方性が加わって
特異な光学効果が期待でき、新しいデバイスの開発も予
想される。
[Conventional technology] With the completion of ultra-low-loss silica glass fiber technology, high-density optical communication using optical fiber as a transmission medium has become a reality.・Crystals of substances with large acousto-optic effects,
For example, if a single crystal fiber can be grown by developing an oxide ferroelectric crystal such as lithium niobate, it would be possible to combine the high optical field strength and long interaction length that are characteristic of optical fibers with the physical property constants unique to crystals. With the addition of directionality, unique optical effects can be expected, and the development of new devices is also expected.

この目的のためには、高融点物質を細径化しながら結晶
育成する高度な技術が必要で、現在、Y4クロヘデ、X
 p 7t、法(例えば、C,A、 BurruSet
 al、、 Appl、 Ph1s、 Lett、 2
6巻318頁1975年)が唯一公知である。しかるに
この方法は熱源としてC(hレーザを用いるため、レー
ザ出力の安定化対策やレーザ光を均一に微小領域へ集束
させるための複雑な光学系などを必要とし、装置が大規
模で高価になる。その上、結晶母材料を予め均一な細棒
形状に準備する必要があり、結晶育成に際しては数段階
かけて順次細径化しなければならず、しかも、途中段階
での結晶径の不均一性が最終段階まで持込まれるなど、
技術的に高度で複雑である。
For this purpose, advanced technology is required to grow crystals while reducing the diameter of high-melting substances.
p 7t, law (e.g., C, A, BurruSet
al,, Appl, Ph1s, Lett, 2
Vol. 6, p. 318, 1975) is the only known publication. However, since this method uses a C(h laser) as a heat source, it requires measures to stabilize the laser output and a complicated optical system to uniformly focus the laser beam onto a microscopic area, making the equipment large and expensive. In addition, it is necessary to prepare the crystal matrix material in advance into a uniform thin rod shape, and during crystal growth, the diameter must be gradually reduced over several stages, and in addition, non-uniformity of crystal diameter at intermediate stages. is brought to the final stage, etc.
Technically advanced and complex.

融液から結晶を直接引上げる代表的な方法としては引上
げ法(チョクラルスキー法とも呼ばれる。)がよく知ら
れている。(例えば、P。
The pulling method (also called the Czochralski method) is well known as a typical method for directly pulling crystals from a melt. (For example, P.

Hartman : Crystal Growth 
 I、 212頁、  North−Hollzna 
Pub、 Co、、 1973 )  この方法は大型
結晶の育成を目的とし、ルツボ中で結晶母材料を一旦融
解させ、引上げながら結晶化させるものである。この方
法では一般に高周波加熱か抵勉加熱が用いられ、これに
よって結晶育成の熱的条件を設定、制御する。
Hartman: Crystal Growth
I, page 212, North-Hollzna
Pub, Co., 1973) This method is aimed at growing large crystals, and involves once melting a crystal matrix material in a crucible and crystallizing it while being pulled up. This method generally uses high-frequency heating or resistive heating, which sets and controls the thermal conditions for crystal growth.

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかるに、この方法では、温度制御にどうしても時間的
遅れが避けられないこと、また、ルツボ内での融液の熱
対流やルツボ周シでの空気対流などにより融液の表面温
度が場所的・時間的に常に不規則に変動することなどに
より、融液表面の特定領域を随意、且つ、微妙に温度制
御することは不可能である。従って、引上げ法をそのま
ま単結晶ファイバの育成に適用することはできない。
However, with this method, there is an unavoidable time delay in temperature control, and the surface temperature of the melt varies depending on location and time due to heat convection of the melt within the crucible and air convection around the crucible. Since the temperature always fluctuates irregularly, it is impossible to arbitrarily and delicately control the temperature of a specific area of the melt surface. Therefore, the pulling method cannot be directly applied to growing single crystal fibers.

