JPS62177872A - Method of measuring extent of battery charge - Google Patents

Method of measuring extent of battery charge

Info

Publication number
JPS62177872A
JPS62177872A JP61019837A JP1983786A JPS62177872A JP S62177872 A JPS62177872 A JP S62177872A JP 61019837 A JP61019837 A JP 61019837A JP 1983786 A JP1983786 A JP 1983786A JP S62177872 A JPS62177872 A JP S62177872A
Authority
JP
Japan
Prior art keywords
battery
light
solution
decrease
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61019837A
Other languages
Japanese (ja)
Other versions
JP2632306B2 (en
Inventor
Fumitaka Takahashi
高橋 文孝
Yasushi Okada
岡田 泰仕
Hideo Tsubata
津端 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Toyo Denso Co Ltd
Original Assignee
Honda Motor Co Ltd
Toyo Denso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Toyo Denso Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61019837A priority Critical patent/JP2632306B2/en
Publication of JPS62177872A publication Critical patent/JPS62177872A/en
Application granted granted Critical
Publication of JP2632306B2 publication Critical patent/JP2632306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/484Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring electrolyte level, electrolyte density or electrolyte conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enable an extent of battery charge to be always measured precisely, by finding out the extent of battery charge from the reaction state of solution on the basis of measurement applied to the grade of optical absorption of battery solution carried out when said battery solution makes chemical change due to discharge of the battery. CONSTITUTION:Light P emitted from a light source 1 (while light source is applicable) provided with a luminous spectrum having a wave length band including both light-absorbing wave length lambda1, and non-light-absorbing wave length lambda2 based upon 0H radical, is transmitted through battery solution 2 contained in a transparent vessel and the transmitted light P' is received respectively by light receiving elements 41, 42 having photo-electromotive effect through optical filters 31, 32 comprising thin film interference filters having selectivity for respective wave lengths, that is, target wave lengths lambda1, lambda2. On the basis of outputs I1, I2 of the respective light receiving elements 41, 42, relative ratio I1/I2 is found out by means of a calculation processing circuit 5 so as to get an output to be measured in proportion to the extent of battery charge generated.

Description

【発明の詳細な説明】 扱帆九艷 本発明は、バッテリの充ff1Jiを測定する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the charge ff1Ji of a battery.

皿米挟麦 従来、バッテリの充Wi量を測定するには、バシテリ液
の比重をフロートの浮量によってa+1定する方法、ま
たは無負荷時におけるバッテリ端子電圧を計測する方法
が実施されているが、前者のフロート式による測定方法
では車載バッテリの場合に車両の走行中は測定不能とな
り、また後者の測定方法ではバッテリ端子電圧がバッテ
リの充電、放電状態により変化して不具合を生じてしま
う。
Traditionally, to measure the amount of charge in a battery, the specific gravity of the baciteli fluid is determined by the floating amount of a float (a+1), or the method is to measure the battery terminal voltage under no load. In the former float type measurement method, it is impossible to measure when the vehicle is running in the case of an on-vehicle battery, and in the latter measurement method, the battery terminal voltage changes depending on the charging and discharging state of the battery, causing problems.

音度 本発明は以上の点を考慮してなされたもので、バッテリ
の設置環境またはその使用状態などの影響を受けること
なく、常にバッテリの充電量を精度良く測定することが
できるバッテリ充電量測定方法を提供するものである。
Sound Intensity The present invention has been made in consideration of the above points, and is a battery charge amount measurement method that can always accurately measure the battery charge amount without being affected by the installation environment of the battery or its usage condition. The present invention provides a method.

1廣 本発明はその目的達成のため、バッテリの放電によって
バッテリ溶液が化学変化する際、その放電量に比例して
その溶液中で生ずる光吸収作用に着目し、その光吸収の
程度を測定することによって溶液の反応状態からバッテ
リ充電量を間接的にねり出すようにしている。
In order to achieve the objective, the present invention focuses on the light absorption effect that occurs in the solution in proportion to the amount of discharge when the battery solution changes chemically due to battery discharge, and measures the degree of light absorption. By doing so, the battery charge amount is indirectly derived from the reaction state of the solution.

