JPH0798717B2 - Liquid surface temperature control type single crystal growth method and apparatus - Google Patents

Liquid surface temperature control type single crystal growth method and apparatus

Info

Publication number
JPH0798717B2
JPH0798717B2 JP1218401A JP21840189A JPH0798717B2 JP H0798717 B2 JPH0798717 B2 JP H0798717B2 JP 1218401 A JP1218401 A JP 1218401A JP 21840189 A JP21840189 A JP 21840189A JP H0798717 B2 JPH0798717 B2 JP H0798717B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
crucible
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1218401A
Other languages
Japanese (ja)
Other versions
JPH0383889A (en
Inventor
正至 月岡
Original Assignee
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁無機材質研究所長 filed Critical 科学技術庁無機材質研究所長
Priority to JP1218401A priority Critical patent/JPH0798717B2/en
Publication of JPH0383889A publication Critical patent/JPH0383889A/en
Publication of JPH0798717B2 publication Critical patent/JPH0798717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高周波を用いて引上結晶を回転させながら単
結晶を育成する、いわゆるチョクラルスキー法による単
結晶育成方式に関し、特に結晶欠陥のない光学的に均質
な酸化物単結晶の育成に好適である。
Description: TECHNICAL FIELD The present invention relates to a so-called Czochralski method for growing a single crystal while rotating a pulling crystal using high frequency, and particularly to a crystal defect. It is suitable for growing an optically homogeneous oxide single crystal that is free of defects.

(従来の技術) 単結晶の育成法の代表的な1つとして、いわゆるチョク
ラルスキー法が知られている。この単結晶育成方式は、
高周波を用いてルツボ内の融液表面上で引上げ結晶を回
転させながら育成する方法である。
(Prior Art) A so-called Czochralski method is known as one of typical methods for growing a single crystal. This single crystal growth method is
It is a method of growing a pulled crystal while rotating it on the surface of the melt in the crucible using a high frequency.

現在、光学用や表面弾性波用の酸化物単結晶の多くは、
この引上げ法で育成されているが、その育成時に発生す
る結晶欠陥の多くは育成中の固液界面の状態に大きく影
響されていることがよく知られており、固液界面の形状
を融液に対してなだらかな凸状にできれば高品質な結晶
が得られることは従来より指摘されていた。また、固液
界面の形状はルツボ融液内の対流モードに密接な関係が
あることも、最近特に報告されている。
Currently, most of oxide single crystals for optical and surface acoustic waves are
Although grown by this pulling method, it is well known that many of the crystal defects generated during the growth are greatly affected by the state of the solid-liquid interface during growth. On the other hand, it has been previously pointed out that a high quality crystal can be obtained if it can be made into a gentle convex shape. It has also recently been particularly reported that the shape of the solid-liquid interface is closely related to the convection mode in the crucible melt.

引上げ法による酸化物単結晶の育成におけるルツボ内融
液の対流を考えると、一般的にルツボ壁から結晶中央部
に向かう融液の流れがあり、これには自然対流とマラン
ゴニー対流があるとされている。一方、結晶中央部から
ルツボ壁に向かう流れとしては、結晶回転に伴う強制対
流があり、この他にも多くの流れはあるが、固液界面形
状を支配するのは上記3種類の流れでおり、これらの対
流が複合されて固液界面形状が決定されていると考えら
れている。
Considering the convection of the melt in the crucible during the growth of the oxide single crystal by the pulling method, there is generally a flow of the melt from the crucible wall toward the center of the crystal, which is considered to include natural convection and Marangoni convection. ing. On the other hand, as the flow from the central part of the crystal toward the crucible wall, there is forced convection accompanying crystal rotation, and there are many other flows, but it is the above three types of flow that govern the solid-liquid interface shape. It is considered that the solid-liquid interface shape is determined by combining these convections.

(発明が解決しようとする課題) 従来、引上げ結晶の回転数を変化させて強制対流の介在
量をある程度制御することによって、融液に対して単結
晶の界面形状がゆるやかな凸状となるようにする方法が
一般的である。つまり、引上げ結晶の回転数を変えて固
液界面形状を調べるとわかるように、融液に対して凸状
から凹状に反転する結晶回転数が存在するが、その回転
数よりもやや低い回転数とする方法である。
(Problems to be Solved by the Invention) Conventionally, by changing the number of rotations of a pulled crystal to control the amount of forced convection to some extent, the interface shape of a single crystal with respect to a melt becomes a gentle convex shape. The method is generally used. In other words, as you can see by changing the rotation speed of the pulled crystal and examining the solid-liquid interface shape, there is a crystal rotation speed that reverses from convex to concave with respect to the melt, but the rotation speed is slightly lower than that. Is the method.

しかしながら、実際、この方法だけでは所望する固液界
面の形状を安定して得ることは極めて困難であり、凹凸
形状の入り混じった複雑な形状を呈するという問題があ
る。
However, in practice, it is extremely difficult to stably obtain the desired shape of the solid-liquid interface only by this method, and there is a problem that a complicated shape having a mixture of irregularities is exhibited.

本発明は、上位従来技術の問題点を解決し、結晶欠陥の
ない高品質の単結晶を歩留まりよく製造できる方法並び
に装置を提供することを目的とするものである。
An object of the present invention is to solve the problems of the prior art and to provide a method and an apparatus capable of producing a high-quality single crystal free from crystal defects with high yield.

