JPS6217867B2 - - Google Patents

Info

Publication number
JPS6217867B2
JPS6217867B2 JP56065030A JP6503081A JPS6217867B2 JP S6217867 B2 JPS6217867 B2 JP S6217867B2 JP 56065030 A JP56065030 A JP 56065030A JP 6503081 A JP6503081 A JP 6503081A JP S6217867 B2 JPS6217867 B2 JP S6217867B2
Authority
JP
Japan
Prior art keywords
film
element isolation
single crystal
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56065030A
Other languages
Japanese (ja)
Other versions
JPS57180144A (en
Inventor
Satoru Maeda
Hiroshi Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6503081A priority Critical patent/JPS57180144A/en
Priority to US06/307,877 priority patent/US4560421A/en
Publication of JPS57180144A publication Critical patent/JPS57180144A/en
Publication of JPS6217867B2 publication Critical patent/JPS6217867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76294Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using selective deposition of single crystal silicon, i.e. SEG techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper

Description

【発明の詳細な説明】 本発明は、MOS型半導体装置の製造方法に関
し、特に素子間分離工程を改良したMOS型半導
体装置の製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a MOS type semiconductor device, and more particularly to a method for manufacturing a MOS type semiconductor device in which an element isolation process is improved.

周知の如く、半導体装置においては半導体基板
の素子領域を分離するためのフイールド領域を形
成する工程が行なわれている。特に、最近の半導
体装置の高密度化、高集積化に伴ないフイールド
領域の微細化技術の確立等が要望されている。
As is well known, in semiconductor devices, a process of forming field regions for separating element regions of a semiconductor substrate is performed. In particular, with the recent increase in density and integration of semiconductor devices, there is a demand for the establishment of techniques for miniaturizing field regions.

ところで、従来の素子間分離法としては、一般
に選択酸化法が採用されているが、フイールド酸
化膜が素子領域に喰い込む、いわゆるバーズピー
ク等を生じ、微細化に向かない欠点があつた。
Incidentally, a selective oxidation method is generally employed as a conventional device isolation method, but it has the disadvantage that the field oxide film digs into the device region, resulting in so-called bird peaks and the like, making it unsuitable for miniaturization.

このようなことから、本出願人は微細化技術に
適した素子間分離法を提案した。これを、MOS
トランジスタを例にして第1図a〜fを参照し以
下に説明する。
For these reasons, the applicant proposed an element isolation method suitable for miniaturization technology. This is the MOS
A description will be given below using a transistor as an example with reference to FIGS. 1a to 1f.

(i) まず、第1図aに示すように高抵抗のp-
シリコン基板1を1000℃のウエツト酸素雰囲気
中で熱酸化して例えば厚さ5000Åの熱酸化膜2
(絶縁膜)を成長させた後、全面にフオトレジ
スト膜を塗布し、写真蝕刻法により素子領域を
覆うレジストパターン3を形成する。
(i) First, as shown in FIG. 1a, a high-resistance p - type silicon substrate 1 is thermally oxidized in a wet oxygen atmosphere at 1000°C to form a thermal oxide film 2 with a thickness of, for example, 5000 Å.
After growing the (insulating film), a photoresist film is applied to the entire surface, and a resist pattern 3 covering the element region is formed by photolithography.

(ii) 次いで、レジストパターン3をマスクとして
フイールド反転防止用不純物であるボロンを加
速電圧200keV、ドーズ量1×1013/cm2の条件
で熱酸化膜2を通して基板1に選択的にイオン
注入してp+型反転防止層4を形成した後、全
面に厚さ2000ÅのAl被膜を真空蒸着する。こ
の時、第1図bに示す如くレジストパターン3
上のAl被膜5と熱酸化膜2上のAl被膜5
とに分離される。つづいて、レジストパターン
3を除去してその上のAl被膜5をリフトオ
フし、素子分離領域予定部の熱酸化膜2上に
Al被膜5を残存させる(第1図c図示)。
(ii) Next, using the resist pattern 3 as a mask, boron, which is an impurity for preventing field inversion, is selectively ion-implanted into the substrate 1 through the thermal oxide film 2 at an acceleration voltage of 200 keV and a dose of 1×10 13 /cm 2 . After forming the p + -type anti-inversion layer 4, an Al film with a thickness of 2000 Å is vacuum-deposited over the entire surface. At this time, as shown in FIG. 1b, the resist pattern 3
Al coating 5 1 on top and Al coating 5 2 on thermal oxide film 2
It is separated into Subsequently, the resist pattern 3 is removed, the Al film 51 on it is lifted off, and a layer is placed on the thermal oxide film 2 in the planned element isolation region.
The Al coating 52 is left (as shown in FIG. 1c).