以下、添付図面を参照して本発明の一実施例について詳
述する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本発明によるバッテリ充電音測定方法にあっては、バッ
テリの充、放電によりバッテリ溶液が次式にしたがって
化学変化する際、放電時の溶液中に発生する011基に
よって光吸収作用がなされる点に着目し、0HJJによ
る光吸収の量を、OH基により光吸収される第3次高調
波の波長λ1 (約975nm)をもった光をバッテリ
溶液中に透過きせたときの透過率の低下をみることによ
ってall!その際、汚れなどによるバッテリ溶液自体
による透過率の低下の影響をなくすために、前記波長λ
1に比較的近<、OH基などのバッテリ溶液の反応によ
っては光吸収されることがない安定な帯域にある透過率
の高い近赤外域の波長λ2(約101070nをもった
光をバッテリ溶液中に透過させたときの透過率の低下を
測定し、その測定値にもとづいて単位体積当りのOH基
での光吸収による透過率の低下を相対的に求めるように
する。
In the method for measuring battery charging sound according to the present invention, when the battery solution undergoes a chemical change according to the following equation due to battery charging and discharging, a light absorption effect is performed by the 011 group generated in the solution during discharging. Focusing on the amount of light absorption by 0HJJ, we looked at the decrease in transmittance when light with the third harmonic wavelength λ1 (approximately 975 nm) absorbed by OH groups was transmitted through the battery solution. By all! At this time, in order to eliminate the influence of a decrease in transmittance due to the battery solution itself due to dirt, etc., the wavelength λ
Light with a wavelength λ2 (approximately 101070n) in the near-infrared region with high transmittance in a stable band where light is not absorbed by reactions in the battery solution such as OH groups, which is relatively close to 1 The decrease in transmittance when the light is transmitted is measured, and based on the measured value, the decrease in transmittance due to light absorption by OH groups per unit volume is determined relatively.

すなわち、この場合には、 の比によるバッテリ溶液の反応状態をみることによって
バッテリの充電量を測定することができる。
That is, in this case, the charge amount of the battery can be measured by observing the reaction state of the battery solution according to the ratio.

また本発明の他の実施例としては、バッテリ放電時の溶
液中に発生するOH基およびS○牛基によってそれぞれ
光吸収作用がなされる点に着目し。
In another embodiment of the present invention, attention is paid to the fact that the OH group and the SO group generated in the solution when the battery is discharged each have a light absorption effect.

OH基による光吸収の量をOH基の第1次高調波の波長
λ1′ (約3μm)をもった光をバッテリ溶液中に透
過させたときの透過率の低下をみることによって測定す
るとともに、SO4基による光吸収の量をs 04基の
第1次高調波の波長λ2′(約9μm)をもった光をバ
ッテリ溶液中に透過させたときの透過率の低下をみるこ
とによって測定し、その相対比をみることによってバッ
テリの充電量を求める。
The amount of light absorption by OH groups is measured by observing the decrease in transmittance when light having the wavelength λ1' (approximately 3 μm) of the first harmonic of OH groups is transmitted through the battery solution. The amount of light absorption by the SO4 group was measured by observing the decrease in transmittance when light having the wavelength λ2' (approximately 9 μm) of the first harmonic of the SO4 group was transmitted through the battery solution. By looking at the relative ratio, the amount of battery charge is determined.

すなわち、この場合には、 の比によるバッテリ溶液の反応状態をみることによって
バッテリの充電量を測定することができる。
That is, in this case, the charge amount of the battery can be measured by observing the reaction state of the battery solution according to the ratio.