融液からの別の結晶育成法に、融液を毛細管現象によっ
てダイの上端面へ運び、上端面と同一形状断面の結晶を
引上げようというEFG法(Edg、e−define
d Film−fed Growth )と呼ばれる工
夫もある。(例えば、H,E、 Labelle、 J
r、 etal、 : Mat、 Res、 Bull
、 6巻571頁1971 ) Lかし、この方法を単
結晶ファイバに適用するには、毛細管を持つというダイ
の構造上の制約のため、細径化に限度がある。
Another method for growing crystals from melt is the EFG method (Edg, e-define), which transports the melt to the upper end surface of the die by capillary action and pulls up a crystal with the same cross-section as the upper end surface.
There is also a device called d Film-fed Growth). (e.g. H, E, Labelle, J.
r, etal, : Mat, Res, Bull
, Vol. 6, p. 571, 1971) However, when this method is applied to a single crystal fiber, there is a limit to the diameter reduction due to the structural restriction of the die having a capillary tube.

本発明は上述の問題点を解決することを目的としてなさ
れたもので、結晶母材の融液から目的の単結晶ファイバ
を直接引上げることを可能とする技術を提供するもので
ある。
The present invention was made with the aim of solving the above-mentioned problems, and provides a technique that makes it possible to directly pull a target single-crystal fiber from a melt of a crystal base material.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発Qllでは、その表面の一部に微小な凸
状部を形成した発熱体を準備し、この発熱体に結晶母材
料を接触させて融解し、発熱体を濡らす融液を凸状部近
傍で引上げながら結晶化させるという手段を講じた。
For this purpose, in this Qll, we prepare a heating element with a minute convex part formed on a part of its surface, bring the crystal base material into contact with this heating element and melt it, and the melt that wets the heating element is shaped into a convex shape. A method was taken to crystallize the material while pulling it up in the vicinity of the part.

〔作用〕[Effect]

上述の手段によって、融液量が夕景に制限され、しかも
融液が発熱体表面を濡らすことから融液温度が発熱体温
度に密接に追従することになり、発熱体温度の制御によ
シ融液温度を微妙に制御できるという効果が生じた。さ
らに、発熱体に設けた凸状部での電気抵抗の低下や熱発
散の増加彦どによる局所的な冷却効果、また、表面張力
の影響による融液集中および引上げ点の固定化などの効
果も生じ、これらが総合的に作用することにより融液か
らファイバ状単結晶を直接、比較的容易に育成すること
が可能となった。
By the above-mentioned means, the amount of melt is limited to the evening view, and since the melt wets the surface of the heating element, the melt temperature closely follows the temperature of the heating element. This has the effect of allowing fine control of the liquid temperature. Furthermore, there is a local cooling effect due to a reduction in electrical resistance and an increase in heat dissipation at the convex part provided on the heating element, as well as effects such as concentration of melt and fixation of the pulling point due to the influence of surface tension. Due to the comprehensive action of these factors, it has become possible to grow a fibrous single crystal directly from the melt with relative ease.