(課題を解決するための手段) 前述の事情に鑑みて、本発明者は、酸化物単結晶として
PbMoO4を例にとり、その一定径の単結晶育成において、
結晶回転数を変化させて固液界面形状を調べ、更に固液
界面形状を平坦に近づけるべく種々の条件で単結晶を育
成する実験を行った。なお、第1図はそのために用いた
装置を示す図であり、1は高周波コイル、2はルツボ、
3は断熱材、4はルツボ台であり、ルツボ内の原料が高
周波コイル1により加熱されて融液5が形成される。6
はアフターヒーターであって高周波コイル1により加熱
される。7は種子結晶、8は引上げ結晶(育成結晶)、
9は引上げ回転軸、10はルツボ下熱電対、11は結晶直径
制御装置(ADC装置)である。結晶直径制御装置11は、
育成されつつある結晶重量信号と設定直径信号の偏差を
高周波パワーに帰還して引上結晶直径を制御するもので
ある。
(Means for Solving the Problems) In view of the above-mentioned circumstances, the present inventor has proposed that an oxide single crystal is used.
Taking PbMoO 4 as an example, in growing a single crystal with a constant diameter,
Experiments were conducted to examine the solid-liquid interface shape by changing the crystal rotation speed, and to grow single crystals under various conditions to make the solid-liquid interface shape close to a flat surface. Note that FIG. 1 is a diagram showing an apparatus used for that purpose, 1 is a high frequency coil, 2 is a crucible,
Reference numeral 3 is a heat insulating material, and 4 is a crucible stand. The raw material in the crucible is heated by the high-frequency coil 1 to form a melt 5. 6
Is an after-heater and is heated by the high frequency coil 1. 7 is a seed crystal, 8 is a pulled crystal (grown crystal),
Reference numeral 9 is a pulling rotary shaft, 10 is a thermocouple under the crucible, and 11 is a crystal diameter control device (ADC device). The crystal diameter control device 11 is
The difference between the growing crystal weight signal and the set diameter signal is fed back to the high frequency power to control the pulling crystal diameter.

実験の結果、単結晶全体にわたって固液界面の形状がな
だらかになる条件は見い出されなかったし、気泡や転位
等の結晶欠陥を無くすることはできなかった。
As a result of the experiment, no condition was found that the shape of the solid-liquid interface was smooth over the entire single crystal, and crystal defects such as bubbles and dislocations could not be eliminated.

具体的には、結晶回転数を20〜40rpmの範囲で変化させ
ると、第2図に示すような固液界面形状を呈した。な
お、第2図は、第1図に示した装置を用いて、結晶直径
を70mmに保ちながら結晶回転数を変化させて酸化物単結
晶であるモリブデン酸単結晶(PbMoO4)の育成を行い、
得られた単結晶を育成方向に平行に切断して、両面を鏡
面研磨した後、5%NaOH水溶液でエッチングして、実体
顕微鏡によりストリエーション、気泡及び転位を観察し
た結果を示したものである。
Specifically, when the crystal rotation speed was changed within the range of 20 to 40 rpm, the solid-liquid interface shape as shown in FIG. 2 was exhibited. Note that FIG. 2 shows the growth of molybdic acid single crystal (PbMoO 4 ) which is an oxide single crystal by changing the crystal rotation speed while maintaining the crystal diameter at 70 mm by using the apparatus shown in FIG. ,
The obtained single crystal was cut parallel to the growth direction, both surfaces were mirror-polished, and then etched with a 5% NaOH aqueous solution, and striation, bubbles and dislocations were observed by a stereoscopic microscope. .

第2図に示すように、結晶回転数が25rpmのときに、結
晶中央部の狭い領域ではあるが、緩やかな固液界面14を
呈する部分があり、この部分は気泡もサブグレンもない
高品質部分であったものの、結晶中央部と端部の境界に
あたる固液界面形状が複雑に変化する手前では欠陥の凝
集が見られた。
As shown in Fig. 2, when the number of rotations of the crystal is 25 rpm, it is a narrow area in the center of the crystal, but there is a part that exhibits a gradual solid-liquid interface 14, and this part is a high quality part with neither bubbles nor subgrains. However, defect aggregation was observed before the solid-liquid interface shape at the boundary between the crystal center and the edge changed intricately.

結晶回転数が25rpmより小さいと固液界面形状がかなり
凸状になり、育成された結晶内の成長縞上に歪みが多
く、光を通過させたときにこの成長縞に沿って光の散乱
が多くて実用に供し得なかった。
When the crystal rotation speed is less than 25 rpm, the solid-liquid interface shape becomes considerably convex, and there are many distortions on the growth fringes in the grown crystal, and when light is passed, light is scattered along these growth fringes. It was too many to be put to practical use.

また、結晶回転数が25rpm以上大きくなると、固液界面
形状が融液に対して凹状になり、結晶中央部は一見広く
なったように見えるが、格子欠陥が中央部に分散したり
サブグレンが存在して良質な結晶ではなかった。
Also, when the crystal rotation speed is increased by 25 rpm or more, the solid-liquid interface shape becomes concave with respect to the melt, and the central part of the crystal seems to be wide at first glance, but lattice defects are dispersed in the central part or subgrain exists. And it was not a good crystal.

その原因は、従来の高周波加熱による単結晶育成法で
は、ルツボ壁面が均一加熱されることはなく、ルツボ上
端部が中間部に比べて強熱され、融液界面上の温度が高
くなり、第3図に示すようにルツボ2の両壁面から結晶
中央部に大きな温度差が生じ、その結果、結晶中央部へ
向かう大きな自然対流(第1図中の12)が生じる。これ
を結晶回転による逆流方向の強制対流(第1図中の13)
で消去乃至は緩衝させるのであるが、実際は両流の衝突
により複雑な界面形状を呈るためと推定された。
The reason for this is that in the conventional single crystal growth method by high-frequency heating, the crucible wall surface is not heated uniformly, but the upper end of the crucible is strongly heated compared to the middle part, and the temperature on the melt interface becomes high. As shown in FIG. 3, a large temperature difference occurs from both wall surfaces of the crucible 2 to the central part of the crystal, and as a result, large natural convection (12 in FIG. 1) toward the central part of the crystal occurs. This is the forced convection in the reverse direction due to crystal rotation (13 in Fig. 1).
It is supposed that the complicated interface shape is exhibited due to the collision of both flows.