このようにOH基とSO4基とによる各光吸収の程度の
比をみるようにすれば、汚れなどによるバッテリ溶液自
体による光透過率の低下の影響を受けることがなくなる
By looking at the ratio of the degree of light absorption by OH groups and SO4 groups in this way, the light transmittance is not affected by the decrease in light transmittance due to the battery solution itself due to dirt or the like.

第1図は本発明によるバッテリ充電量測定方法を具体的
に実施するための装置の一例を示すもので、OH基によ
る光吸収波長λlと非吸収波長λ2とを含む波長帯域を
もった発光スペクトルをもつ光源l (白色光源でよい
)から発せられる光Pを透明な容器に入れられたバッテ
リ溶液2中に通し、その通過光P′を目的とする波長λ
l、λ2の各波長選択性をもった薄膜干渉フィルタによ
る光学フィルタ31.32を介して光起電効果をもった
受光素子41.42によりそれぞれ受光させ。
FIG. 1 shows an example of an apparatus for specifically carrying out the method for measuring battery charge amount according to the present invention, and shows an emission spectrum having a wavelength band including a light absorption wavelength λl due to OH groups and a non-absorption wavelength λ2. Pass the light P emitted from a light source l (a white light source is sufficient) into the battery solution 2 placed in a transparent container, and the transmitted light P' has a target wavelength λ
The light is received by a light receiving element 41.42 having a photovoltaic effect through an optical filter 31.32 which is a thin film interference filter having wavelength selectivity of 1 and λ2.

その各受光素子41.42の出力11.12にもとづい
て演算処理回路5により相対比I 1/I 2を求めて
バッテリの充電量に比例した測定出力を生じさせるよう
になっている。なおここで、光源1とバッテリ容器との
間、およびバッテリ容器と各受光部との間をそれぞれ光
フアイバケーブルによって接続するようにしてもよい。
Based on the outputs 11.12 of each of the light receiving elements 41.42, the arithmetic processing circuit 5 calculates the relative ratio I 1 /I 2 to produce a measurement output proportional to the amount of charge of the battery. Here, the light source 1 and the battery container and the battery container and each light receiving section may be connected by optical fiber cables.

第2図に、光学フィルタ3,4の各光透過特性を示して
いる。
FIG. 2 shows the light transmission characteristics of the optical filters 3 and 4.

また、各受光素子41.42としてそれぞれ以下に説明
するような波長選択性をもった特殊なものを使用すれば
、光学フィルタ3,4を用いる必要がなくなる。
Furthermore, if special light-receiving elements 41 and 42 having wavelength selectivity as described below are used, it becomes unnecessary to use optical filters 3 and 4.

すなわち、その特殊な受光素子としては、第3図に示す
ように、n形半導体部分にP形不純物が拡散された光起
電層101上に、所定の光透過特性をもった半導体層1
02を積層させることによって構成されている。
That is, as shown in FIG. 3, this special light-receiving element consists of a semiconductor layer 1 having predetermined light transmission characteristics on a photovoltaic layer 101 in which a P-type impurity is diffused in an n-type semiconductor portion.
It is constructed by laminating 02.

光起電層101は、例えば、GaAsのn形部板上に、
禁止帯幅Eglを決定することにより、第4図に示すよ
うに感度領域の波長限界となる波長λ0を所定に設定す
るべく、GaとInとPとの各比率を管理した比較的禁
止帯幅の広いn形のI IIG a A s Pなどの
混晶を液相成長させたうえで、P形不純物を拡散させる
ことによりP−N接合を形成している。第4図は、光起
電WJ101の波長に対する光電流1の感度特性を示し
ている。
The photovoltaic layer 101 is, for example, on an n-type part plate of GaAs,
By determining the forbidden band width Egl, a relatively forbidden band width is determined in which the ratios of Ga, In, and P are controlled in order to set the wavelength λ0, which is the wavelength limit of the sensitivity region, to a predetermined value as shown in Fig. 4. A P-N junction is formed by growing a wide n-type mixed crystal such as IIIIG a As P in a liquid phase and then diffusing P-type impurities. FIG. 4 shows the sensitivity characteristics of the photocurrent 1 with respect to the wavelength of the photovoltaic WJ101.