〔実施例〕〔Example〕

第1図(αL (b)は本発明の内容を表わす代表的な
一実施例装置についての主要部分の側断面図および部分
拡大図である。移動可能な上下2本の駆動軸9,10を
備えた引上げ装置に、フォアヒータ12およびアフタヒ
ータ13用の縦型電気炉を設備し、その中央部に本発明
に係る発熱体1を設置する。発熱体1は直径0.5〜1
.0fiφの白金線2を直径3〜10111jII−φ
に5〜10巻コイル状に巻いて形成し、そのコイル上端
の一部に直径0.1〜0.3謹φの白金細線3を0.2
〜0.7罵上方へ突出させて熔接し、微小凸状部4を形
成する。発熱体1を通電加熱し、これに下方駆動軸10
に取付けた結晶母材料5を下方より接触させて融解し、
融液6で発熱体1を満たして発熱体1および凸状部4を
濡らす。ついで、引上げ装置の駆動軸9に鎖11を介し
てたね結晶7を自在に取付けて降下し、たね結晶7の先
端が凸状部4を濡らす融液または濡れが不充分な時は凸
状部の白金線にじかに接触させて一部融解(メルトバッ
ク)させ、ファイバが結晶8育成条件に温度を制5御し
ながら0.5〜2鴎/分の成長速度で引上ける:。
FIG. 1 (αL (b) is a side sectional view and partially enlarged view of the main parts of a typical embodiment of the device expressing the content of the present invention. Two movable upper and lower drive shafts 9 and 10 are shown. A vertical electric furnace for the fore-heater 12 and the after-heater 13 is installed in the pulling device, and the heating element 1 according to the present invention is installed in the center of the furnace.The heating element 1 has a diameter of 0.5 to 1.
.. 0fiφ platinum wire 2 with a diameter of 3~10111jII-φ
A fine platinum wire 3 with a diameter of 0.1 to 0.3 mm is attached to a part of the upper end of the coil.
-0.7 degrees of upward protrusion and welding to form minute convex portions 4. A heating element 1 is heated by electricity, and a lower drive shaft 10 is attached to it.
The crystal matrix material 5 attached to the crystal base material 5 is brought into contact with it from below and melted.
The heating element 1 is filled with the melt 6 to wet the heating element 1 and the convex portion 4. Next, the seed crystal 7 is freely attached to the drive shaft 9 of the pulling device via the chain 11 and lowered, and the tip of the seed crystal 7 wets the convex part 4 with the melt, or if the wetting is insufficient, the convex part The fiber is brought into direct contact with a platinum wire and partially melted (melted back), and the fiber is pulled up at a growth rate of 0.5 to 2 min/min while controlling the temperature to meet the crystal growth conditions.

育成温度は成長状態を観察しながら発熱体の1通電電流
で制御し、所望のファイバl径のとこ′ろで熱安定させ
る。結晶母材料5を連続的に発熱体1へ供給するために
、発熱体コイル1の下方部をより密に巻いて高温化を計
る。
The growth temperature is controlled by one current applied to the heating element while observing the growth state, and the fiber is thermally stabilized at a desired fiber diameter. In order to continuously supply the crystal matrix material 5 to the heating element 1, the lower part of the heating element coil 1 is wound more closely to increase the temperature.

第2図および第3図に発熱体表面上に形成される凸状部
構造の別の実施例を示す。上述の刺状突起のほか、発熱
体の白金線2に直径0.3〜0.6ysφ程度の白金細
線3を1〜2巻して凸状部を形成する構造(第2図示)
、および第3図に示す如く複数本の白金細線3にて刺状
突起を形成する構造も同様に有効である。
FIGS. 2 and 3 show another embodiment of the convex structure formed on the surface of the heating element. In addition to the above-mentioned thorn-like projections, there is a structure in which a platinum thin wire 3 with a diameter of about 0.3 to 0.6 ysφ is wound once or twice around the platinum wire 2 of the heating element to form a convex part (as shown in the second figure).
, and a structure in which a plurality of thin platinum wires 3 form barbs as shown in FIG. 3 are similarly effective.

第4図は発熱体構造の別の実施例を示す。育成される結
晶ファイバの寸法が300μ攪φ×100鴫程度以内の
場合には原料融液の連続的な供給を必要としない。この
時には、第4図に示す如き直径0.3〜0.6鴎φの白
金線複数本の撚線15で形成したコニカルバスケット状
の発熱体が特に効果的で、これに結晶母材を充填、加熱
して融解させ、バスケット上端部に設けた凸状部に於て
引上げを行う。なお、発熱体を形成する白金線の撚線化
は全べての場合に有効に適用される。
FIG. 4 shows another embodiment of the heating element structure. If the dimensions of the crystal fiber to be grown are within the order of 300μ stirring diameter×100mm, continuous supply of the raw material melt is not required. At this time, a conical basket-shaped heating element formed of multiple twisted platinum wires 15 with a diameter of 0.3 to 0.6 φ as shown in Fig. 4 is particularly effective, and the heating element is filled with a crystal matrix material. The material is heated and melted, and then pulled up through a convex portion provided at the upper end of the basket. Note that twisting the platinum wires forming the heating element can be effectively applied in all cases.