自然対流を抑制するためには、ルツボ壁を均一に加熱し
ようとする方法があり、そのためにはルツボ上、中、下
部の温度差を少なくする必要がある。この方法には、高
周波コイルのピッチや直径を変える方法があるが、たと
えこれによってルツボ壁の均一加熱ができたとしても、
この引上げ法にあっては、単結晶育成中に融液表面が低
下するので、この低下速度に合わせて高周波コイル1を
移動させなくてはならず、そのために温度変動要因が複
雑に変化し、良い結果が得られていない。
In order to suppress natural convection, there is a method of uniformly heating the crucible wall, and for that purpose, it is necessary to reduce the temperature difference between the upper, middle, and lower portions of the crucible. In this method, there is a method of changing the pitch and diameter of the high frequency coil, but even if this enables uniform heating of the crucible wall,
In this pulling method, since the melt surface is lowered during the growth of the single crystal, the high frequency coil 1 has to be moved in accordance with the lowering speed, which causes the temperature fluctuation factor to change in a complicated manner. Good results have not been obtained.

また、育成結晶8の加熱部(すなわち、アフターヒータ
ー6)と融液加熱部用発熱体(高周波コイル1)とを独
立させて別々の方法で加熱制御する方法もあるが、ある
程度の融液対流制御は可能であるが、実際は、高周波コ
イル1によりルツボ上部が過熱されてルツボ上部がかな
り高い温度になり、良い結果を得ることはできない。
There is also a method in which the heating part of the grown crystal 8 (that is, the after-heater 6) and the heating element for the melt heating part (high-frequency coil 1) are independently controlled and heated by different methods. Control is possible, but in reality, the high-frequency coil 1 overheats the upper portion of the crucible, and the upper portion of the crucible becomes a considerably high temperature, so that good results cannot be obtained.

本発明者は、前記考察をもとに、高周波を用いた引上げ
法をあらゆる方面から鋭意研究した結果、固液界面近傍
を加熱冷却制御することによって、ルツボ半径方向の融
液界面温度をルツボ壁部からルツボ中心部まで一定温度
差に制御することにより、以て融液対流を効果的に抑制
することができ、良質な大型酸化物単結晶が得られるこ
とを見い出し、ここに本発明に至ったものである。
Based on the above consideration, the present inventor has earnestly studied the pulling method using a high frequency from all directions, and as a result, controls the melt interface temperature in the radial direction of the crucible by controlling the heating and cooling in the vicinity of the solid-liquid interface. By controlling a constant temperature difference from the central part to the central part of the crucible, it was possible to effectively suppress melt convection, and it was found that a good quality large oxide single crystal was obtained, and the present invention was reached here. It is a thing.

すなわち、本発明は、高周波を用いて引上結晶を回転さ
せながら単結晶を育成するに際し、固液界面近傍を加熱
冷却制御することにより、融液表面の定点の温度を一定
に制御することを特徴とする液面温度制御型単結晶育成
方法を要旨とするものである。
That is, the present invention, when growing a single crystal while rotating the pulling crystal using a high frequency, by heating and cooling control near the solid-liquid interface, to control the temperature of the fixed point of the melt surface constant. The gist is a characteristic liquid surface temperature control type single crystal growing method.

また、他の本発明では、高周波を用いて引上結晶を回転
させながら単結晶を育成する装置において、ルツボ加熱
用発熱体と引上結晶を加熱するアフターヒーターとの間
に、冷却部と加熱部から構成された加熱冷却基板を設け
たことを特徴とする液面温度制御型の単結晶育成装置を
要旨とするものである。
In another embodiment of the present invention, in an apparatus for growing a single crystal while rotating a pulling crystal by using high frequency, between a crucible heating heating element and an after-heater for heating the pulling crystal, a cooling unit and a heating unit are provided. The gist of the present invention is a liquid surface temperature control type single crystal growing apparatus characterized in that a heating / cooling substrate composed of parts is provided.

以下に本発明を更に詳述する。The present invention will be described in more detail below.

(作用) 前述の如く、従来は、高周波により融液加熱と育成結晶
加熱を共に行っていたため、固液界面近傍のルツボ壁部
の過加熱を防止できず、したがって、固液界面の大きな
自然対流を抑制することができず、この自然対流を容認
する前提で種々の対策が試みられていたので、自ずと限
界があった。
(Operation) As described above, since the melt heating and the growth crystal heating are both performed by high frequency in the past, it is not possible to prevent overheating of the crucible wall in the vicinity of the solid-liquid interface. However, various measures were attempted on the premise of allowing this natural convection, so there was a limit naturally.

一方、本発明では、この固液界面での自然対流を積極的
に抑制するので、ルツボ半径方向の温度制御が可能とな
ったのある。
On the other hand, in the present invention, since natural convection at the solid-liquid interface is actively suppressed, it is possible to control the temperature in the radial direction of the crucible.

その手段としては、固液界面近傍を加熱冷却制御するも
のであり、それにより、融液表面の定点の温度を一定に
制御する方式である。
As a means for this, heating and cooling is controlled in the vicinity of the solid-liquid interface, and thereby the temperature at a fixed point on the melt surface is controlled to be constant.

すなわち、具体的には、後述するように第4図に示すよ
うな構成の装置を用いるが、第5図(a)に示す如く、
固液界面14の近傍に対応するルツボ壁部外側に加熱冷却
基板15を設けることにより、融液表面の定点の温度を一
定に制御することが可能となり、したがって、固液界面
14をなだらかな凸状にすることができる。更に、場合に
よっては、第5図(b)に示すように更に固液界面上に
水冷体16を付加し、或いは加熱体17を付加することがで
きる。
That is, specifically, as will be described later, an apparatus having a configuration as shown in FIG. 4 is used, but as shown in FIG.
By providing the heating / cooling substrate 15 on the outer side of the crucible wall portion corresponding to the vicinity of the solid-liquid interface 14, it becomes possible to control the temperature of the fixed point of the melt surface at a constant level.
14 can be made into a gentle convex shape. Furthermore, depending on the case, a water cooling body 16 or a heating body 17 can be further added on the solid-liquid interface as shown in FIG. 5 (b).

この方式によれば、第6図に示すように、広範囲の結晶
回転数においてもなだらかな凸状の固液界面を形成する
ことができる。
According to this method, as shown in FIG. 6, it is possible to form a gently convex solid-liquid interface even in a wide range of crystal rotation speeds.

なお、第6図は、後述の第4図に示す装置を用いて、結
晶直径を70mmに保ちながら結晶回転数を変化させて酸化
物単結晶であるモリブデン酸単結晶(PbMoO4)の育成を
行い、得られた単結晶を育成方向に平行に切断して、両
面を鏡面研磨した後、5%NaOH水溶液でエッチングし
て、実体顕微鏡によりストリエーション、気泡及び転位
を観察した結果を示したものであり、結晶中央部の高品
質部が大きく広がり、気泡や転位は見られなかった。特
に、結晶回転数が5rpmの時には高品質が全体の75%に達
していた。
Note that FIG. 6 shows the growth of molybdic acid single crystal (PbMoO 4 ) which is an oxide single crystal by changing the crystal rotation speed while maintaining the crystal diameter at 70 mm by using the apparatus shown in FIG. 4 described later. The obtained single crystal was cut parallel to the growth direction, both sides were mirror-polished, and then etched with a 5% NaOH aqueous solution, and the results of observing striations, bubbles and dislocations with a stereoscopic microscope were shown. The high-quality portion in the central portion of the crystal was widely spread, and no bubbles or dislocations were observed. In particular, when the crystal rotation speed was 5 rpm, the high quality reached 75% of the whole.

本発明による単結晶育成方式は、具体的には、以下の種
々の態様が可能である。
Specifically, the single crystal growth method according to the present invention can have the following various aspects.

第4図に単結晶育成装置の一例を示す。図中、1′はル
ツボ2内の原料を溶融し融液5を加熱するための主発熱
体(高周波コイル)、7は種結晶、9は引上げ軸、10は
ルツボ下熱電対、11は結晶直径制御装置である。また、
15は加熱冷却基板、16は冷却体、17は加熱体であり、
6′はアフターヒーター、18はアフターヒーター用熱電
対、19は光温度計である。
FIG. 4 shows an example of a single crystal growth apparatus. In the figure, 1'is a main heating element (high-frequency coil) for melting the raw material in the crucible 2 and heating the melt 5, 7 is a seed crystal, 9 is a pulling shaft, 10 is a lower crucible thermocouple, and 11 is a crystal. It is a diameter control device. Also,
15 is a heating / cooling substrate, 16 is a cooling body, 17 is a heating body,
6'is an after-heater, 18 is a thermocouple for the after-heater, and 19 is an optical thermometer.

かゝる装置において、例えば、ルツボ内で原料を溶融す
る主発熱体1′と育成後の単結晶を加熱するアフターヒ
ーター6′の間に加熱冷却基板15を設け、ルツボ近傍の
融液表面の定点の温度を光温度計19で測定し、この温度
と制御装置11により結晶育成中に結晶直径制御される温
度信号の偏差が零になるように液面温度制御部20にて加
熱冷却基板15の温度を制御することにより、融液表面の
温度を一定にすることができる。
In such an apparatus, for example, a heating / cooling substrate 15 is provided between a main heating element 1'which melts a raw material in a crucible and an after-heater 6'which heats a single crystal after being grown, so that the melt surface near the crucible The temperature at a fixed point is measured by the optical thermometer 19, and the liquid surface temperature control unit 20 heats and cools the substrate 15 so that the deviation between this temperature and the temperature signal whose crystal diameter is controlled during crystal growth by the controller 11 becomes zero. By controlling the temperature of, the temperature of the melt surface can be made constant.

また、結晶育成が進むにつれて融液表面が低下するの
で、主発熱体1′、加熱冷却基板15、アフターヒーター
6′を融液表面の低下速度と同一速度で移動させる。
Further, since the melt surface is lowered as the crystal growth progresses, the main heating element 1 ', the heating / cooling substrate 15, and the after-heater 6'are moved at the same speed as the melt surface lowering speed.

また、融液表面の温度を安定的に一定にするために、融
液上部のルツボ近傍に冷却体16を置いて冷却することに
より、或いは融液表面の育成結晶近傍に発熱体17を配置
することにより、同様な効果をもたらすことができる。
この冷却体と発熱体は液面低下と同一速度で低下させ
る。
Further, in order to stably keep the temperature of the melt surface stable, by placing a cooling body 16 near the crucible on the top of the melt and cooling it, or by arranging the heating element 17 near the grown crystal on the melt surface. As a result, a similar effect can be brought about.
The cooling body and the heating element are lowered at the same rate as the liquid level is lowered.

このようにして、従来は全く不可能であったルツボ半径
方向の温度制御が可能となり、したがって、ルツボ端部
の過加熱によるルツボ中心に向かう強い自然対流を制御
することができる。つまり、固液界面の対流制御が著し
く改善されるので、固液界面を融液に対してゆるやかな
凸状にすることができるのである。
In this way, temperature control in the radial direction of the crucible, which has been impossible at all in the past, becomes possible. Therefore, strong natural convection toward the center of the crucible due to overheating of the end of the crucible can be controlled. That is, the convection control at the solid-liquid interface is remarkably improved, so that the solid-liquid interface can be formed into a gentle convex shape with respect to the melt.

更に、この固液界面形状を恒常的に維持するためには、
固液界面形状と結晶回転数に密接な関係があることを考
慮し、結晶回転数を低速度で行えばよく、第6図に示し
たように15rpm程度以下が好ましく、更に好ましくは5rp
m以下である。
Furthermore, in order to constantly maintain this solid-liquid interface shape,
Considering that there is a close relationship between the solid-liquid interface shape and the crystal rotation speed, the crystal rotation speed may be set at a low speed, and as shown in FIG. 6, it is preferably about 15 rpm or less, more preferably 5 rpm.
It is less than or equal to m.

なお、第4図に示した装置は種々変形可能である。The device shown in FIG. 4 can be modified in various ways.

例えば、アフターヒーター6′としては、従来は主加熱
体用の高周波コイル1(第1図)をもって兼備させてい
たが、本発明では、このような構成も可能ではあるが、
アフターヒーターの温度制御向上のためには加熱冷却基
板15と同一又は類似の形式の基板を多段に積み重ねてア
フターヒーターとする方が好ましい。
For example, as the after-heater 6 ′, the high-frequency coil 1 (FIG. 1) for the main heating element has been used in the past, but in the present invention, such a configuration is also possible.
In order to improve the temperature control of the after-heater, it is preferable to stack substrates of the same or similar type as the heating / cooling substrate 15 in multiple stages to form the after-heater.

また、加熱冷却基板15としては、第7図に示す態様のも
のが好ましい。この加熱冷却基板15は、円板状又はディ
スク状で中央に空間部を有する基板30を有し、該基板の
空間部に任意の曲率の凹状の熱反射面31が形成され、そ
の裏側に該熱反射面3を冷却する水冷部32が形成されて
おり、熱反射面31には螺旋線、丸棒、角板又は薄膜等の
発熱体33が配置されている。34は冷却水出入口である。
熱反射面31には金属メツキ等の適当の表面処理又は加工
が施されている。このような構成の加熱冷却基板15は1
段又は炉軸方向に複数段に積み重ねてルツボ壁外側に配
置する。複数段に配置する場合には、熱反射面31をなす
凹部を各基板30の断面の上側又は下側に半分ずつ半割り
型に形成し、相隣り合う一対の基板30により1個の凹部
を形成したり、或いは各基板30の間に凹部を有しない中
間体(例、水冷銅板、断熱材など)を配置してもよい。
As the heating / cooling substrate 15, the one shown in FIG. 7 is preferable. This heating / cooling substrate 15 has a disc-shaped or disc-shaped substrate 30 having a space portion in the center, a concave heat reflection surface 31 having an arbitrary curvature is formed in the space portion of the substrate, and the heat reflection surface 31 is formed on the back side thereof. A water cooling part 32 for cooling the heat reflecting surface 3 is formed, and a heat generating element 33 such as a spiral wire, a round bar, a square plate or a thin film is arranged on the heat reflecting surface 31. 34 is a cooling water inlet / outlet.
The heat reflecting surface 31 is subjected to an appropriate surface treatment or processing such as metal plating. The heating / cooling substrate 15 having such a configuration is
Stacked in multiple stages or in the axial direction of the furnace, and arranged outside the crucible wall. In the case of arranging in a plurality of stages, the concave portion forming the heat reflecting surface 31 is formed in half on the upper side or the lower side of the cross section of each substrate 30, and one concave portion is formed by a pair of adjacent substrates 30. Alternatively, an intermediate body (eg, water-cooled copper plate, heat insulating material, etc.) having no recess may be formed between the substrates 30.

加熱冷却基板15は、上記構成であるので、水冷部32の断
熱効果と熱反射面31による集熱効果により狭い範囲を効
率的に温度制御することができる。その厚さも薄くでき
るので、特に複数段にて積み重ねた場合は加熱冷却基板
15の相互作用を極度に少なくすることができる。
Since the heating / cooling substrate 15 has the above-described configuration, it is possible to efficiently control the temperature in a narrow range by the heat insulating effect of the water cooling unit 32 and the heat collecting effect of the heat reflecting surface 31. Since the thickness can be made thin, especially when stacked in multiple layers, heating and cooling boards
15 interactions can be extremely low.

冷却体16としては、第8図に示す態様が好ましい。この
冷却体16は水冷リング40からなり、冷却水出入用吊棒41
が溶接等により連結されていて、第4図に示すように溶
液表面上に懸垂可能となっている。
As the cooling body 16, the embodiment shown in FIG. 8 is preferable. This cooling body 16 is composed of a water cooling ring 40, and a cooling water inlet / outlet hanging rod 41.
Are connected by welding or the like, and can be suspended on the surface of the solution as shown in FIG.

加熱体17としては、第9図に示す態様が好ましい。この
加熱体17は保持円板50に発熱体51が保持されていて、絶
縁吊棒52を止めピン53にて連結し、第4図に示すように
融液表面上に懸垂可能となっている。なお、発熱体17と
しては加熱冷却基板15に用いる加熱体33と同様のもので
よい。
As the heating body 17, the embodiment shown in FIG. 9 is preferable. In this heating element 17, a heating element 51 is held by a holding disk 50, and an insulating suspension rod 52 is connected by a locking pin 53 so that it can be suspended on the melt surface as shown in FIG. . The heating element 17 may be the same as the heating element 33 used for the heating / cooling substrate 15.

更に、冷却体16と加熱体17を一体化するためには、第10
図に示す様態が好ましい。水冷リング40の回りに絶縁断
熱層60を介して発熱体51が巻装されていて、これらに絶
縁吊棒52と冷却水出入吊棒41が取り付けられて、第4図
に示すように融液表面上に懸垂可能となっている。
Furthermore, in order to integrate the cooling body 16 and the heating body 17,
The mode shown in the figure is preferred. A heating element 51 is wound around the water cooling ring 40 via an insulating heat insulating layer 60, and an insulating suspension rod 52 and a cooling water inlet / outlet suspension rod 41 are attached to these, and as shown in FIG. It can be suspended on the surface.

次に本発明の実施例を示す。Next, examples of the present invention will be described.

(実施例) 第4図に示した装置を用いて以下の育成条件で単結晶を
育成した。
(Example) A single crystal was grown under the following growth conditions using the apparatus shown in FIG.

なお、第4図に示した装置を補足的に説明すると、1′
は主発熱体である高周波コイルで、ルツボ下熱電対10に
より温度プログラム制御される。6′のアフターヒータ
ーは専用の熱電対18により温度制御される。主発熱体
1′とアフターヒーター6′の間に設けられている加熱
冷却基板15の温度は、光温度計19で測定されるルツボ近
傍の融液表面の温度と結晶直径制御装置11での温度とが
等しくなるように制御される。結晶育成が進むにつれて
液面が低下するので、これに伴い主加熱体1′、加熱冷
却基板15、アフターヒーター6′、そして光温度計19を
同速度で低下させる。しかし、白金ルツボ2(150φ×1
50h×2.5t)はルツボ台4の上に固定され静止したまま
である。ルツボ2内の融液5は80%程の割合で溶かされ
ている。結晶直径制御装置11の先端には引上げ軸9があ
り、その先に種結晶7が固定され、この先端から単結晶
が成長していくことになる。
Incidentally, the device shown in FIG.
Is a high-frequency coil which is a main heating element, and is temperature-program controlled by the thermocouple 10 under the crucible. The temperature of the 6'after heater is controlled by a dedicated thermocouple 18. The temperature of the heating / cooling substrate 15 provided between the main heating element 1'and the after-heater 6'is the temperature of the melt surface near the crucible measured by the optical thermometer 19 and the temperature in the crystal diameter control device 11. And are controlled to be equal. Since the liquid level decreases as the crystal growth progresses, the main heating body 1 ', the heating / cooling substrate 15, the after-heater 6', and the optical thermometer 19 are lowered at the same speed. However, platinum crucible 2 (150φ x 1
50h x 2.5t) is fixed on the crucible stand 4 and remains stationary. The melt 5 in the crucible 2 is melted at a rate of about 80%. There is a pulling shaft 9 at the tip of the crystal diameter control device 11, a seed crystal 7 is fixed at the tip thereof, and a single crystal grows from this tip.

かゝる装置を用いて、酸化物単結晶の一例として、モリ
ブデン酸鉛単結晶の育成を行った。結晶直径を70mmに保
ちながら結晶回転数を変化させて育成した。
Using such an apparatus, a lead molybdate single crystal was grown as an example of an oxide single crystal. It was grown by changing the crystal rotation speed while maintaining the crystal diameter at 70 mm.

〈育成条件〉 育成結晶:MoPbO4 温度勾配(垂直方向):30℃/cm 育成方位:〈100〉 育成速度:4mm/hr コイル移動速度:4.1mm/hr 加熱基板移動速度:1.4mm/hr 半径方向温度勾配:5℃/cm 最内側温度:1083℃ 結晶回転数:3rpm、5rpm、10rpm、15rpm、20rpm 得られた単結晶を育成方向に平行に2mm厚でスライス
に、両面を鏡面研磨した後、5%NaOH水溶液でエッチン
グして実体顕微鏡によりストリエーション、気泡及び転
位を観察した。その結果、融液に対して緩やかな凸状の
固液界面形状が得られ、気泡や転位もなく、大型で高品
質な単結晶であった。結晶回転数5rpmのときの歩留まり
は75%であった。
<Growth conditions> Growing crystal: MoPbO 4 Temperature gradient (vertical direction): 30 ° C / cm Growth direction: <100> Growth rate: 4 mm / hr Coil moving speed: 4.1 mm / hr Heating substrate moving speed: 1.4 mm / hr Radius Direction temperature gradient: 5 ° C / cm Innermost temperature: 1083 ° C Crystal rotation speed: 3 rpm, 5 rpm, 10 rpm, 15 rpm, 20 rpm The obtained single crystal was sliced in parallel with the growing direction at a thickness of 2 mm, and both sides were mirror-polished. After etching with a 5% NaOH aqueous solution, striations, bubbles and dislocations were observed by a stereoscopic microscope. As a result, a solid-liquid interface shape having a gentle convex shape with respect to the melt was obtained, and there was no bubble or dislocation, and it was a large-sized high-quality single crystal. The yield at a crystal rotation speed of 5 rpm was 75%.

(発明の効果) 以上詳述したように、従来、高周波を用いた引上げ法に
よる酸化物単結晶等の単結晶の育成においては、ルツボ
上端部に過加熱が生じ、大きな自然対流が発生するの
で、結晶欠陥のない均質な単結晶を高歩留まりで育成す
ることは極めて困難であったが、本発明によれば、融液
表面のルツボ半径方向の温度差を制御することにより、
自然対流を抑制しつつ、強制対流との複合により、固液
界面の形状を制御するので、固液界面形状を滑らかな凸
状にすることができ、結晶欠陥がなく光学的にも高品質
部分を大幅に拡大した単結晶を得ることができる。本発
明は種々の単結晶の育成に適用できるが、特にモリブデ
ン酸鉛、ケイ酸ビスマス、ニオブ酸リチウム、タンタル
酸リチウム、YAG等の酸化物単結晶の育成に好適であ
る。
(Effect of the Invention) As described above in detail, conventionally, in growing a single crystal such as an oxide single crystal by a pulling method using a high frequency, overheating occurs at the upper end of the crucible and a large natural convection occurs. , It was extremely difficult to grow a homogeneous single crystal without crystal defects at a high yield, but according to the present invention, by controlling the temperature difference in the crucible radial direction of the melt surface,
While suppressing natural convection, the shape of the solid-liquid interface is controlled by combining with forced convection, so the solid-liquid interface shape can be made into a smooth convex shape, and there are no crystal defects and it is an optically high quality part. It is possible to obtain a single crystal in which The present invention can be applied to the growth of various single crystals, but is particularly suitable for the growth of oxide single crystals of lead molybdate, bismuth silicate, lithium niobate, lithium tantalate, YAG and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の高周波加熱による単結晶育成装置を示す
説明断面図、 第2図(a)〜(e)は従来の単結晶育成方法で得られ
る固液界面の形状を異なる結晶回転速度について示す
図、 第3図は従来の単結晶育成方法における融液表面のルツ
ボ半径方向の温度勾配を示す説明図、 第4図は本発明に係る単結晶育成装置の一例を示す説明
断面図、 第5図は(a)〜(c)は本発明に係る単結晶育成方式
における固液界面の形状を示す説明図で、(a)は加熱
冷却基板を設けた場合、(b)は更に冷却体を付加した
場合、(c)は更に加熱体を付加した場合を示し、 第6図(a)〜(e)は本発明に係る単結晶育成方式に
おける固液界面の形状を異なる結晶回転速度について示
す図、 第7図(a)、(b)は加熱冷却基板を示す図で、
(a)は断面図、(b)は平面図であり、 第8図(a)、(b)は冷却体を示す図で、(a)は平
面図、(b)は側面図であり、 第9図(a)、(b)は加熱体を示す図で、(a)は平
面図、(b)は側面図であり、 第10図(a)、(b)は加熱体を示す図で、(a)は平
面図、(b)は断面図である。 1……高周波コイル、1′……主発熱体(高周波コイ
ル)、2……ルツボ、3……断熱材、4……ルツボ台、
5……融液、6、6′……アフターヒーター、7……種
結晶、8……育成結晶、9……結晶引上げ回転軸、10…
…ルツボ下熱電対、11……結晶直径制御装置、12……自
然対流、13……強制対流、14……固液界面、15……加熱
冷却基板、16……冷却体、17……加熱体、18……アフタ
ーヒーター用熱電対、19……光温度計、20……液面温度
制御部、30……基板、31……熱反射面、32……水冷部、
33……発熱体、34……冷却水出入口、40…水冷リング、
41……冷却水出入吊棒、50……保持円板、51……発熱
体、52……絶縁吊棒、53……止めピン、60……絶縁断熱
層。
FIG. 1 is an explanatory cross-sectional view showing a conventional single crystal growth apparatus by high frequency heating, and FIGS. 2 (a) to (e) show the shape of the solid-liquid interface obtained by the conventional single crystal growth method for different crystal rotation speeds. Fig. 3 is an explanatory view showing a temperature gradient in a crucible radial direction on a melt surface in a conventional single crystal growing method, and Fig. 4 is an explanatory sectional view showing an example of a single crystal growing device according to the present invention. 5A to 5C are explanatory views showing the shape of the solid-liquid interface in the single crystal growth method according to the present invention. FIG. 5A is a case where a heating / cooling substrate is provided, and FIG. 5B is a cooling body. 6A to 6E, the shape of the solid-liquid interface in the single crystal growth method according to the present invention is shown for different crystal rotation speeds. Figures 7 (a) and 7 (b) are views showing a heating / cooling substrate,
8A is a sectional view, FIG. 8B is a plan view, FIGS. 8A and 8B are views showing a cooling body, FIG. 8A is a plan view, and FIG. 8B is a side view. 9 (a) and 9 (b) are views showing the heating body, FIG. 9 (a) is a plan view, FIG. 9 (b) is a side view, and FIGS. 10 (a) and 10 (b) are views showing the heating body. Here, (a) is a plan view and (b) is a sectional view. 1 ... high frequency coil, 1 '... main heating element (high frequency coil), 2 ... crucible, 3 ... heat insulating material, 4 ... crucible stand,
5 ... Melt, 6, 6 '... After-heater, 7 ... Seed crystal, 8 ... Growing crystal, 9 ... Crystal pulling rotation axis, 10 ...
… Thermocouple under crucible, 11 …… Crystal diameter control device, 12 …… Natural convection, 13 …… Forced convection, 14 …… Solid-liquid interface, 15… Heating / cooling substrate, 16… Cooling body, 17… Heating Body, 18 ... After-heater thermocouple, 19 ... Optical thermometer, 20 ... Liquid surface temperature control unit, 30 ... Substrate, 31 ... Heat reflection surface, 32 ... Water cooling unit,
33 ... Heating element, 34 ... Cooling water inlet / outlet, 40 ... Water cooling ring,
41 …… Cooling water inlet / outlet hanging rod, 50 …… Holding disk, 51 …… Heating element, 52 …… Insulating hanging rod, 53 …… Stopping pin, 60 …… Insulating heat insulating layer.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】高周波を用いて引上結晶を回転させながら
単結晶を育成するに際し、固液界面近傍を加熱冷却制御
することにより、融液表面の定点の温度を一定に制御す
ることを特徴とする液面温度制御型単結晶育成方法。
1. When growing a single crystal while rotating a pulling crystal using high frequency, heating and cooling in the vicinity of a solid-liquid interface are controlled so that the temperature at a fixed point on the melt surface is controlled to be constant. And a liquid surface temperature control type single crystal growth method.
【請求項2】ルツボ半径方向の融液表面の温度をルツボ
壁部からルツボ中心部まで一定温度差になるように制御
する請求項1に記載の方法。
2. The method according to claim 1, wherein the temperature of the melt surface in the radial direction of the crucible is controlled so as to have a constant temperature difference from the crucible wall portion to the crucible center portion.
【請求項3】融液表面の低下速度と同一速度で該加熱冷
却手段を移動する請求項1又は2に記載の方法。
3. The method according to claim 1 or 2, wherein the heating / cooling means is moved at the same speed as the lowering speed of the melt surface.
【請求項4】引上結晶の回転数を低速度にして育成する
請求項1、2又は3に記載の方法。
4. The method according to claim 1, 2 or 3, wherein the pulling crystal is grown at a low rotation speed.
【請求項5】高周波を用いて引上結晶を回転させながら
単結晶を育成する装置において、ルツボ加熱用発熱体と
引上結晶を加熱するアフターヒーターとの間に、冷却部
と加熱部から構成された加熱冷却基板を設けたことを特
徴とする液面温度制御型の単結晶育成装置。
5. An apparatus for growing a single crystal while rotating a pulling crystal by using high frequency, comprising a cooling unit and a heating unit between a crucible heating heating element and an after-heater for heating the pulling crystal. A liquid crystal surface temperature control type single crystal growing apparatus, which is provided with a heated and cooled substrate.
【請求項6】請求項5に記載の装置において、ルツボ内
の融液表面上部に、水冷されたリング状のパイプを上下
移動可能に配置した冷却体を設けたことを特徴とする液
面温度制御型の単結晶育成装置。
6. The liquid surface temperature according to claim 5, wherein a cooling body having a water-cooled ring-shaped pipe arranged vertically movable is provided above the melt surface in the crucible. Control type single crystal growth device.
【請求項7】請求項5又は6に記載の装置において、ル
ツボ内の融液表面上部に、リング状の発熱体を上下移動
可能に配置した発熱体を設けたことを特徴とする液面温
度制御型の単結晶育成装置。
7. The liquid surface temperature according to claim 5 or 6, wherein a heating element having a ring-shaped heating element arranged so as to be vertically movable is provided above the melt surface in the crucible. Control type single crystal growth device.
【請求項8】前記発熱体と冷却体を一体化した請求項6
又は7に記載の装置。
8. The heating element and the cooling element are integrated with each other.
Or the device according to 7.
JP1218401A 1989-08-24 1989-08-24 Liquid surface temperature control type single crystal growth method and apparatus Expired - Lifetime JPH0798717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218401A JPH0798717B2 (en) 1989-08-24 1989-08-24 Liquid surface temperature control type single crystal growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218401A JPH0798717B2 (en) 1989-08-24 1989-08-24 Liquid surface temperature control type single crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH0383889A JPH0383889A (en) 1991-04-09
JPH0798717B2 true JPH0798717B2 (en) 1995-10-25

Family

ID=16719332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218401A Expired - Lifetime JPH0798717B2 (en) 1989-08-24 1989-08-24 Liquid surface temperature control type single crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JPH0798717B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852358B2 (en) * 2006-05-26 2012-01-11 Jx日鉱日石エネルギー株式会社 Reformer and indirect internal reforming type solid oxide fuel cell
CN115216831A (en) * 2022-07-15 2022-10-21 中国电子科技集团公司第十三研究所 Crystal growth device and method capable of controlling temperature gradient

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217494A (en) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> Pulling-up method of single crystal
JPS59182298A (en) * 1983-03-30 1984-10-17 Toshiba Corp Production of single crystal of compound semiconductor
JPS63103889A (en) * 1986-10-20 1988-05-09 Tokin Corp Device for pulling up single crystal
JPS644997A (en) * 1987-06-26 1989-01-10 Nippon Denki Office Syst Memory refresh control system

Also Published As

Publication number Publication date
JPH0383889A (en) 1991-04-09

Similar Documents

Publication Publication Date Title
TW219955B (en)
JP5702931B2 (en) Method for forming single crystal C-plane sapphire material
CN104471118B (en) SiC single crystal ingot and its manufacture method
WO2006054610A1 (en) Apparatus for crystal production
JPH11268987A (en) Silicon single crystal and its production
JP4710247B2 (en) Single crystal manufacturing apparatus and method
JPH0798717B2 (en) Liquid surface temperature control type single crystal growth method and apparatus
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP2003221299A (en) Large lithium niobate single crystal for optical application, and method and apparatus of the same
JPS5979000A (en) Production of semiconductor single crystal
JPS6027684A (en) Apparatus for producing single crystal
JPS6111914B2 (en)
US6428617B1 (en) Method and apparatus for growing a single crystal in various shapes
JPS5912632B2 (en) Tanketshuyounohikiagesouchi
JP4148060B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JPH03242399A (en) Method for rotating and pulling up lithium tetraborate single crystal
JP3255753B2 (en) Method of growing rutile rod-shaped single crystal
JP3369394B2 (en) Crystal preparation method
JPH0312397A (en) Production of rutile single crystal
JP2004217504A (en) Graphite heater, apparatus and method for producing single crystal
JP2006248808A (en) Crystal growth apparatus
JPS61266395A (en) Preparation of single crystal of oxide piezoelectric body
JPS62197398A (en) Method for pulling up single crystal
JP2814325B2 (en) Rutile single crystal growth method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term