半導体yf9102は、GaとInとPとの各比率を管
理することにより禁止帯幅Eg2を光起電層101の禁
止帯幅Eglよりも広くした1nGaAsPを液相成長
させることにより積層形成され、第5図の波長に対する
光透過率の特性で示すように、光起電層101の感度特
性におけるピーク波長λpよりも短波長側に設定された
波長λCより長波長側に光透過帯域を有する光透過特性
をもたせるようにしている。
The semiconductor yf9102 is formed by stacking 1nGaAsP in a liquid phase, with the bandgap Eg2 being wider than the bandgap Egl of the photovoltaic layer 101 by controlling the ratios of Ga, In, and P. As shown in the characteristics of light transmittance with respect to wavelength in FIG. I try to give it some characteristics.

したがって第3図に示すように構成された受光素子にあ
っては、結果的に第6図に示すような総合感度特性を有
することになり、それに光Pが照射されると半導体層1
02によって設定波長λCよりも長波長側の波長をもっ
た光のみがろ波され、そのろ波された光が光起電層10
1に入ってそこで設定波長λ0よりも短波長側の波長を
もった光のみがセンシングされ、一定の波長帯域(λC
〜λ0)にある光のみが選択的に検知されることになる
Therefore, the light-receiving element configured as shown in FIG. 3 will have the overall sensitivity characteristics as shown in FIG.
02, only light having a wavelength on the longer wavelength side than the set wavelength λC is filtered, and the filtered light is transmitted to the photovoltaic layer 10.
1, only light with wavelengths shorter than the set wavelength λ0 is sensed, and a certain wavelength band (λC
~λ0) will be selectively detected.

しかして、光起電層101の感度特性におけるピーク感
度波長λpをOH基による光吸収波長λ1゛または非吸
収波長λ2に設定するようにすれば、バッテリ溶液中を
通過した光のうちのλ1まだはλ2構成を選択的に検知
することができるようになる。
Therefore, if the peak sensitivity wavelength λp in the sensitivity characteristics of the photovoltaic layer 101 is set to the light absorption wavelength λ1' due to the OH group or the non-absorption wavelength λ2, then λ1 of the light passing through the battery solution can still be can now selectively detect the λ2 configuration.

また、第4図に示すような感度特性をもった普通の受光
素子と第5図に示すような光透過特性をもった光学フィ
ルタとを組み合せるようにしても。
Furthermore, an ordinary light receiving element having sensitivity characteristics as shown in FIG. 4 and an optical filter having light transmission characteristics as shown in FIG. 5 may be combined.

第6図に示すような総合感度特性を得ることができる。A comprehensive sensitivity characteristic as shown in FIG. 6 can be obtained.