加熱方式としては、上述の通電加熱の他、高周波加熱、
赤外線加熱も適用でき、これらに依る特記すべき制約は
ない。
In addition to the above-mentioned electrical heating, heating methods include high-frequency heating,
Infrared heating can also be applied, and there are no particular restrictions imposed by these.

〔発明の効果〕〔Effect of the invention〕

上述の方法によって、LiNbO3の場合、直径100
μmφ程度までの単結晶ファイバが比較的容易に融液か
ら直接育成でき、それ以上の細径化にも原理的に何らの
制限も見当らない。その上、本発明の主要部である発熱
体の材質には白金以外の金属も使用可能で、育成される
結晶ファイバの材料も発熱体と化学反応せずその融液が
発熱体を濡らすものならば制限されない。引上げ装置お
よびフォアヒータ、アフタヒータ用の縦型電気炉には市
販のものが利用できる。
By the method described above, in the case of LiNbO3, a diameter of 100
Single-crystal fibers up to about μmφ can be grown directly from the melt relatively easily, and there are no restrictions in principle on further reduction in diameter. Furthermore, metals other than platinum can be used for the material of the heating element, which is the main part of the present invention, and if the material of the crystal fiber to be grown does not chemically react with the heating element and its melt wets the heating element. There are no restrictions. Commercially available vertical electric furnaces can be used for the pulling device, foreheater, and afterheater.

以上によシ、融液からファイバ状単結晶を直接、比較的
容易に育成することが可能となった。
As described above, it has become possible to grow a fibrous single crystal directly from a melt with relative ease.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(eL)、<b)は本発明の詳細な説明するだめ
の代表的な一実施例の装置主要部分の側断面図および部
分拡大図、第2図(tL)、(b)は白金発熱体の一部
に形成した微小凸状部の他の実施例の断面図および側面
図、第3図(α)、(b)は白金発熱体の一部に形成し
た微小凸状部のさらに他の実施例の断面図および側面図
、第4図(cL)、(b)は複数線で形成したコニカル
バスケット型の発熱体の側断面図および部分拡大図であ
る。 図中、1は発熱体、2は発熱体1を形成する白金線、3
は凸状部を形成する白金細線、4は白金細線3にて形成
した微小凸状部、5は結晶母材料、6は融液、7けたね
結晶、8は育成された単結晶ファイバ、9は引上げ用駆
動軸、10絋結晶母材料供給用の駆動軸、11は鎖、1
2はフにアヒータ、13はアフタヒータ、14はヒータ
のト熱線、15は白金撚線である。 、゛−−゛− :・ −一り一會□直 第1図 1肩号チドーイネ                 
  8  ¥成:f1fτ雫鰭5l−)fイバ7 r、
ね鰭&14  忙愚黒 第2図 (a)     (b) 第3図 2: 屓≦亨久ネトy4成゛する臼4酬8艮3:凸状部
Σ形成7ろ台金6日隙 第4図 15  日奮耀、゛陳
FIG. 1(eL), <b) is a side sectional view and partially enlarged view of the main parts of the device of a typical embodiment of the present invention, which will not be described in detail, and FIG. 2(tL), (b) is a partial enlarged view. A cross-sectional view and a side view of another embodiment of a minute convex portion formed on a part of a platinum heating element, and FIGS. A sectional view and a side view of still another embodiment, and FIGS. 4(cL) and 4(b) are a side sectional view and a partially enlarged view of a conical basket type heating element formed of multiple lines. In the figure, 1 is a heating element, 2 is a platinum wire forming the heating element 1, and 3
5 is a crystal matrix material; 6 is a melt; 7 is a digit crystal; 8 is a grown single-crystal fiber; 9 is a thin platinum wire forming a convex portion; 1 is a pulling drive shaft, 10 is a drive shaft for supplying crystal base material, 11 is a chain, 1 is
2 is an after-heater, 13 is an after-heater, 14 is a heating wire of the heater, and 15 is a platinum stranded wire. , ゛--゛- :・ -一り一會□Direction 1 Figure 1 Title Chidoine
8 ¥Ni: f1 fτ droplet fin 5 l-) f iba 7 r,
Fin & 14 Engagement Black Fig. 2 (a) (b) Fig. 3 2: 屓≦茨久NET y 4 Growing mortar 4 tip 8 艮 3: Convex part Σ formation 7 Loop base 6 Day gap 4th Figure 15.