(iii) 次いで、残存Al被膜5をマスクとして熱
酸化膜2を反応性イオンエツチング法により選
択的にエツチングしてフイールド酸化膜(素子
分離領域)6を形成し、更に残存Al被膜5
を除去した(第1図d図示)。
(iii) Next, using the remaining Al film 52 as a mask, the thermal oxide film 2 is selectively etched by a reactive ion etching method to form a field oxide film (element isolation region) 6, and then the remaining Al film 52 is selectively etched.
was removed (as shown in Figure 1d).

(v) 次いで、熱酸化処理を施して露出した基板1
表面にゲート酸化膜となる厚さ400Åの酸化膜
を成長させ、更に全面に厚さ4000Åの燐ドープ
多結晶シリコン膜を堆積した後、反応性イオン
エツチングによるパターニングを行なつてゲー
ト電極7を形成し、ひきつづき同電極7をマス
クとして酸化膜をエツチングしてゲート酸化膜
8を形成する(第1図e図示)。つづいて、ゲ
ート電極7及びフイールド酸化膜5をマスクと
して砒素拡散を行なつてシリコン基板1にn+
型のソース、ドレイン領域9,10を形成し、
更に全面にCVD―SiO2膜11を堆積し、コン
タクトホールを開孔した後、Al膜の蒸着、パ
ターニングによりAl配線12,13を形成し
てMOS型半導体装置を製造する(第1図f図
示)。
(v) Next, the exposed substrate 1 is subjected to thermal oxidation treatment.
After growing an oxide film with a thickness of 400 Å to serve as a gate oxide film on the surface and further depositing a 4000 Å thick phosphorus-doped polycrystalline silicon film on the entire surface, patterning is performed by reactive ion etching to form the gate electrode 7. Then, using the same electrode 7 as a mask, the oxide film is etched to form a gate oxide film 8 (as shown in FIG. 1e). Next, arsenic is diffused into the silicon substrate 1 using the gate electrode 7 and the field oxide film 5 as a mask .
forming source and drain regions 9 and 10 of the mold;
Furthermore, after depositing a CVD-SiO 2 film 11 on the entire surface and opening a contact hole, Al wirings 12 and 13 are formed by vapor deposition and patterning of an Al film to manufacture a MOS type semiconductor device (as shown in Fig. 1 f). ).

しかしながら、上述した方法にあつては次のよ
うな欠点があつた。即ち、フイールド酸化膜6の
形成後、熱酸化膜14を成長させ、燐ドープ多結
晶シリコン膜15を堆積させ、更にレジスト膜1
6を被覆すると、第2図aに示す如く該レジスト
膜16はフイールド酸化膜6の端部Aに対応する
多結晶シリコン膜15の肩部で他の部分より厚く
なる。その結果、露光後のレジスト膜16を現像
処理すると、第2図bに示す如くフイールド酸化
膜6の端部にレジスト残り16′が生じ易くなる
ため、該レジスト残り16′を除去する目的でオ
ーバー現像を行なわなければならず、レジストパ
ターンの寸法コントロールが難しくなる。また、
フイールド酸化膜6の形成後、熱酸化膜14を成
長させ、更に燐ドープ多結晶シリコン膜15を堆
積すると、第3図aに示す如く平担部では多結晶
シリコン膜厚t1は4000Åだが、フイールド酸化膜
6端部の段差部ではその膜厚t2は約9000Åにな
る。このため、形成すべきゲート電極の微細化を
目的として多結晶シリコン膜15を反応性イオン
エツチング法でエツチングすると、そのエツチン
グは表面から下方に向かつてのみ進行するため、
第3図bに示す如く段差部に多結晶シリコンのエ
ツチング残り17が生じ、1つの素子領域に1つ
のMOSトランジスタを形成する場合ゲートとソ
ース、ドレイン間の短絡が起こる。ここで、1つ
の素子領域内に複数のMOSトランジスタを形成
する場合にはエツチング残りによりゲート電極間
の短絡を招く。
However, the above-mentioned method had the following drawbacks. That is, after forming the field oxide film 6, a thermal oxide film 14 is grown, a phosphorus-doped polycrystalline silicon film 15 is deposited, and a resist film 1 is grown.
2a, the resist film 16 becomes thicker at the shoulder portion of the polycrystalline silicon film 15 corresponding to the edge A of the field oxide film 6 than at other portions. As a result, when the exposed resist film 16 is developed, resist residue 16' is likely to be formed at the end of the field oxide film 6 as shown in FIG. Development must be performed, making it difficult to control the dimensions of the resist pattern. Also,
After forming the field oxide film 6, a thermal oxide film 14 is grown and a phosphorus-doped polycrystalline silicon film 15 is deposited. As shown in FIG. The film thickness t 2 at the stepped portion at the end of the field oxide film 6 is approximately 9000 Å. For this reason, when the polycrystalline silicon film 15 is etched by reactive ion etching for the purpose of miniaturizing the gate electrode to be formed, the etching progresses only from the surface downward.
As shown in FIG. 3B, etching residues 17 of polycrystalline silicon are formed in the stepped portions, and when one MOS transistor is formed in one element region, a short circuit occurs between the gate, source, and drain. Here, when a plurality of MOS transistors are formed in one element region, the etching residue causes a short circuit between the gate electrodes.

更に、フイールド酸化膜6の形成後、CVD―
SiO2膜11を堆積し、Al配線12,13を形成
すると、第4図に示すようにフイールド酸化膜6
端部における急峻な段差部の肩18でAl配線1
2,13が断切れを起こし易くなる欠点がある。
Furthermore, after forming the field oxide film 6, CVD-
After depositing the SiO 2 film 11 and forming the Al wirings 12 and 13, the field oxide film 6 is formed as shown in FIG.
Al wiring 1 at the shoulder 18 of the steep step at the end
There is a drawback that 2 and 13 tend to be cut off easily.

本発明は上記欠点を解消するためになされたも
ので、簡単な工程で微細化された素子分離領域を
形成できると共に、該素子分離領域の端部付近で
のレジスト残り、多結晶シリコン膜等のエツチン
グ残り、Al配線の断切れを防止でき、高性能、
高集積度で高信頼性のMOS型半導体装置を製造
し得る方法を提供しようとするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is possible to form a miniaturized element isolation region with a simple process, and also to remove resist residue, polycrystalline silicon film, etc. near the edge of the element isolation region. Prevents etching residue and breakage of Al wiring, providing high performance.
The present invention aims to provide a method for manufacturing highly integrated and highly reliable MOS type semiconductor devices.

即ち、本発明は一導電型の半導体基体上に絶縁
膜を形成した後、この絶縁膜上の素子領域予定部
を覆うマスクパターンを形成する工程と、このマ
スクパターンを遮蔽材として前記基体の素子分離
領域に不純物をイオン注入して基体と同一導電型
の反転防止層を形成する工程と、前記マスクパタ
ーンを含む絶縁膜上に被膜を堆積した後、該マス
クパターンを除去してその上の被膜部分を選択的
にリフトオフし前記絶縁膜の素子分離領域予定部
上に被膜を残置させる工程と、残置した被膜をマ
スクとして前記絶縁膜を選択的にエツチング除去
して素子分離領域を形成する工程と、非単結晶半
導体層の堆積後、該非単結晶半導体層にエネルギ
ービームを照射して単結晶化する工程と、この単
結晶半導体層を選択エツチングして前記基体と同
一導電型の単結晶半導体からなる素子領域を素子
分離領域間の前記基体上に形成する工程と、この
素子領域にMOSトランジスタを形成する工程と
を具備したことを特徴とするものである。
That is, the present invention includes a step of forming an insulating film on a semiconductor substrate of one conductivity type, and then forming a mask pattern covering a planned device area on the insulating film, and using this mask pattern as a shielding material to cover the device of the substrate. a step of ion-implanting impurities into the separation region to form an anti-inversion layer of the same conductivity type as the substrate; and depositing a film on the insulating film including the mask pattern, and then removing the mask pattern and forming a film on it. a step of selectively lifting off a portion of the insulating film to leave a film on a portion of the insulating film intended for an element isolation region; and a step of selectively etching away the insulating film using the remaining film as a mask to form an element isolation region. , after depositing the non-single-crystal semiconductor layer, irradiating the non-single-crystal semiconductor layer with an energy beam to make it into a single crystal, and selectively etching the single-crystal semiconductor layer to form a single-crystal semiconductor of the same conductivity type as the substrate. The present invention is characterized by comprising a step of forming an element region on the base between the element isolation regions, and a step of forming a MOS transistor in the element region.

本発明に用いる半導体としては、例えばp型も
しくはn型のシリコン又は他の半導体基板、或い
は該基板上に単結晶の半導体膜を設けた構造のも
の等を挙げることができる。
Examples of the semiconductor used in the present invention include a p-type or n-type silicon or other semiconductor substrate, or a structure in which a single crystal semiconductor film is provided on the substrate.

本発明における絶縁膜は素子分離領域の形成の
ために用いられる。かかる絶縁膜としては、例え
ば熱酸化膜、CVD―SiO2膜、シリコン窒化膜、
アルミナ膜等を挙げることができる。
The insulating film in the present invention is used to form element isolation regions. Such insulating films include, for example, thermal oxide films, CVD-SiO 2 films, silicon nitride films,
Examples include an alumina film.

本発明におけるマスクパターンは反転防止用不
純物のイオン注入マスクとして作用すると共に、
絶縁膜の素子分離領域予定部に被膜を残置するた
めのリフトオフ材として作用する。このため、マ
スクパターンの材料は絶縁膜及び被膜に対して選
択エツチング性を有することが必要である。かか
るマスクパターンの材料としては、例えばレジス
ト等を挙げることができる。
The mask pattern in the present invention functions as an ion implantation mask for impurities for preventing inversion, and
It acts as a lift-off material for leaving the film on the intended element isolation region of the insulating film. Therefore, the material of the mask pattern needs to have selective etching properties with respect to the insulating film and the coating. Examples of the material for such a mask pattern include resist and the like.

本発明において反転防止用の不純物は絶縁膜を
通して半導体基板にドーピングすることから、イ
オン注入法を採用することが必要である。かかる
イオン注入条件は、絶縁膜の種類や厚さ等により
適宜選定することが望ましい。
In the present invention, since the impurity for preventing inversion is doped into the semiconductor substrate through the insulating film, it is necessary to employ an ion implantation method. It is desirable that such ion implantation conditions be appropriately selected depending on the type, thickness, etc. of the insulating film.

本発明における被膜はマスクパターンの除去に
よるリフトオフによつてパターニングされ、かつ
パターニングにより形成された被膜パターン(残
存被膜)は絶縁膜に対するエツチングマスクとし
て利用する観点から、マスクパターン及び絶縁膜
の両者に対して選択エツチング性を有することが
必要である。かかる被膜の材料としては、例えば
AlもしくはAl―Si,Al―Cu―SiなどのAl合金、
又はMo,W,Niなどの他の金属等を挙げること
ができる。
The film in the present invention is patterned by lift-off by removing the mask pattern, and the film pattern (residual film) formed by patterning is used as an etching mask for the insulating film, so that it can be used for both the mask pattern and the insulating film. It is necessary to have selective etching properties. Examples of materials for such a coating include:
Al or Al alloys such as Al-Si, Al-Cu-Si,
Alternatively, other metals such as Mo, W, and Ni can be used.

本発明における非単結晶半導体層はエネルギー
ビームの照射、選択エツチングによつて形成され
る素子領域の出発材として用いられる。かかる非
単結晶半導体層としては、例えば多結晶シリコン
層、非晶質シリコン層等を挙げることができる。
The non-single crystal semiconductor layer in the present invention is used as a starting material for an element region formed by energy beam irradiation and selective etching. Examples of such a non-single crystal semiconductor layer include a polycrystalline silicon layer, an amorphous silicon layer, and the like.

本発明におけるエネルギービームの照射は、非
単結晶半導体層を、これと接触する半導体基体の
結晶性を核として単結晶化するために行なう。か
かるエネルギービームとしては、例えばレーザビ
ーム、電子ビーム等を挙げることがきる。
The energy beam irradiation in the present invention is performed to single-crystallize the non-single-crystal semiconductor layer using the crystallinity of the semiconductor substrate in contact with the non-single-crystal semiconductor layer as a nucleus. Examples of such energy beams include laser beams, electron beams, and the like.

本発明において単結晶半導体層にプラズマ窒化
物を蒸着するのは、素子分離領域で分離された半
導体基体に対応する単結晶半導体層の凹部に他の
単結晶半導体層上のプラズマ窒化膜より反応性イ
オンエツチングに対してエツチングレートの遅い
プラズマ窒化膜を堆積するために行なう。こうし
たプラズマ窒化膜を反応性イオンエツチングで処
理すると、前記凹部以外のプラズマ窒化膜部分が
選択的にエツチング除去され、素子分離領域の端
部に対して自己整合的に単結晶半導体層のエツチ
ングマスクとなるプラズマ窒化膜を形成できる。
このため、同プラズマ窒化膜をマスクとして単結
晶半導体層をエツチングすることによつて、素子
分離領域に対して自己整合的に単結晶半導体層か
らなる素子領域を形成できる。
In the present invention, the plasma nitride is deposited on the single crystal semiconductor layer in a recessed part of the single crystal semiconductor layer corresponding to the semiconductor substrate separated by the element isolation region. This is done to deposit a plasma nitride film, which has a slower etching rate than ion etching. When such a plasma nitride film is treated with reactive ion etching, parts of the plasma nitride film other than the recessed portions are selectively etched away, and are self-aligned with the edges of the element isolation region as etching masks for the single crystal semiconductor layer. A plasma nitride film can be formed.
Therefore, by etching the single crystal semiconductor layer using the plasma nitride film as a mask, an element region made of the single crystal semiconductor layer can be formed in a self-aligned manner with respect to the element isolation region.

次に、本発明をMOS型半導体装置の製造に適
用した例について図面を参照して説明する。
Next, an example in which the present invention is applied to manufacturing a MOS type semiconductor device will be described with reference to the drawings.

実施例 〔〕 まず、面指数(100)のp型シリコン基板
101を1000℃のウエツト酸素雰囲気中で熱酸
化処理して厚さ5000Åの熱酸化膜(絶縁膜)1
02を成長させた。つづいて、全面にフオトレ
ジスト膜を塗布し、写真蝕刻法により素子領域
予定部を覆つたレジストパターン(マスクパタ
ーン)103を形成した(第5図a図示)。ひ
きつづき、レジストパターン103をマスクと
して反転防止用不純物であるボロンを加速電圧
200keV、ドーズ量1×1013/cm2の条件で熱酸
化膜102を通して基板101に選択的にイオ
ン注入し、熱処理してp+型反転防止層104
を形成した(第5図b図示)。
Example [] First, a p-type silicon substrate 101 with a surface index (100) is thermally oxidized in a wet oxygen atmosphere at 1000°C to form a thermal oxide film (insulating film) 1 with a thickness of 5000 Å.
I grew 02. Subsequently, a photoresist film was applied to the entire surface, and a resist pattern (mask pattern) 103 was formed by photolithography to cover the intended element area (as shown in FIG. 5A). Subsequently, using the resist pattern 103 as a mask, boron, which is an impurity for preventing inversion, is applied at an accelerating voltage.
Ions are selectively implanted into the substrate 101 through the thermal oxide film 102 under the conditions of 200 keV and a dose of 1×10 13 /cm 2 and heat treated to form the p + type inversion prevention layer 104.
was formed (as shown in Figure 5b).

〔〕 次いで、全面に厚さ2000ÅのAl被膜を真
空蒸着した。この時、第5図cに示す如くレジ
ストパターン103と熱酸化膜102との段差
により同パターン103上のAl被膜105
と、熱酸化膜102上のAl被膜105とが
不連続化して分離された。つづいて、レジスト
パターン103を除去してその上のAl被膜1
05をリフトオフし、素子分離領域予定部の
熱酸化膜102上にAl被膜105を残存さ
せた(第5図d図示)。ひきつづき、残存Al被
膜105をマスクとして反応性イオンエツチ
ングにより熱酸化膜102を選択エツチングし
て素子分離領域(フイールド酸化膜)106を
形成した。その後、素子分離領域106上の残
存Al被膜105を除去した(第5図e図
示)。
[] Next, an Al film with a thickness of 2000 Å was vacuum-deposited on the entire surface. At this time, as shown in FIG .
The Al coating 1052 on the thermal oxide film 102 became discontinuous and separated. Next, the resist pattern 103 is removed and the Al coating 1 thereon is removed.
051 was lifted off to leave an Al film 1052 on the thermal oxide film 102 in the intended element isolation region (as shown in FIG. 5d). Subsequently, the thermal oxide film 102 was selectively etched by reactive ion etching using the remaining Al film 1052 as a mask to form an element isolation region (field oxide film) 106. Thereafter, the remaining Al coating 1052 on the element isolation region 106 was removed (as shown in FIG. 5e).

〔〕 次いで、第5図fに示す如く素子分離領
域106と同厚さの多結晶シリコン層107を
全面に堆積した。つづいて、多結晶シリコン層
107の全面にレーザビームを照射し、該多結
晶シリコン層107と接触したシリコン基板1
01を結晶核として単結晶化して、p型の単結
晶シリコン層108を形成した後、単結晶シリ
コン層108にプラズマ窒化膜109を堆積し
た(第5図g図示)。ひきつづき、反応性イオ
ンエツチングで処理した。この時、第5図hに
示す如く単結晶シリコン層108の凹部に堆積
されたプラズマ窒化膜部分が他の平担な同単結
晶シリコン層上のプラズマ窒化膜部分に比べて
エツチングレートが遅くなり、同単結晶シリコ
ン層108の凹部のみに自己整合的にプラズマ
窒化膜109′が残存した。その後、残存プラ
ズマ窒化膜109′をマスクとして単結晶シリ
コン層108を選択エツチングし、第5図iに
示す如く素子分離領域106で分離された島状
のシリコン基板101部分のみにp型単結晶シ
リコン層からなる素子領域110を形成した。
なお、以下に述べるソース、ドレイン領域等の
形成に先立つて、単結晶シリコン層からなる素
子領域110に閾値制御のために更にボロン等
のp型不純物をドーピングしてもよい。
[] Next, as shown in FIG. 5f, a polycrystalline silicon layer 107 having the same thickness as the element isolation region 106 was deposited over the entire surface. Subsequently, the entire surface of the polycrystalline silicon layer 107 is irradiated with a laser beam, and the silicon substrate 1 in contact with the polycrystalline silicon layer 107 is
After forming a p-type single crystal silicon layer 108 by single crystallizing 01 as a crystal nucleus, a plasma nitride film 109 was deposited on the single crystal silicon layer 108 (as shown in FIG. 5g). Subsequently, it was treated with reactive ion etching. At this time, as shown in FIG. 5h, the etching rate of the plasma nitride film portion deposited in the recessed portion of the single crystal silicon layer 108 is slower than that of the plasma nitride film portion deposited on the other flat single crystal silicon layer. The plasma nitride film 109' remained in a self-aligned manner only in the concave portion of the single crystal silicon layer 108. Thereafter, the single crystal silicon layer 108 is selectively etched using the remaining plasma nitride film 109' as a mask, and as shown in FIG. An element region 110 made of layers was formed.
Note that, prior to forming the source, drain regions, etc. described below, the element region 110 made of a single crystal silicon layer may be further doped with a p-type impurity such as boron for threshold control.

〔〕 次いで、素子分離領域106で分離され
たp型単結晶シリコンからなる素子領域110
を熱酸化し、厚さ400Åの酸化膜を成長させ、
更に全面に厚さ3000Åの燐ドープ多結晶シリコ
ン膜を堆積した後、写真蝕刻法により形成され
たレジストパターンをマスクとして該多結晶シ
リコン膜を反応性イオンエツチング法でパター
ニングしてゲート電極111を形成し、ひきつ
づき、同電極111をマスクとして酸化膜を選
択エツチングしてゲート酸化膜112を形成し
た。つづいて、ゲート電極111及び素子分離
領域106をマスクとして砒素拡散或いは砒素
のイオン注入を行なつてp型単結晶シリコンか
らなる素子領域110にn+型のソース、ドレ
イン領域113,114を形成し、更に全面に
CVD―SiO2膜115を堆積し、コンタクトホ
ールを開孔した後、Al膜の蒸着、パターニン
グによりゲート取出しAl配線(図示せず)、ソ
ース、ドレイン取出しAl配線116,117
を形成してMOS型半導体装置を製造した(第
5図j図示)。
[] Next, element regions 110 made of p-type single crystal silicon separated by element isolation regions 106
was thermally oxidized to grow an oxide film with a thickness of 400 Å,
Furthermore, after depositing a phosphorus-doped polycrystalline silicon film with a thickness of 3000 Å over the entire surface, the polycrystalline silicon film is patterned by reactive ion etching using a resist pattern formed by photolithography as a mask to form a gate electrode 111. Then, using the same electrode 111 as a mask, the oxide film was selectively etched to form a gate oxide film 112. Next, using the gate electrode 111 and the element isolation region 106 as a mask, arsenic diffusion or arsenic ion implantation is performed to form n + -type source and drain regions 113 and 114 in the element region 110 made of p-type single crystal silicon. , even more fully
After depositing a CVD-SiO 2 film 115 and opening a contact hole, an Al film is deposited and patterned to form gate lead-out Al wiring (not shown), source and drain lead-out Al wiring 116, 117.
A MOS type semiconductor device was manufactured by forming a MOS semiconductor device (as shown in FIG. 5J).

しかして、本発明によれば第5図iに示す如く
素子分離領域106で分離されたシリコン基板1
01部分に該領域106表面と略同レベルのp型
単結晶シリコンからなる素子領域110を極めて
簡単に形成できる。つまり、既述した第1図a〜
fに示す方法のように素子分離領域と素子領域と
なるシリコン基板との間の段差が生じることな
く、素子領域110を素子分離領域106に対し
て平担化できる。このため、前記〔〕工程にお
いて酸化膜成長、燐ドープ多結晶シリコン膜の堆
積後、レジスト膜塗布、写真蝕刻に際して、素子
分離領域106の端部でレジスト残りが生じるの
を回避でき、これによつて寸法精度の良好なレジ
ストパターンの形成が可能となり、ひいては高精
度のゲート電極111を形成できる。また、同
〔〕工程において、燐ドープ多結晶シリコン膜
を堆積し、これをレジストパターンをマスクとし
て反応性イオンエツチング法により選択エツチン
グする場合、素子分離領域106とp型単結晶シ
リコンからなる素子領域110とが同一レベルで
平担化されているため、素子分離領域106端部
周辺の素子領域110に多結晶シリコンのエツチ
ング残りが生じるのを防止できる。その結果、ゲ
ート電極111とソース、ドレイン領域113,
114との間の短絡のない高信頼性のMOS型半
導体装置を得ることができる。しかも、同〔〕
工程においてソース、ドレイン取出しAl配線1
16,117を形成する際、素子分離領域106
の端部で該Al配線116,117が断切れする
のを防止できる。
According to the present invention, the silicon substrate 1 is separated by the element isolation region 106 as shown in FIG.
It is possible to extremely easily form an element region 110 made of p-type single crystal silicon at approximately the same level as the surface of the region 106 in the 01 portion. In other words, the already mentioned Figure 1a~
Unlike the method shown in f, the element region 110 can be made flat with respect to the element isolation region 106 without creating a step between the element isolation region and the silicon substrate serving as the element region. Therefore, during the resist film coating and photolithography after the oxide film growth and phosphorus-doped polycrystalline silicon film deposition in the step [], it is possible to avoid the formation of resist residues at the edges of the element isolation region 106. Therefore, it becomes possible to form a resist pattern with good dimensional accuracy, and in turn, it is possible to form a highly accurate gate electrode 111. In addition, in the same [] step, when a phosphorus-doped polycrystalline silicon film is deposited and selectively etched by reactive ion etching using the resist pattern as a mask, the element isolation region 106 and the element region made of p-type single crystal silicon are removed. 110 are flattened at the same level, it is possible to prevent polycrystalline silicon from remaining etched in the element region 110 around the edge of the element isolation region 106. As a result, the gate electrode 111 and the source and drain regions 113,
It is possible to obtain a highly reliable MOS type semiconductor device free from short circuits with 114. Moreover, the same []
In the process, source and drain extraction Al wiring 1
16 and 117, the element isolation region 106
It is possible to prevent the Al wirings 116, 117 from being cut off at the ends.

更に、素子分離領域の形成工程において、選択
酸化法のようなバーズビークの発生はないため、
素子分臨領域106の微細化、ひいては素子領域
110の寸法縮小を抑制でき、高集積度のMOS
型半導体装置を得ることができる。
Furthermore, in the process of forming element isolation regions, bird's beaks do not occur as in the case of selective oxidation.
It is possible to suppress the miniaturization of the element distribution region 106 and the size reduction of the element region 110, resulting in a highly integrated MOS.
type semiconductor device can be obtained.

なお、本発明は上記実施例の如くMOS型半導
体装置の製造のみに限定されず、ダイナミツク
RAMやCMOSなどの他のMOS型半導体装置の製
造にも同様に適用できる。
Note that the present invention is not limited to the manufacture of MOS type semiconductor devices as in the above embodiments, but is also applicable to dynamic
It can be similarly applied to the manufacture of other MOS type semiconductor devices such as RAM and CMOS.

以上詳述した如く、本発明によれば簡単な工程
により微細な素子分離領域を形成でき、更に同素
子分離領域の表面と略同レベルの単結晶シリコン
からなる素子領域を形成することにより素子分離
領域端部周辺でのレジスト残り、多結晶シリコン
(ゲート電極材料等)のエツチング残りを防止で
きると共に、Al配線の同素子分離領域端部での
断切れを防止でき、もつて高性能、高集積度で高
信頼性を有するMOS型半導体装置の製造方法を
提供できるものである。
As described in detail above, according to the present invention, it is possible to form a fine element isolation region through a simple process, and furthermore, by forming an element region made of single crystal silicon at approximately the same level as the surface of the element isolation region, the element isolation region can be isolated. It is possible to prevent resist residues and etching residues of polycrystalline silicon (gate electrode material, etc.) around the edge of the region, as well as to prevent disconnection of Al wiring at the edge of the same element isolation region, resulting in high performance and high integration. Accordingly, it is possible to provide a method for manufacturing a MOS type semiconductor device that has high reliability at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜fは本出願人が既に提案した方法に
よるMOS型半導体装置の製造工程を示す断面
図、第2図a,bは前記方法による欠点の一つで
あるレジスト残りが生じることを説明した断面
図、第3図a,bは前記方法の他の欠点である多
結晶シリコンのエツチング残りが生じることを説
明した断面図、第4図は前記方法の更に他の欠点
であるAl配線の断切れを説明した断面図、第5
図a〜fは本発明の実施例におけるMOS型半導
体装置の製造工程を示す断面図である。 101…p型シリコン基板、102…熱酸化膜
(絶縁膜)、103…レジストパターン(マスクパ
ターン)、104…p+型反転防止層、105
105…Al被膜、106…素子分離領域、1
07…多結晶シリコン層(非単結晶半導体層)、
108…p型単結晶シリコン層、109…プラズ
マ窒化膜、110…素子領域、111…ゲート電
極、113…n+型ソース領域、114…n+型ド
レイン領域、116,117…Al配線。
FIGS. 1a to 1f are cross-sectional views showing the manufacturing process of a MOS type semiconductor device using a method already proposed by the applicant, and FIGS. The explained cross-sectional views, FIGS. 3a and 3b, are cross-sectional views illustrating the etching residue of polycrystalline silicon, which is another drawback of the above method, and FIG. 5th cross-sectional view illustrating the break in
Figures a to f are cross-sectional views showing the manufacturing process of a MOS type semiconductor device in an embodiment of the present invention. 101...p type silicon substrate, 102...thermal oxidation film (insulating film), 103...resist pattern (mask pattern), 104...p + type inversion prevention layer, 105 1 ,
105 2 ...Al coating, 106... Element isolation region, 1
07... Polycrystalline silicon layer (non-single crystal semiconductor layer),
108...p-type single crystal silicon layer, 109...plasma nitride film, 110...element region, 111...gate electrode, 113...n + type source region, 114...n + type drain region, 116, 117...Al wiring.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基体上に絶縁膜を形成した
後、この絶縁膜上の素子領域予定部を覆うマスク
パターンを形成する工程と、このマスクパターン
を遮蔽材として前記基体の素子分離領域に不純物
をイオン注入して基体と同一導電型の反転防止層
を形成する工程と、前記マスクパターンを含む絶
縁膜上に被膜を堆積した後、該マスクパターンを
除去してその上の被膜部分を選択的にリフトオフ
し前記絶縁膜の素子分離領域予定部上に被膜を残
置させる工程と、残置した被膜をマスクとして前
記絶縁膜を選択的にエツチング除去して素子分離
領域を形成する工程と、非単結晶半導体層の堆積
後、該非単結晶半導体層にエネルギービームを照
射して単結晶化する工程と、この単結晶半導体層
を選択エツチングして前記基体と同一導電型の単
結晶半導体からなる素子領域を素子分離領域間の
前記基体上に形成する工程と、この素子領域に
MOSトランジスタを形成する工程とを具備した
ことを特徴とするMOS型半導体装置の製造方
法。
1. After forming an insulating film on a semiconductor substrate of one conductivity type, forming a mask pattern covering a planned element region on the insulating film, and using this mask pattern as a shielding material to inject impurities into the element isolation region of the substrate. ion implantation to form an inversion prevention layer of the same conductivity type as the substrate; and after depositing a film on the insulating film including the mask pattern, the mask pattern is removed and the film portion thereon is selectively removed. a step of lifting off the insulating film to leave a film on the intended element isolation region of the insulating film; a step of selectively etching away the insulating film using the remaining film as a mask to form an element isolation region; After the semiconductor layer is deposited, the non-single crystal semiconductor layer is irradiated with an energy beam to become a single crystal, and the single crystal semiconductor layer is selectively etched to form an element region made of a single crystal semiconductor of the same conductivity type as the substrate. a step of forming on the substrate between the element isolation regions;
1. A method for manufacturing a MOS semiconductor device, comprising the step of forming a MOS transistor.
JP6503081A 1980-10-02 1981-04-28 Manufacture of semiconductor device Granted JPS57180144A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6503081A JPS57180144A (en) 1981-04-28 1981-04-28 Manufacture of semiconductor device
US06/307,877 US4560421A (en) 1980-10-02 1981-10-02 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6503081A JPS57180144A (en) 1981-04-28 1981-04-28 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57180144A JPS57180144A (en) 1982-11-06
JPS6217867B2 true JPS6217867B2 (en) 1987-04-20

Family

ID=13275164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6503081A Granted JPS57180144A (en) 1980-10-02 1981-04-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57180144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202231A (en) * 1988-02-08 1989-08-15 Toray Ind Inc Material for collecting water animals, small life-feeding place, and man-made gathering place for fish
JPH0649180Y2 (en) * 1988-03-10 1994-12-14 ライオン株式会社 Algae farming equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309648A (en) * 1989-05-24 1990-12-25 Seiko Instr Inc Manufacture of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061189A (en) * 1973-09-28 1975-05-26
JPS5541715A (en) * 1978-09-19 1980-03-24 Oki Electric Ind Co Ltd Production of semiconductor device
JPS566444A (en) * 1979-06-28 1981-01-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061189A (en) * 1973-09-28 1975-05-26
JPS5541715A (en) * 1978-09-19 1980-03-24 Oki Electric Ind Co Ltd Production of semiconductor device
JPS566444A (en) * 1979-06-28 1981-01-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202231A (en) * 1988-02-08 1989-08-15 Toray Ind Inc Material for collecting water animals, small life-feeding place, and man-made gathering place for fish
JPH0649180Y2 (en) * 1988-03-10 1994-12-14 ライオン株式会社 Algae farming equipment

Also Published As

Publication number Publication date
JPS57180144A (en) 1982-11-06

Similar Documents

Publication Publication Date Title
JP2936624B2 (en) Method for manufacturing semiconductor device
EP0139371B1 (en) Process for manufacturing a mos integrated circuit employing a method of forming refractory metal silicide areas
US5073512A (en) Method of manufacturing insulated gate field effect transistor having a high impurity density region beneath the channel region
US4994400A (en) Method of fabricating a semiconductor device using a tri-layer structure and conductive sidewalls
EP0139467A1 (en) Method of manufacturing an insulated-gate field-effect transistor
JPH0479133B2 (en)
EP0097703A1 (en) Process for forming a cmos integrated circuit structure
EP0076105A2 (en) Method of producing a bipolar transistor
US4507846A (en) Method for making complementary MOS semiconductor devices
US4560421A (en) Semiconductor device and method of manufacturing the same
JPH058587B2 (en)
US5106768A (en) Method for the manufacture of CMOS FET by P+ maskless technique
EP0126292B1 (en) Semiconductor device having an element isolation layer and method of manufacturing the same
JPS6217867B2 (en)
US6228766B1 (en) Process for fabricating semiconductor device without separation between silicide layer and insulating layer
JPH0324069B2 (en)
EP0104079A2 (en) Integrated circuit contact structure
JP3138841B2 (en) Method for manufacturing MIS field-effect semiconductor device
JPH0318342B2 (en)
JPH0239091B2 (en)
JPS6220697B2 (en)
JPH0248146B2 (en)
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPS628028B2 (en)
JPH056345B2 (en)