雅敦 以上1本発明によるバッテリ充電量測定方法にあっては
、バッテリの放電によってバッテリ溶液が化学変化する
際、その放電量に比例してその溶液中で生ずる光吸収作
用に着目し、その光吸収の程度を測定することによって
溶液の反応状態からバッテリ充電量をわり出すようにし
たもので、バッテリの設置環境またはその使用状態など
の影響を受けることなく、常にバッテリの充電量を精度
良く測定することができるという優れた利点を有してい
る。
Atsushi Atsushi (1) The method for measuring battery charge according to the present invention focuses on the light absorption effect that occurs in the solution in proportion to the amount of discharge when the battery solution changes chemically due to discharge of the battery. This system calculates the battery charge amount from the reaction state of the solution by measuring the degree of absorption, and can always accurately measure the battery charge amount without being affected by the installation environment of the battery or its usage conditions. It has the great advantage of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるバッテリ充電量測定方法を具体的
に実施するための装置の構成例を示すブロック図、第2
図は同構成例における光フィルタの光透過特性を示す図
、第3図は波長選択性をもった特殊な受光素子の構造を
示す図、第4図はその特殊な受光素子における光起電層
の感度特性を示す図、第5図は同じくその半導体層の光
透過時性を示す図、第6図はその特殊な受光素子の総合
的な感度特性を示す図である。 ■・・・光源 2・・・バッテリ溶液 31.32・・
・光学フィルタ 41.42・・・受光素子 5・・・
演算処理回路 101・・・光起電WJ 102・・・
半導体層第1図 λl λ2 波長 第3図 第4図 1p1′  波長
FIG. 1 is a block diagram showing an example of the configuration of a device for specifically implementing the battery charge amount measuring method according to the present invention, and FIG.
The figure shows the light transmission characteristics of the optical filter in the same configuration example, Figure 3 shows the structure of a special light-receiving element with wavelength selectivity, and Figure 4 shows the photovoltaic layer in the special light-receiving element. FIG. 5 is a diagram showing the light transmission characteristics of the semiconductor layer, and FIG. 6 is a diagram showing the overall sensitivity characteristics of the special light-receiving element. ■...Light source 2...Battery solution 31.32...
・Optical filter 41.42... Light receiving element 5...
Arithmetic processing circuit 101... Photovoltaic WJ 102...
Semiconductor layer Figure 1 λl λ2 Wavelength Figure 3 Figure 4 1p1' Wavelength

Claims (1)

【特許請求の範囲】 1、バッテリの放電によってバッテリ溶液が化学変化す
る際に、その放電量に比例してバッテリ溶液中で生ずる
光吸収の程度を測定することによってバッテリの充電量
を求めるようにしたバッテリ充電量測定方法。 2、バッテリ溶液中に生ずるOH基により光吸収される
帯域の波長をもった光をバッテリ溶液中に通したときの
第1の光透過率の低下と、バッテリ溶液の反応によって
は光吸収されることがない帯域にある波長をもった光を
バッテリ溶液中に通したときのバッテリ溶液自体による
第2の光透過率の低下とをそれぞれ検出し、第1の光透
過率の低下と第2の光透過率の低下との比を求めること
によってバッテリ溶液中で生ずる光吸収の程度を測定す
るようにしたことを特徴とする前記第1項の記載による
バッテリ充電量測定方法。 3、バッテリ溶液中に生ずるOH基により光吸収される
帯域の波長をもった光をバッテリ溶液中に通したときの
第1の光透過率の低下と、バッテリ溶液中に生ずるSO
_4基により光吸収される帯域の波長をもった光をバッ
テリ溶液中に通したときの第2の光透過率の低下とをそ
れぞれ検出し、第1の光透過率の低下と第2の光透過率
の低下との比を求めることによってバッテリ溶液中で生
ずる光吸収の程度を測定するようにしたことを特徴とす
る前記第1項の記載によるバッテリ充電量測定方法。
[Claims] 1. When the battery solution changes chemically due to battery discharge, the amount of charge of the battery is determined by measuring the degree of light absorption that occurs in the battery solution in proportion to the amount of discharge. How to measure battery charge amount. 2. The first decrease in light transmittance when light with a wavelength in the band that is absorbed by the OH groups generated in the battery solution is passed through the battery solution, and the light is absorbed depending on the reaction of the battery solution. A second decrease in light transmittance due to the battery solution itself is detected when light with a wavelength in a non-conventional band is passed through the battery solution, and a second decrease in light transmittance due to the battery solution itself is detected. 2. The method for measuring battery charge amount according to item 1 above, characterized in that the degree of light absorption occurring in the battery solution is measured by determining the ratio to the decrease in light transmittance. 3. Decrease in first light transmittance when light with a wavelength in the band absorbed by OH groups generated in the battery solution is passed through the battery solution, and SO generated in the battery solution.
A decrease in the second light transmittance when light having a wavelength in the band that is absorbed by the four groups is passed through the battery solution is detected, and a decrease in the first light transmittance and a decrease in the second light transmittance are detected. 2. The method for measuring battery charge amount according to item 1 above, characterized in that the degree of light absorption occurring in the battery solution is measured by determining the ratio to the decrease in transmittance.
JP61019837A 1986-01-31 1986-01-31 Battery charge measurement method Expired - Fee Related JP2632306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61019837A JP2632306B2 (en) 1986-01-31 1986-01-31 Battery charge measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61019837A JP2632306B2 (en) 1986-01-31 1986-01-31 Battery charge measurement method