Claims (1)

【特許請求の範囲】[Claims] 発熱体の一部に微小な凸状部を形成し、この発熱体で結
晶母材料を加熱融解させ、その融液で前記発熱体表面を
濡らし、この発熱体に形成した前記凸状部近傍に固化点
を局限して前記融液を引上げながら結晶化させることを
特徴とするファイバ状単結晶の育成方法。
A minute convex part is formed on a part of the heating element, the crystal base material is heated and melted by this heating element, the surface of the heating element is wetted with the melt, and the area near the convex part formed on this heating element is 1. A method for growing a fibrous single crystal, which comprises crystallizing the melt while limiting the solidification point and pulling the melt.
JP2476386A 1986-02-06 1986-02-06 Process for growing single crystal fiber Granted JPS62182188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2476386A JPS62182188A (en) 1986-02-06 1986-02-06 Process for growing single crystal fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2476386A JPS62182188A (en) 1986-02-06 1986-02-06 Process for growing single crystal fiber

Publications (2)

Publication Number Publication Date
JPS62182188A true JPS62182188A (en) 1987-08-10
JPH0419194B2 JPH0419194B2 (en) 1992-03-30

Family

ID=12147188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2476386A Granted JPS62182188A (en) 1986-02-06 1986-02-06 Process for growing single crystal fiber

Country Status (1)

Country Link
JP (1) JPS62182188A (en)

Also Published As

Publication number Publication date
JPH0419194B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
KR100799362B1 (en) Method for producing silicon single crystal
JP3759807B2 (en) Method and apparatus for producing oxide single crystal
US20120210931A1 (en) Methods for controlling melt temperature in a czochralski grower
US5911825A (en) Low oxygen heater
JPS62182188A (en) Process for growing single crystal fiber
JP3106182B2 (en) Manufacturing method of bulk single crystal
JPH04280891A (en) Method for growing single crystal fiber
JP2612306B2 (en) How to grow single crystal fiber
JP2001031491A (en) Method and apparatus for producing semiconductor crystal
JPH06345588A (en) Crystal growth method
EP0245510A1 (en) Apparatus for producing semiconductor single crystal
JPH10265293A (en) Growing of single crystal and device therefor
JP2592244B2 (en) Equipment for growing uniform crystals
JPH08183696A (en) Crucible for producing fine wire-shaped silicon and fine wire-shaped silicon
JPS5912636B2 (en) How to pull ribbon-shaped single crystals
JP3369394B2 (en) Crystal preparation method
JP3213806B2 (en) Method for growing lithium borate single crystal
KR0174390B1 (en) Single crystal growing apparatus according to the efg method
JP2717568B2 (en) Single crystal growing equipment
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JPH0383889A (en) Liquid surface temperature control type single crystal rearing method and apparatus therefor
JPS6347706A (en) Preparation of single crystal fiber
JPH0648889A (en) Production of single crystal
JPH06128075A (en) Growing method for single crystal
JPS61291487A (en) Production of single crystal fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term