JPH0383889A - Liquid surface temperature control type single crystal rearing method and apparatus therefor - Google Patents

Liquid surface temperature control type single crystal rearing method and apparatus therefor

Info

Publication number
JPH0383889A
JPH0383889A JP21840189A JP21840189A JPH0383889A JP H0383889 A JPH0383889 A JP H0383889A JP 21840189 A JP21840189 A JP 21840189A JP 21840189 A JP21840189 A JP 21840189A JP H0383889 A JPH0383889 A JP H0383889A
Authority
JP
Japan
Prior art keywords
heating
crystal
melt
crucible
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21840189A
Other languages
Japanese (ja)
Other versions
JPH0798717B2 (en
Inventor
Masachika Tsukioka
月岡 正至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP1218401A priority Critical patent/JPH0798717B2/en
Publication of JPH0383889A publication Critical patent/JPH0383889A/en
Publication of JPH0798717B2 publication Critical patent/JPH0798717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent occurrence of defect of crystal by carrying out heating and cooling control in the vicinity of interface between solid and liquid and controlling temperature of definite point of melt surface of crystallization part and crucible part to constant when a single crystal is grown while rotating pullingup crystal using high-frequency wave. CONSTITUTION:A heating and cooling substrate 15 is provided between a main heating element 1 for heating melt 5 in a crucible 2 and afterheater 6 for controlling temperature of single crystal after rearing. Then the single crystal is reared by a seed crystal 7 provided in crystal pulling-up rotation shaft 9 from the melt 5 and simultaneously temperature of definite point of melt 5 near the crucible 2 is measured by light thermometer 19 and temperature of heating and cooling substrate 15 is controlled by liquid face temperature control part 20 based on the measured value and surface temperature of melt liquid 5 is retained to constant. Since the surface of melt liquid 5 is lowered as the growth of crystal proceed, main heating element 1 and heating and cooling substrate 15 and after heater 6 are moved at same speed as lowering speed of the surface of melt liquid 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高周波を用いて引上結晶を回転させながら単
結晶を育成する、いわゆるチョクラルスキー法による単
結晶育成方式に関し、特に結晶欠陥のない光学的に均質
な酸化物単結晶の育成に好適である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a single crystal growth method using the so-called Czochralski method, in which a single crystal is grown while rotating a pulled crystal using high frequency, and in particular, It is suitable for growing optically homogeneous oxide single crystals with no oxidation.

(従来の技術) 単結晶の育成法の代表的な1つとして、いわゆるチョク
ラルスキー法が知られている。この単結晶育成方式は、
高周波を用いてルツボ内の融液表面上で引上げ結晶を回
転させながら育成する方法である。
(Prior Art) The so-called Czochralski method is known as one of the typical single crystal growth methods. This single crystal growth method is
This is a method of growing a pulled crystal while rotating it on the surface of a melt in a crucible using high frequency waves.

現在、光学用や表面弾性波用の酸化物単結晶の多くは、
この引上げ法で育成されているが、その育成時に発生す
る結晶欠陥の多くは育成中の固液界面の状態に大きく影
響されていることがよく知られており、固液界面の形状
を融液に対してなだらかな凸状にできれば高品質な結晶
が・得られることは従来より指摘されていた。また、固
液界面の形状はルツボ融液内の対流モードに密接な関係
があることも、最近特に報告されている。
Currently, many oxide single crystals for optical and surface acoustic wave applications are
Although crystal defects are grown using this pulling method, it is well known that many of the crystal defects that occur during growth are greatly influenced by the state of the solid-liquid interface during growth, and the shape of the solid-liquid interface is It has been pointed out that high-quality crystals can be obtained if they are made to have a gentle convex shape. Furthermore, it has been recently reported that the shape of the solid-liquid interface is closely related to the convection mode within the crucible melt.

引上げ法による酸化物単結晶の育成におけるルツボ内融
液の対流を考えると、一般的にルツボ壁から結晶中央部
に向かう融液の流れがあり、これには自然対流とマラン
ゴニ一対流があるとされている。一方、結晶中央部から
ルツボ壁に向かう流れとしては、結晶回転に伴う強制対
流があり、この他にも多くの流れはあるが、固液界面形
状を支配するのは上記3種類の流れであり、これらの対
流が複合されて固液界面形状が決定されていると考えら
れている。
Considering the convection of the melt in the crucible during the growth of oxide single crystals by the pulling method, there is generally a flow of the melt from the crucible wall toward the center of the crystal, and this includes natural convection and Marangoni convection. has been done. On the other hand, the flow from the center of the crystal toward the crucible wall is forced convection due to crystal rotation, and although there are many other types of flow, the above three types of flow govern the solid-liquid interface shape. It is thought that the shape of the solid-liquid interface is determined by a combination of these convection flows.

(発明が解決しようとする課題) 従来、引上げ結晶の回転数を変化させて強制対流の介在
量をある程度制御することによって、融液に対して単結
晶の界面形状がゆるやかな凸状となるようにする方法が
一般的である。つまり、弓上げ結晶の回転数を変えて固
液界面形状を調べるとわかるように、融液に対して白状
から凹状に反転する結晶回転数が存在するが、その回転
数よりもやや低い回転数とする方法である。
(Problem to be solved by the invention) Conventionally, by changing the rotational speed of the pulled crystal and controlling the amount of forced convection to some extent, the interface shape of the single crystal with respect to the melt becomes gently convex. A common method is to In other words, as can be seen by examining the solid-liquid interface shape by changing the rotation speed of the bow-raised crystal, there is a crystal rotation speed at which the crystal reverses from white to concave with respect to the melt, but the rotation speed is slightly lower than that rotation speed. This is the method to do so.

しかしながら、実際、この方法だけでは所望する固液界
面の形状を安定して得ることは極めて困難であり、凹凸
形状の入り混じった複雑な形状を呈するという問題があ
る。
However, in reality, it is extremely difficult to stably obtain the desired solid-liquid interface shape using only this method, and there is a problem in that the solid-liquid interface exhibits a complicated shape with a mixture of irregularities.

本発明は、上記従来技術の問題点を解決し、結晶欠陥の
ない高品質の単結晶を歩留まりよく製造できる方法並び
に装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method and apparatus capable of producing high-quality single crystals free of crystal defects with a high yield.

(課題を解決するための手段) 前述の事情に鑑みて、本発明者は、酸化物単結晶として
PbMo0.を例にとり、その一定径の単結晶育成にお
いて、結晶回転数を変化させて固液界面形状を調べ、更
に固液界面形状を平坦に近づけるべく種々の条件で単結
晶を育成する実験を行った。なお、第1図はそのために
用いた装置を示す図であり、1は高周波コイル、2はル
ツボ、3は断熱材、4はルツボ台であり、ルツボ内の原
料が高周波コイル1により加熱されて融液5が形成され
る。、6はアフターヒーターであって高周波コイル1に
より加熱される。7は種子結晶、8は弓上げ結晶(育成
結晶)、9は引上げ回転軸、10はルツボ下熱電対、1
1は結晶直径制御装置(ADC装置)である。結晶直径
制御装置11は、育成されつつある結晶重量信号と設定
直径信号の偏差を高周波パワーに帰還して引上結晶直径
を制御するものである。
(Means for Solving the Problems) In view of the above-mentioned circumstances, the present inventors have developed PbMo0. Taking as an example, we examined the shape of the solid-liquid interface by changing the crystal rotation speed when growing a single crystal with a constant diameter, and then conducted experiments to grow single crystals under various conditions in order to make the solid-liquid interface shape as close to flat as possible. . In addition, FIG. 1 is a diagram showing the equipment used for this purpose, in which 1 is a high-frequency coil, 2 is a crucible, 3 is a heat insulator, and 4 is a crucible stand.The raw material in the crucible is heated by the high-frequency coil 1. A melt 5 is formed. , 6 are after heaters which are heated by the high frequency coil 1. 7 is a seed crystal, 8 is a bow-raised crystal (grown crystal), 9 is a pulling rotation axis, 10 is a thermocouple below the crucible, 1
1 is a crystal diameter control device (ADC device). The crystal diameter control device 11 controls the diameter of the pulled crystal by feeding back the deviation between the growing crystal weight signal and the set diameter signal to high frequency power.

実験の結果、単結晶全体にわたって固液界面の形状がな
だらかになる条件は見い出されなかったし、気泡や転位
等の結晶欠陥を無くすることはできなかった。
As a result of experiments, no conditions were found for the shape of the solid-liquid interface to be smooth over the entire single crystal, and it was not possible to eliminate crystal defects such as bubbles and dislocations.

具体的には、結晶回転数を20〜4Qrpmの範囲で変
化させると、第2図に示すような固液界面形状を呈した
。なお、第2図は、第1図に示した装置を用いて、結晶
直径を70mmに保ちながら結晶回転数を変化させて酸
化物単結晶であるモリブデン酸単結晶(P b M o
 O4)の育成を行い、得られして、実体顕微鏡により
ストリエーション、気泡及び転位をl1lI察した結果
を示したものである。
Specifically, when the crystal rotation speed was varied in the range of 20 to 4 Qrpm, a solid-liquid interface shape as shown in FIG. 2 was obtained. In addition, FIG. 2 shows how a molybdate single crystal (P b M o ), which is an oxide single crystal, is prepared using the apparatus shown in FIG.
This figure shows the results obtained by growing O4) and observing striations, bubbles, and dislocations using a stereomicroscope.

第2図に示すように、結晶回転数が25rpmのときに
、結晶中央部の狭い領域ではあるが、緩やかな固液界面
14を呈する部分があり、この部分は気泡もサブグレン
もない高品質部分であったものの、結晶中央部と端部の
境界にあたる固液界面形状が複雑に変化する手前では欠
陥の凝集が見られた。
As shown in Figure 2, when the crystal rotation speed is 25 rpm, there is a small area in the center of the crystal that exhibits a gentle solid-liquid interface 14, and this area is a high-quality area with no bubbles or subgrains. However, agglomeration of defects was observed before the shape of the solid-liquid interface complexly changed at the boundary between the center and edge of the crystal.

結晶回転数が25rpmより小さいと固液界面形状がか
なり凸状になり、育成された結晶内の成長縞上に歪みが
多く、光を通過させたときにこの成長縞に沿って光の散
乱が多くて実用に供し得なかった。
If the crystal rotation speed is lower than 25 rpm, the solid-liquid interface shape becomes quite convex, and there is a lot of distortion on the growth stripes within the grown crystal, causing light scattering along the growth stripes when light is passed through. There were so many that it could not be put to practical use.

また、結晶回転数が25rpm以上大きくなると、固液
界面形状が融液に対して凹状になり、結晶中央部は一見
広くなったように見えるが、格子欠陥が中央部に分散し
たリサブグレンが存在して良質な結晶ではなかった。
In addition, when the crystal rotation speed increases to 25 rpm or more, the solid-liquid interface shape becomes concave with respect to the melt, and although the center of the crystal appears to be wider at first glance, there is a resubgrain in which lattice defects are dispersed in the center. It was not a high quality crystal.

その原因は、従来の高周波加熱による単結晶育成法では
、ルツボ壁面が均一加熱されることはなく、ルツボ上端
部が中間部に比べて強熱され、融液界面上の温度が高く
なり、第3図に示すようにルツボ2の両壁面から結晶中
央部に大きな温度差が生じ、その結果、結晶中央部へ向
かう大きな自然対流(第1図中の12)が生じる。これ
を結晶回転による逆流方向の強制対流(第1図中の13
)で消去乃至は緩衝させるのであるが、実際は両流の衝
突により複雑な界面形状を呈するためと推定された。
The reason for this is that in the conventional single crystal growth method using high-frequency heating, the crucible wall surface is not heated uniformly, and the upper end of the crucible is ignited compared to the middle part, resulting in a higher temperature at the melt interface. As shown in FIG. 3, a large temperature difference occurs from both wall surfaces of the crucible 2 to the center of the crystal, and as a result, a large natural convection (12 in FIG. 1) occurs toward the center of the crystal. This is caused by forced convection in the reverse direction due to crystal rotation (13 in Figure 1).
) to eliminate or buffer the flow, but it is presumed that this is because the collision between the two flows actually creates a complex interface shape.

自然対流を抑制するためには、ルツボ壁を均一に加熱し
ようとする方法があり、そのためにはルツボ上、中、下
部の温度差を少なくする必要がある。この方法には、高
周波コイルのピッチや直径を変える方法があるが、たと
えこれによってルツボ壁の均一加熱ができたとしても、
この引上げ法にあっては、単結晶育成中に融液表面が低
下するので、この低下速度に合わせて高周波コイル1を
移動させなくてはならず、そのために温度変動要因が複
雑に変化し、良い結果が得られていない。
In order to suppress natural convection, there is a method that attempts to uniformly heat the crucible wall, and for this purpose it is necessary to reduce the temperature difference between the top, middle, and bottom of the crucible. This method involves changing the pitch and diameter of the high-frequency coil, but even if this allows uniform heating of the crucible wall,
In this pulling method, the melt surface decreases during single crystal growth, so the high frequency coil 1 must be moved in accordance with this rate of decrease, which causes temperature fluctuation factors to change in a complicated manner. Not getting good results.

また、育成結晶14の加熱部(すなわち、アフターヒー
ター6)と融液加熱部用発熱体(高周波コイル1)とを
独立させて別々の方法で加熱制御する方法もあるが、あ
る程度の融液対流制御は可能であるが、実際は、高周波
コイル1によりルツボ上部が過熱されてルツボ上部がか
なり高い温度になり、良い結果を得ることはできない。
Alternatively, there is a method in which the heating section of the growing crystal 14 (i.e., the after heater 6) and the heating element for the melt heating section (the high frequency coil 1) are separated and the heating is controlled using separate methods, but there is a certain amount of melt convection. Although control is possible, in reality, the upper part of the crucible is overheated by the high-frequency coil 1 and the temperature of the upper part of the crucible becomes quite high, making it impossible to obtain good results.

本発明者は、前記考察をもとに、高周疲を用いた引上げ
法をあらゆる方面から鋭意研究した結果、固液界面近傍
を加熱冷却制御することによって、ルツボ半径方向の融
液界面温度をルツボ壁部から中心部まで一定温度差に制
御することにより、以て融液対流を効果的に抑制するこ
とができ、良質な大型酸化物単結晶が得られることを見
い出し、ここに本発明に至ったものである。
Based on the above considerations, the inventor of the present invention has conducted intensive research on the pulling method using high circumferential fatigue from various aspects, and has determined that the melt interface temperature in the radial direction of the crucible can be controlled by heating and cooling the vicinity of the solid-liquid interface. It has been discovered that by controlling the temperature difference from the crucible wall to the center to a constant temperature, melt convection can be effectively suppressed and a high-quality large oxide single crystal can be obtained. This is what we have come to.

すなわち、本発明は、高周波を用いて引上結晶を回転さ
せながら単結晶を育成するに際し、固液界面近傍を加熱
冷却制御することにより、結晶化部とルツボ部の融液表
面の定点の温度を一定に制御することを特徴とする液面
温度制御型単結晶育成方法を要旨とするものである。
That is, in the present invention, when growing a single crystal while rotating a pulled crystal using high frequency, the temperature at a fixed point on the surface of the melt in the crystallization part and the crucible part is controlled by controlling the heating and cooling of the vicinity of the solid-liquid interface. The gist of this invention is a liquid surface temperature controlled single crystal growth method, which is characterized by controlling the liquid surface temperature to a constant level.

また、他の本発明は、高周波を用いて引上結晶を回転さ
せながら単結晶を育成する装置において、ルツボ加熱用
発熱体と引上結晶を加熱するアフターヒーターとの間に
、冷却部と加熱部から構成された基板を設けたことを特
徴とする液面温度制御型の単結晶育成装置を要旨とする
ものである。
In addition, in another aspect of the present invention, in an apparatus for growing a single crystal while rotating a pulled crystal using high frequency, a cooling part and a heating element are provided between a heating element for heating the crucible and an after-heater for heating the pulled crystal. The gist of the present invention is a liquid surface temperature controlled single crystal growth apparatus, which is characterized by being provided with a substrate made up of parts.

以下に本発明を更に詳述する。The present invention will be explained in further detail below.

(作用) 前述の如く、従来は、高周波により融液加熱と育成結晶
加熱を共に行っていたため、固液界面近傍のルツボ壁部
の過加熱を防止できず、したがって、固液界面の大きな
自然対流を抑制することができず、この自然対流を容認
する前提で種々の対策が試みられていたので、自ずと限
界があった。
(Function) As mentioned above, in the past, since melt heating and growing crystal heating were both performed using high frequency waves, overheating of the crucible wall near the solid-liquid interface could not be prevented, and therefore, large natural convection at the solid-liquid interface could not be prevented. Various countermeasures have been attempted on the premise of allowing this natural convection, which naturally has its limits.

一方、本発明では、この固液界面での自然対流を積極的
に抑制するので、ルツボ半径方向の温度制御が可能とな
ったのある。
On the other hand, in the present invention, since natural convection at the solid-liquid interface is actively suppressed, it is possible to control the temperature in the crucible radial direction.

その手段としては、固液界面近傍を加熱冷却制御するも
のであり、それにより、結晶化部とルツボ部の融液表面
の定点の温度を一定に制御する方式である。
The means for this is to control the heating and cooling of the vicinity of the solid-liquid interface, thereby controlling the temperature at fixed points on the surface of the melt in the crystallization part and the crucible part to be constant.

すなわち、具体的には、後述するように第4図に示すよ
うな構成の装置を用いるが、第5図(a)に示す如く、
固液界面14の近傍に対応するルツボ壁部外側に加熱冷
却手段15を設けることにより、結晶化部とルツボ部の
融液表面の定点の温度を一定に制御することが可能とな
り、したがって、固液界面14をなだらかな凸状にする
ことができる、更に、場合によっては、第5図(b)に
示すように更に固液界面上に水冷体16を付加し、或い
は加熱体17を付加することができる。
Specifically, as will be described later, an apparatus having a configuration as shown in FIG. 4 is used, but as shown in FIG. 5(a),
By providing the heating and cooling means 15 on the outside of the crucible wall corresponding to the vicinity of the solid-liquid interface 14, it is possible to control the temperature at a fixed point on the crystallization part and the melt surface of the crucible part to be constant. The liquid interface 14 can be made into a gentle convex shape, and in some cases, a water cooling body 16 or a heating body 17 can be added on the solid-liquid interface as shown in FIG. 5(b). be able to.

この方式によれば、第6図に示すように、広範囲の結晶
回転数においてもなだらかな凸状の固液界面を形成する
ことができる。
According to this method, as shown in FIG. 6, a gently convex solid-liquid interface can be formed even in a wide range of crystal rotation speeds.

なお、第6図は、後述の第4図に示す装置を用いて、結
晶直径を70■鳳に保ちながら結晶回転数を変化させて
酸化物単結晶であるモリブデン酸単結晶(P b M 
o O4)の育成を行い、得られた単結晶を育成方向に
平行に切断して、両面を鏡面研磨した後、5%N a 
OH水毒液でエツチングして、実体顕微鏡によりストリ
エーション、気泡及び転位をa察した結果を示したもの
であり、結晶中央部の高品質部が大きく広がり、気泡や
転位は見られなかった。特に、結晶回転数が5 rpm
の時には高品質部が全体の75%に達していた。
In addition, FIG. 6 shows how a molybdate single crystal (P b M
o O4) was grown, the obtained single crystal was cut parallel to the growth direction, both sides were mirror polished, and then 5% Na
This shows the results of etching with OH water poison and observing striations, bubbles, and dislocations using a stereomicroscope.The high-quality part at the center of the crystal was widely spread, and no bubbles or dislocations were observed. In particular, the crystal rotation speed is 5 rpm.
At the time, high-quality parts accounted for 75% of the total.

本発明による単結晶育成方式は、具体的には、以下の種
々の態様が可能である。
Specifically, the single crystal growth method according to the present invention can have the following various embodiments.

第4図に単結晶育成装置の一例を示す。図中、l゛はル
ツボ2内の原料を溶融し融液5を加熱するための主発熱
体(高周波コイル)、7は種結晶、9は引上げ軸、10
はルツボ下熱電対、1工は結晶直径制御装置である。ま
た、15は加熱冷却基板、16は冷却体、17は加熱体
であり、6′はアフターヒーター 18はアフターヒー
ター用熱電対、19は光温度計である。
FIG. 4 shows an example of a single crystal growth apparatus. In the figure, l' is the main heating element (high frequency coil) for melting the raw material in the crucible 2 and heating the melt 5, 7 is the seed crystal, 9 is the pulling shaft, 10
1 is a thermocouple under the crucible, and 1 is a crystal diameter control device. Further, 15 is a heating/cooling board, 16 is a cooling body, 17 is a heating body, 6' is an after heater, 18 is a thermocouple for after heater, and 19 is a light thermometer.

か)る装置において、例えば、ルツボ内で原料を溶融す
る主発熱体1′と育成後の単結晶を加熱するアフターヒ
ーター6′の間に加熱冷却基板ISを設け、ルツボ近傍
の融液表面の定点の温度を光温度計19で測定し、この
温度と制御装置11により結晶育成中に結晶直径制御さ
れる温度信号の偏差が零になるように液面温度制御部2
0にて加熱冷却基板15の温度を制御することにより、
融液表面の温度を一定にすることができる。
In such an apparatus, for example, a heating and cooling substrate IS is provided between the main heating element 1' that melts the raw material in the crucible and the after-heater 6' that heats the single crystal after growth, and the surface of the melt near the crucible is heated. The temperature at a fixed point is measured by an optical thermometer 19, and the liquid surface temperature controller 2 is controlled so that the deviation between this temperature and the temperature signal used to control the crystal diameter during crystal growth becomes zero by the controller 11.
By controlling the temperature of the heating and cooling substrate 15 at 0,
The temperature of the surface of the melt can be kept constant.

また、結晶育成が進むにつれて融液表面が低下するので
、主発熱体1′、加熱基板15、アフターヒーター6′
を融液表面の低下速度と同一速度で移動させる。
In addition, as the crystal growth progresses, the surface of the melt decreases, so the main heating element 1', the heating substrate 15, the after heater 6'
is moved at the same speed as the rate of decline of the melt surface.

また、融液表面の温度を安定的に一定にするために、融
液上部のルツボ近傍に冷却体16を置いて冷却すること
により、或いは融液表面の育成結晶近傍に発熱体17を
配置することにより、同様な効果をもたらすことができ
る。この冷却体と発熱体は液面低下と同一速度で低下さ
せる。
In order to keep the temperature of the melt surface stable and constant, a cooling body 16 is placed near the crucible above the melt for cooling, or a heating element 17 is placed near the grown crystal on the melt surface. By doing so, similar effects can be brought about. The cooling and heating elements are lowered at the same rate as the liquid level.

このようにして、従来は全く不可能であったルツボ半径
方向の温度制御が可能となり、したがって、ルツボ端部
の過加熱によるルツボ中心に向かう強い自然対流を制御
することができる。つまり、固液界面の対流制御が著し
く改善されるので、固液界面を融液に対してゆるやかな
凸状にすることができるのである。
In this way, it becomes possible to control the temperature in the radial direction of the crucible, which was previously impossible, and therefore it is possible to control the strong natural convection toward the center of the crucible due to overheating at the ends of the crucible. In other words, convection control at the solid-liquid interface is significantly improved, so that the solid-liquid interface can be formed into a gentle convex shape relative to the melt.

更に、この固液界面形状を恒常的に維持するためには、
固液界面形状と結晶回転数に密接な関係があることを考
慮し、結晶回転数を低速度で行えばよく、第6図に示し
たように15rpm程度以下が好ましく、更に好ましく
は5 rpm以下である。
Furthermore, in order to permanently maintain this solid-liquid interface shape,
Considering that there is a close relationship between the shape of the solid-liquid interface and the crystal rotation speed, it is sufficient to perform the crystal rotation at a low speed, preferably about 15 rpm or less, more preferably 5 rpm or less, as shown in Figure 6. It is.

なお、第4図に示した装置は種々変形可能である。Note that the device shown in FIG. 4 can be modified in various ways.

例えば、アフターヒーター6′としては、従来は主加熱
体用の高周波コイル1(第1図)をもって兼備させてい
たが、本発明では、このような構成も可能ではあるが、
アフターヒーターの温度制御向上のためには加熱冷却基
板15と同−又は類似の形式の基板を多段に積み重ねて
アフターヒーターとする方が好ましい。
For example, in the past, the high-frequency coil 1 (FIG. 1) for the main heating element was also used as the after-heater 6', but with the present invention, although such a configuration is also possible,
In order to improve the temperature control of the afterheater, it is preferable to stack substrates of the same or similar type as the heating/cooling substrate 15 in multiple stages to form the afterheater.

また、加熱冷却基板15としては、第7図に示す態様の
ものが好ましい。この加熱冷却基板15は、円板状又は
ディスク状で中央に空間部を有する基板30を有し、該
基板の空間部に任意の曲率の凹状の熱反射面31が形成
され、その裏側に該熱反射面31を冷却する水冷部32
が形成されており、熱反射面31には螺旋線、丸棒、角
板又は薄膜等の発熱体33が配置されている。34は冷
却水出入口である。熱反射面31には金属メツキ等の適
当な表面処理又は加工が施されている。このような構成
の加熱冷却板15は1段又は炉軸方向に複数段に積み重
ねてルツボ壁外側に配置する。
Further, as the heating/cooling substrate 15, one having the form shown in FIG. 7 is preferable. This heating/cooling substrate 15 has a disk-shaped or disc-shaped substrate 30 with a space in the center, and a concave heat reflecting surface 31 of an arbitrary curvature is formed in the space of the substrate, and a concave heat reflecting surface 31 of an arbitrary curvature is formed on the back side of the substrate. Water cooling section 32 that cools the heat reflecting surface 31
A heating element 33 such as a spiral wire, a round bar, a square plate, or a thin film is arranged on the heat reflecting surface 31. 34 is a cooling water inlet/outlet. The heat reflecting surface 31 is subjected to appropriate surface treatment or processing such as metal plating. The heating and cooling plates 15 having such a configuration are arranged on the outside of the crucible wall in one stage or in a plurality of stages stacked in the furnace axis direction.

複数段に配置する場合には、熱反射面をなす凹部31を
各基板30の断面の上側又は下側に半分ずつ半割り型に
形威し、相隣り合う一対の基板により1個の凹部31を
形成したり、或いは各基板の間に凹部を有しない中間体
(例、水冷銅板、断熱材など)を配置してもよい。
When arranging in multiple stages, the recesses 31 forming the heat reflecting surface are shaped in half on the upper or lower side of the cross section of each board 30, and one recess 31 is formed by a pair of adjacent boards. Alternatively, an intermediate body (eg, a water-cooled copper plate, a heat insulating material, etc.) without a recess may be arranged between each substrate.

加熱冷却基板15は、上記構成であるので、水冷部の断
熱効果と熱反射面による集熱効果により狭い範囲を効率
的に温度制御することができる。
Since the heating/cooling board 15 has the above configuration, it is possible to efficiently control the temperature in a narrow range due to the heat insulating effect of the water cooling section and the heat collecting effect of the heat reflecting surface.

その厚さも薄くできるので、特に複数段にて積み重ねた
場合は加熱冷却基板間の相互作用を極度に少なくするこ
とができる。
Since the thickness can be reduced, interaction between heating and cooling substrates can be extremely reduced, especially when stacked in multiple stages.

冷却体16としては、第8図に示す態様が好ましい、こ
の冷却体16は水冷リング40からなり、冷却水出入用
吊棒41が溶接等により連結されていて、第4図に示す
ように融液表面上に懸垂可能となっている。
The embodiment shown in FIG. 8 is preferable for the cooling body 16. This cooling body 16 consists of a water cooling ring 40, to which hanging rods 41 for cooling water in and out are connected by welding or the like, and as shown in FIG. It can be suspended above the liquid surface.

加熱体17としては、第9図に示す態様が好ましい。こ
の加熱体17は保持円板5oに発熱体51が保持されて
いて、絶縁吊棒52を止めビン53にて連結し、第4図
に示すように融液表面上に懸垂可能となっている。なお
、発熱体17としては加熱冷却基板15に用いる加熱体
33と同様のものでよい。
As the heating body 17, the embodiment shown in FIG. 9 is preferable. This heating element 17 has a heating element 51 held on a holding disc 5o, and is connected to an insulating hanging rod 52 with a pin 53, so that it can be suspended on the surface of the melt as shown in FIG. . Note that the heating element 17 may be the same as the heating element 33 used in the heating/cooling board 15.

更に、冷却体16と加熱体17を一体化するためには、
第10図に示す態様が好ましい、水冷リング40の回り
に絶縁断熱層60を介して発熱体51が巻装されていて
、これらに絶縁吊棒52と冷却水出入用吊棒41が取り
付けられて、第4図に示すように融液表面上に懸垂可能
となっている。
Furthermore, in order to integrate the cooling body 16 and the heating body 17,
The embodiment shown in FIG. 10 is preferable, in which a heating element 51 is wrapped around the water cooling ring 40 via an insulating heat-insulating layer 60, and an insulating hanging rod 52 and a cooling water inlet/outlet hanging rod 41 are attached to these. , as shown in FIG. 4, can be suspended on the surface of the melt.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 第4図に示した装置を用いて以下の育成条件で単結晶を
育成した。
(Example) A single crystal was grown using the apparatus shown in FIG. 4 under the following growth conditions.

なお、第4図に示した装置を補足的に説明すると、1′
は主発熱体である高周波コイルで、ルツボ下熱電対10
により温度プログラム制御される。
In addition, to provide a supplementary explanation of the device shown in FIG. 4, 1'
is the high-frequency coil which is the main heating element, and there are 10 thermocouples under the crucible.
Temperature program controlled by

6′のアフターヒーターは専用の熱電対18により温度
制御される。主発熱体1′とアフターヒーター6′の間
に設けられている加熱冷却基板15の温度は、光温度計
19で測定されるルツボ近傍の融液表面の温度と結晶直
径制御袋!t17での温度とが等しくなるように制御さ
れる。結晶育成がd鑑つれて液面が低下するので、これ
に伴い主加熱体1′、加熱冷却基板15、アフターヒー
ター6′、そして光温度計19を同速度で低下させる。
The temperature of the afterheater 6' is controlled by a dedicated thermocouple 18. The temperature of the heating/cooling substrate 15 provided between the main heating element 1' and the after-heater 6' is determined by the temperature of the melt surface near the crucible measured by the optical thermometer 19 and the crystal diameter control bag. The temperature is controlled to be equal to the temperature at t17. Since crystal growth slows down and the liquid level drops, the main heating element 1', heating/cooling board 15, after heater 6', and optical thermometer 19 are lowered at the same speed.

しかし、白金ルツボ2(150φX150hX2゜5t
)はルツボ台4の上に固定され静止したままである。ル
ツボ内の融液は80%程の割合で溶かされている。結晶
直径制御装置17の先端には引上げ軸9があり、その先
に種結晶7が固定され、この先端から単結晶が成長じて
いくことになる。
However, platinum crucible 2 (150φX150hX2゜5t
) is fixed on the crucible stand 4 and remains stationary. The melt in the crucible is about 80% melted. There is a pulling shaft 9 at the tip of the crystal diameter control device 17, a seed crystal 7 is fixed at the tip, and a single crystal will grow from this tip.

か)る装置を用いて、酸化物単結晶の一例として、モリ
ブデン酸鉛単結晶の育成を行った。結晶直径を70開に
保ちながら結晶回転数を変化させて育成した。
As an example of an oxide single crystal, a lead molybdate single crystal was grown using the apparatus described above. The crystals were grown by varying the crystal rotation speed while keeping the crystal diameter at 70 mm.

く育成条件〉 育成結晶: MoPbO* 温度勾配(垂直方向):30℃/帥 育戊方育成<100> 育成速度:4mm/hr コイル移動速度: 1.4B/hr 加熱基板移動速度:1.4mm/hr 半径方向温度勾配:5℃/C11 最内側温度:1083℃ 結晶回転数:3rpm、5 rpm、10rp+a、1
5rpm、 2 Orpm 得られた単結晶を育成方向に平行に2mm厚でスライス
し、両面を鏡面研磨した後、5%NaOH水溶液でエツ
チングして実体顕微鏡によりストリエーション、気泡及
び転位をWA察した。その結果。
Growth conditions〉 Growth crystal: MoPbO* Temperature gradient (vertical direction): 30°C/direct growth <100> Growth speed: 4mm/hr Coil movement speed: 1.4B/hr Heating substrate movement speed: 1.4mm /hr Radial temperature gradient: 5℃/C11 Innermost temperature: 1083℃ Crystal rotation speed: 3rpm, 5rpm, 10rp+a, 1
5 rpm, 2 Orpm The obtained single crystal was sliced to a thickness of 2 mm in parallel to the growth direction, mirror polished on both sides, etched with a 5% NaOH aqueous solution, and WA observed for striations, bubbles, and dislocations using a stereomicroscope. the result.

融液に対して緩やかな凸状の固液界面形状が得られ、気
泡や転位もなく、大型で高品質な単結晶であった。結晶
回転数5 rpmのときの歩留まりは75%であった。
A gently convex solid-liquid interface shape with respect to the melt was obtained, and there were no bubbles or dislocations, resulting in a large, high-quality single crystal. The yield was 75% when the crystal rotation speed was 5 rpm.

(発明の効果) 以上詳述したように、従来、高周波を用いた引上げ法に
よる酸化物単結晶等の単結晶の育成においては、ルツボ
上端部に過加熱が生じ、大きな自然対流が発生するので
、結晶欠陥のない均質な単結晶を高歩留まりで育成する
ことは極めて困難であったが、本発明によれば、融液表
面のルツボ半径方向の温度差を制御することにより、自
然対流を抑制しつつ、強制対流との複合により、固液界
面の形状を制御するので、固液界面形状を滑らかな凸状
にすることができ、結晶欠陥がなく光学的にも高品質部
分を大幅に拡大した単結晶を得ることができる6本発明
は種々の単結晶の育成に適用できるが、特にモリブデン
酸鉛、ケイ酸ビスマス、ニオブ酸リチウム、タンタル酸
リチウム、YAG等の酸化物単結晶の育成に好適である
(Effects of the Invention) As detailed above, conventionally, in growing single crystals such as oxide single crystals by the pulling method using high frequency, overheating occurs at the upper end of the crucible and large natural convection occurs. However, according to the present invention, natural convection can be suppressed by controlling the temperature difference on the melt surface in the radial direction of the crucible. At the same time, the shape of the solid-liquid interface is controlled by combining with forced convection, making it possible to make the solid-liquid interface shape smooth and convex, greatly expanding the optically high-quality area with no crystal defects. 6 The present invention can be applied to the growth of various single crystals, but is particularly applicable to the growth of oxide single crystals such as lead molybdate, bismuth silicate, lithium niobate, lithium tantalate, and YAG. suitable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高周波加熱による単結晶育成装置を示す
説明断面図、 第2図(a)〜(e)は従来の単結晶育成方法で得られ
る固液界面の形状を異なる結晶回転速度について示す図
、 第3図は従来の単結晶育成方法における融液表面のルツ
ボ半径方向の温度勾配を示す説明図、第4図は本発明に
係る単結晶育成装置の一例を示す説明断面図、 第5図(a)〜(c)は本発明に係る単結晶育成方式に
おける固液界面の形状を示す説明図で、(a)は加熱冷
却基板を設けた場合、(b)は更に冷却体を付加した場
合、(c)は更に加熱体を付加した場合を示し、 第6図(a)〜(e)は本発明に係る単結晶育成方式に
おける固液界面の形状を異なる結晶回転速度について示
す図、 第7図(a)、(b)は加熱冷却基板を示す図で、(、
)は断面図、(b)は平面図であり、 第8図<a)、(b)は冷却体を示す図で、(a)は平
面図、(b)は側面図であり、 第9図(a)、(b)は加熱体を示す図で、(a)は平
面図、(b)は側面図であり、 第10図(a)、(b)は加熱体を示す図で、(a)は
平面図、(b)は断面図である。 1・・・高周波コイル、1′・・・主発熱体(高周波コ
イル)、2・・・ルツボ、3・・・断熱材、4・・・ル
ツボ台、5・・・融液、6.6′・・・アフターヒータ
ー 7・・・種結晶、8・・・育成結晶、9・・・結晶
引上げ回転軸、10・・・ルツボ下熱電対、11・・・
結晶直径制御装置、12・・・自然対流、13・・・強
制対流、14・・・固液界面、15・・・加熱冷却基板
、16・・・冷却体、17・・・加熱体、18・・・ア
フターヒーター用熱電対、19・・・光温度計、20・
・・液面温度制御部、30・・・基板、31・・・熱反
射面、32・・・水冷部、33・・・発熱体、34・・
・冷却水出入口、40・・・水冷リング、41・・・冷
却水出入吊棒、50・・・保持円板、51・・・発熱体
、52・・・絶縁吊棒、53・・・止めビン、60・・
・絶縁断熱層。 第 図 第 2 図 第 図 第 6 図
Figure 1 is an explanatory cross-sectional view showing a conventional single crystal growth apparatus using high-frequency heating, and Figures 2 (a) to (e) show the shapes of the solid-liquid interface obtained by the conventional single crystal growth method at different crystal rotation speeds. FIG. 3 is an explanatory diagram showing the temperature gradient of the melt surface in the radial direction of the crucible in a conventional single crystal growth method; FIG. 4 is an explanatory sectional view showing an example of the single crystal growth apparatus according to the present invention; 5 (a) to (c) are explanatory diagrams showing the shape of the solid-liquid interface in the single crystal growth method according to the present invention, (a) is when a heating and cooling substrate is provided, and (b) is when a cooling body is further provided. (c) shows the case where a heating element is further added, and Fig. 6 (a) to (e) show the shape of the solid-liquid interface in the single crystal growth method according to the present invention at different crystal rotation speeds. Figures 7(a) and 7(b) are diagrams showing the heating and cooling board.
) is a sectional view, (b) is a plan view, FIGS. Figures (a) and (b) are views showing the heating body, (a) is a plan view, (b) is a side view, and Figures 10 (a) and (b) are views showing the heating body, (a) is a plan view, and (b) is a sectional view. 1... High frequency coil, 1'... Main heating element (high frequency coil), 2... Crucible, 3... Heat insulating material, 4... Crucible stand, 5... Melt, 6.6 ′... After heater 7... Seed crystal, 8... Growing crystal, 9... Crystal pulling rotating shaft, 10... Thermocouple under crucible, 11...
Crystal diameter control device, 12... Natural convection, 13... Forced convection, 14... Solid-liquid interface, 15... Heating and cooling substrate, 16... Cooling body, 17... Heating body, 18 ...Thermocouple for after-heater, 19...Light thermometer, 20.
...Liquid surface temperature control section, 30...Substrate, 31...Heat reflecting surface, 32...Water cooling section, 33...Heating element, 34...
・Cooling water inlet/outlet, 40... Water cooling ring, 41... Cooling water inlet/outlet hanging rod, 50... Holding disk, 51... Heating element, 52... Insulating hanging rod, 53... Stop Bottle, 60...
・Insulating insulation layer. Figure 2 Figure 6 Figure 6

Claims (8)

【特許請求の範囲】[Claims] (1)高周波を用いて引上結晶を回転させながら単結晶
を育成するに際し、固液界面近傍を加熱冷却制御するこ
とにより、結晶化部とルツボ部の融液表面の定点の温度
を一定に制御することを特徴とする液面温度制御型単結
晶育成方法。
(1) When growing a single crystal while rotating the pulled crystal using high frequency, the temperature at a fixed point on the melt surface in the crystallization part and the crucible part is kept constant by controlling heating and cooling near the solid-liquid interface. A method for growing a single crystal by controlling liquid surface temperature.
(2)ルツボ半径方向の融液表面の温度をルツボ部から
中央部まで一定温度差になるように制御する請求項1に
記載の方法。
(2) The method according to claim 1, wherein the temperature of the melt surface in the radial direction of the crucible is controlled to maintain a constant temperature difference from the crucible part to the central part.
(3)融液表面の低下速度と同一速度で該加熱冷却手段
を移動する請求項1又は2に記載の方法。
(3) The method according to claim 1 or 2, wherein the heating/cooling means is moved at the same speed as the rate at which the melt surface decreases.
(4)引上結晶の回転数を低速度にして育成する請求項
1、2又は3に記載の方法。
(4) The method according to claim 1, 2 or 3, wherein the pulled crystal is grown at a low rotational speed.
(5)高周波を用いて引上結晶を回転させながら単結晶
を育成する装置において、ルツボ加熱用発熱体と引上結
晶を加熱するアフターヒーターとの間に、冷却部と加熱
部から構成された加熱冷却基板を設けたことを特徴とす
る液面温度制御型の単結晶育成装置。
(5) In an apparatus for growing a single crystal while rotating a pulled crystal using high frequency, a cooling section and a heating section are provided between a heating element for heating the crucible and an after-heater for heating the pulled crystal. A liquid surface temperature controlled single crystal growth apparatus characterized by being equipped with a heating and cooling substrate.
(6)請求項5に記載の装置において、ルツボ内の融液
表面上部に、水冷されたリング状のパイプを上下移動可
能に配置した冷却体を設けたことを特徴とする液面温度
制御型の単結晶育成装置。
(6) The apparatus according to claim 5, characterized in that a cooling body having a water-cooled ring-shaped pipe arranged movably up and down is provided above the surface of the melt in the crucible. single crystal growth equipment.
(7)請求項5又は6に記載の装置において、ルツボ内
の融液表面上部に、リング状の発熱体を圧下移動可能に
配置した発熱体を設けたことを特徴とする液面温度制御
型の単結晶育成装置。
(7) The apparatus according to claim 5 or 6, characterized in that a heating element in which a ring-shaped heating element is arranged so as to be movable under pressure is provided above the surface of the melt in the crucible. single crystal growth equipment.
(8)前記発熱体と冷却体を一体化した請求項6又は7
に記載の装置。
(8) Claim 6 or 7, wherein the heating element and the cooling element are integrated.
The device described in.
JP1218401A 1989-08-24 1989-08-24 Liquid surface temperature control type single crystal growth method and apparatus Expired - Lifetime JPH0798717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218401A JPH0798717B2 (en) 1989-08-24 1989-08-24 Liquid surface temperature control type single crystal growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218401A JPH0798717B2 (en) 1989-08-24 1989-08-24 Liquid surface temperature control type single crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH0383889A true JPH0383889A (en) 1991-04-09
JPH0798717B2 JPH0798717B2 (en) 1995-10-25

Family

ID=16719332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218401A Expired - Lifetime JPH0798717B2 (en) 1989-08-24 1989-08-24 Liquid surface temperature control type single crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JPH0798717B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001584A (en) * 2006-05-26 2008-01-10 Nippon Oil Corp Reformer and indirect internal reforming type solid oxide fuel cell
CN115216831A (en) * 2022-07-15 2022-10-21 中国电子科技集团公司第十三研究所 Crystal growth device and method capable of controlling temperature gradient

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217494A (en) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> Pulling-up method of single crystal
JPS59182298A (en) * 1983-03-30 1984-10-17 Toshiba Corp Production of single crystal of compound semiconductor
JPS63103889A (en) * 1986-10-20 1988-05-09 Tokin Corp Device for pulling up single crystal
JPS644997A (en) * 1987-06-26 1989-01-10 Nippon Denki Office Syst Memory refresh control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217494A (en) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> Pulling-up method of single crystal
JPS59182298A (en) * 1983-03-30 1984-10-17 Toshiba Corp Production of single crystal of compound semiconductor
JPS63103889A (en) * 1986-10-20 1988-05-09 Tokin Corp Device for pulling up single crystal
JPS644997A (en) * 1987-06-26 1989-01-10 Nippon Denki Office Syst Memory refresh control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001584A (en) * 2006-05-26 2008-01-10 Nippon Oil Corp Reformer and indirect internal reforming type solid oxide fuel cell
CN115216831A (en) * 2022-07-15 2022-10-21 中国电子科技集团公司第十三研究所 Crystal growth device and method capable of controlling temperature gradient

Also Published As

Publication number Publication date
JPH0798717B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
CN104471118B (en) SiC single crystal ingot and its manufacture method
CN108779577A (en) The manufacturing method of monocrystalline silicon
JPH08175896A (en) Method and device for producing single crystal
JPH0383889A (en) Liquid surface temperature control type single crystal rearing method and apparatus therefor
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP2003221299A (en) Large lithium niobate single crystal for optical application, and method and apparatus of the same
JPS5979000A (en) Production of semiconductor single crystal
JPS6027684A (en) Apparatus for producing single crystal
JPS5912632B2 (en) Tanketshuyounohikiagesouchi
JPS61266395A (en) Preparation of single crystal of oxide piezoelectric body
JPH0312397A (en) Production of rutile single crystal
JPH03242399A (en) Method for rotating and pulling up lithium tetraborate single crystal
JP3369394B2 (en) Crystal preparation method
JP3255753B2 (en) Method of growing rutile rod-shaped single crystal
JPS62197398A (en) Method for pulling up single crystal
Kusuma et al. The Growth and Growth Mechanism of Congruent LiNbO 3 Single Crystals by Czochralski Method
JPS597674B2 (en) Method for manufacturing oxide piezoelectric single crystal
JPH0397690A (en) Producing device for oxide single crystal
JPS59116189A (en) Method for controlling shape of single crystal
JPH0585881A (en) Pull system for single crystal
JPH02124792A (en) Method for growing single crystal
JPH09208380A (en) Production of oxide single crystal
JPH11199383A (en) Crystal growth
JPH0431387A (en) Growth of single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term