Publications (2)

Publication Number Publication Date
JPS62177872A true JPS62177872A (en) 1987-08-04
JP2632306B2 JP2632306B2 (en) 1997-07-23

Family

ID=12010383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61019837A Expired - Fee Related JP2632306B2 (en) 1986-01-31 1986-01-31 Battery charge measurement method

Country Status (1)

Country Link
JP (1) JP2632306B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553878A (en) * 1978-10-16 1980-04-19 Japan Storage Battery Co Ltd Electrolyte-concentration detector for lead storage battery
JPS57210579A (en) * 1981-06-22 1982-12-24 Stanley Electric Co Ltd Displayer for battery residual capacity
JPS61273875A (en) * 1985-05-30 1986-12-04 Furukawa Electric Co Ltd:The Zinc-chlorine battery
JPS62126569A (en) * 1985-11-27 1987-06-08 Sumitomo Electric Ind Ltd Measuring equipment for active material concentration in electrolyte and its flow rate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553878A (en) * 1978-10-16 1980-04-19 Japan Storage Battery Co Ltd Electrolyte-concentration detector for lead storage battery
JPS57210579A (en) * 1981-06-22 1982-12-24 Stanley Electric Co Ltd Displayer for battery residual capacity
JPS61273875A (en) * 1985-05-30 1986-12-04 Furukawa Electric Co Ltd:The Zinc-chlorine battery
JPS62126569A (en) * 1985-11-27 1987-06-08 Sumitomo Electric Ind Ltd Measuring equipment for active material concentration in electrolyte and its flow rate

Also Published As

Publication number Publication date
JP2632306B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US4011016A (en) Semiconductor radiation wavelength detector
US6100991A (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
US9341513B2 (en) Photodetecting element having an optical absorption layer, photodetecting device having an optical absorption layer, and auto lighting device
US3598994A (en) Method and apparatus for sensing fluorescent substances
US3478214A (en) Photodetector responsive to light intensity in different spectral bands
JPS62177872A (en) Method of measuring extent of battery charge
CN204788657U (en) Laser power meter based on infrared measures
US9297764B2 (en) Method for determining characteristics of a photoconverter without contact
JPS62177434A (en) Detection of solution
JPS6376381A (en) Spectral sensitivity measurement of solar cell
JPS62101085A (en) Light converging type solar battery module
JPH0535976B2 (en)
Conway Light‐Induced Modulation of Broad‐Band Optical Absorption in CdS
JPS61277024A (en) Light spectrum detector
SU1562711A1 (en) Method of measuring quant effectiveness of photodetectors
JPS63106530A (en) Semiconductive optical detector
JPS5724863A (en) Modulation measuring method of and apparatus for intensity of light
Chen et al. Wavelength detector using a pair of metal-semiconductor-metal photodetectors with subwavelength finger spacings
JPS55149023A (en) Infrared ray spectroscopic method
SU1221506A1 (en) Arrangement for measuring concentration of substance bonded with basic material
RU2059226C1 (en) Spectral correlator
JPS5937446A (en) Irradiance monitor device for light-proof test equipment
RU2001390C1 (en) Photoelectric method for determining optical absorption factor of semiconductor specimens
JPH0512759Y2 (en)
JPS57198805A (en) Measurement of film thickness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees