JPS62177681A - Pattern inspecting method - Google Patents
Pattern inspecting methodInfo
- Publication number
- JPS62177681A JPS62177681A JP61017829A JP1782986A JPS62177681A JP S62177681 A JPS62177681 A JP S62177681A JP 61017829 A JP61017829 A JP 61017829A JP 1782986 A JP1782986 A JP 1782986A JP S62177681 A JPS62177681 A JP S62177681A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- inspected
- image
- gradient vector
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 16
- 239000013598 vector Substances 0.000 claims abstract description 31
- 238000009826 distribution Methods 0.000 claims abstract description 20
- 238000007689 inspection Methods 0.000 claims description 13
- 230000007547 defect Effects 0.000 abstract description 17
- 238000010586 diagram Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Character Input (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えばプリント基板あるいは集積回路などの
回路パターンのような2次元パターンを比較検査するに
適用されるパターン検査方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pattern inspection method applied to comparative inspection of two-dimensional patterns such as circuit patterns of printed circuit boards or integrated circuits.
従来、被検査パターンと基準パターンとを比較し検査す
る比較検査法では、撮像装置によりて得られる被検査パ
ターンの反射光又は透過光による像を微小な画素に分割
し、これら各画素の反射光量又は透過光量または明暗(
以下、濃度という)fl、Oに2値化することによって
、1.0の値を持つ画素の集合からなる2値化パターン
を得る一方、基準パターンについても同様に、あるいは
設計データから創成して2値化パターンを得るとともに
、このようにして得られた2値化被検査パターンと2値
化基準パターンとを比較し検査する2値化法が多く用い
られている。Conventionally, in a comparative inspection method in which a pattern to be inspected and a reference pattern are compared and inspected, an image of reflected light or transmitted light of the pattern to be inspected obtained by an imaging device is divided into minute pixels, and the amount of reflected light of each of these pixels is calculated. or amount of transmitted light or brightness (
By binarizing fl and O (hereinafter referred to as density), a binarized pattern consisting of a set of pixels with a value of 1.0 is obtained, while a reference pattern is also created in the same way or from design data. A binarization method is often used in which a binarized pattern is obtained and the thus obtained binarized inspected pattern is compared and inspected with a binarized reference pattern.
しかしながら、上記した従来の2値化法、すなわち、第
8図に示すように、被検査パターンまたは基準パターン
の像1を微小な画素2・・・に分割して各画素2・・・
の濃Jff2値化して2値化パターン3を得る手段にあ
っては、2値化する際にパターン境界部に1画素程度の
凸凹の発生を避けることができず、このため原理的に数
画素程度以下の欠陥を検出することができなかった。However, in the conventional binarization method described above, that is, as shown in FIG. 8, the image 1 of the inspected pattern or reference pattern is divided into minute pixels 2...
In the method of obtaining binarized pattern 3 by binarizing the dark Jff, it is impossible to avoid the occurrence of unevenness of about 1 pixel at the pattern boundary during binarization, and therefore, in principle, the unevenness of several pixels It was not possible to detect defects of a certain degree or less.
また仮りに、各画素の濃度の2値化に際して、半端がな
く、正確な2値化ができたとし、でも。Also, suppose that when converting the density of each pixel into a binary value, it is possible to achieve perfect and accurate binarization.
被検査パターンと基準パターンとの間に位置合せ誤差が
ある場合において、この位置ずれ分を欠陥として判定し
ないようにするためには、被検査パターンの画素と比較
すべき基準パターンの画素の範囲を拡大り、て位置合せ
誤差を補正する必要がある2例えば、位置合せ誤差が1
画素分あるとすると、対応する画素の他に1画素分@シ
の画素についても比較し、これにより基準パターンと一
致すれば欠陥がないと判定しなければならない。ところ
が、第9図(atで示す2値化基準パターン4VC対し
、第9図(blで示す2値化仮構食パターン5のような
場合、2値化被検査パターン5には2画素分の欠陥6が
発生しているのに、位置合せ誤差がX方向へマイナス1
画素分だけ生じているため、第9図伸IKおける画素(
X4.Y、)と比較される第9図(blにおけるX方向
への隣りの画素(X4 、 Y4)は2値化基準パター
ン4と同じ「1」の出力を生ずることから、第9図(b
lにおける2画素分の欠陥6は検出されないことになる
。When there is an alignment error between the pattern to be inspected and the reference pattern, in order to prevent this misalignment from being determined as a defect, it is necessary to set the range of pixels of the reference pattern to be compared with the pixels of the pattern to be inspected. For example, if the alignment error is 1
Assuming that there are pixels, in addition to the corresponding pixel, it is also necessary to compare the pixels of one pixel @c, and if this matches the reference pattern, it must be determined that there is no defect. However, in the case of the binarized reference pattern 4VC shown in FIG. 9 (at) and the binarized virtual structure pattern 5 shown in FIG. 6 has occurred, but the alignment error is minus 1 in the X direction.
Since only the number of pixels is generated, the pixel (
X4. Since the adjacent pixel (X4, Y4) in the X direction in FIG. 9 (bl) compared with FIG.
The defect 6 corresponding to two pixels at l will not be detected.
このように5位置合せ誤差を考慮して画素の比較範囲を
拡大すると、位置合せ誤差の2倍の大きさまでの欠陥を
見落す可能性があり、このような不都合は、2値化に伴
う誤差を減少させるようにした多値化方式の場合につい
ても生じるといった問題があった、
本発明は、上記の事情のもとになされたもので、被検査
パターンと基準パターンとの間に位置合せ誤差があって
も1画素程度の大きさまでの欠陥を検出できるようにし
たパターン検査方法を提供することを目的としたもので
ある。5If the pixel comparison range is expanded by taking into account the alignment error, there is a possibility that defects up to twice the size of the alignment error will be overlooked. The present invention has been made under the above circumstances, and it is possible to reduce the alignment error between the pattern to be inspected and the reference pattern. The object of this invention is to provide a pattern inspection method that can detect defects up to the size of one pixel even if there is a defect.
上記した問題点を解決するために、不発明は被検査パタ
ーンの像の濃度分布と基準パターンの像の濃度分布とか
ら求められる各々の勾配ベクトルを互いに比較してなる
ものである。In order to solve the above-mentioned problems, the present invention compares each gradient vector obtained from the density distribution of the image of the pattern to be inspected and the density distribution of the image of the reference pattern.
すなわち、本発明は、上記の手段によって、勾配ベクト
ルが濃度分布の形状を表わすことから、勾配ベクトルを
比較すれば、被検食パターン及び基準パターンの2つの
濃度分布の部分的形状が比較でき、これによって、基準
パターンにない形状が被検査パターンに表われると、位
置合せ誤差が相当大きくてもその違いを検出することが
可能になる。That is, in the present invention, since the gradient vector represents the shape of the concentration distribution by the above means, by comparing the gradient vectors, the partial shapes of the two concentration distributions of the test food pattern and the reference pattern can be compared, As a result, if a shape that does not exist in the reference pattern appears in the pattern to be inspected, it becomes possible to detect the difference even if the alignment error is considerably large.
以下、本発明f第1図から第5図に示す一実施例を参照
しながら説明する。The present invention will be described below with reference to an embodiment shown in FIGS. 1 to 5.
第1図は仮検査パターンの透過光による像1ノの一部を
多値化方式で表わしたものであり、図中x、yは空間的
位置座標、f (xl + y3 )は画素(xi、y
3)の濃度分布く透過光量)をそれぞれ表わしたもので
ある。この場合、多値化された被恢査パターンの像II
より求められるgrad fに相当する勾配ベクトルA
は、次式で計算され;
第2図にそのマツプを示す。Fig. 1 shows a part of the image 1 formed by the transmitted light of the temporary inspection pattern using a multi-value method. ,y
3), the density distribution and amount of transmitted light are respectively expressed. In this case, the image II of the multivalued pattern to be examined
Gradient vector A corresponding to grad f determined by
is calculated using the following formula; its map is shown in Figure 2.
また、第3図は上記被検査パターンに対応する基準パタ
ーンの透過光による像12の一部を被検査パターンの設
計データから多値化方式で創成したものであり、図中x
、yは空間的位置座標、g(x;、yj)は画素(xl
、g3)の濃度分布をそれぞれ表わしたものである。こ
の場合、多値化された基準パターンの像により求められ
るgrad gに相当する勾配ベクトルBは、次式で計
算され;
・=シv′
B(xi、yj Σ (g(Xi十1.Yk)−g
(xl−1,ylr、>)。FIG. 3 shows a part of the image 12 created by the transmitted light of the reference pattern corresponding to the pattern to be inspected using a multi-value method from the design data of the pattern to be inspected.
, y is the spatial position coordinate, g(x;, yj) is the pixel (xl
, g3), respectively. In this case, the gradient vector B corresponding to grad g obtained from the image of the multivalued reference pattern is calculated by the following equation; )-g
(xl-1, ylr, >).
第4図にそのマツプを水中。Figure 4 shows the map underwater.
そ[7て、上記した多値化被検査パターンの像1)のa
朋分布f(xl、y3>と多値化基準パターンの像12
の濃度分布g(xl、yj)との各々の勾配ベクトルA
と勾配ベクトルBを比較する。このとき、多値化被検査
パターンど多値化基準パターンとの位置合せ誤差を考慮
して勾配ベクトルA(xl、yj)と勾配ベクトルB(
x<、yJ>及びその隣接する勾配ベクトルB(Xk、
Y7)とを比較して、それらのベクトル差の絶対値;
(B(xk、y、)−1xl、yj)1のに= i−Z
、i、i−+l、A=j−J+j、j+2の範囲での最
小値をC(xl、y3)とし、この勾配ベクトル差の最
小値C(xi、yj)?第2図ど第4図から求めて第5
図に示す。[7] a of image 1) of the above-mentioned multivalued pattern to be inspected
Image 12 of the ho distribution f(xl, y3> and the multilevel standard pattern
Each gradient vector A with the concentration distribution g(xl, yj)
and gradient vector B. At this time, gradient vector A(xl, yj) and gradient vector B(
x<,yJ> and its adjacent gradient vector B(Xk,
Y7) and the absolute value of their vector difference; (B(xk,y,)-1xl,yj)1 = i-Z
, i, i-+l, A=j-J+j, j+2 is the minimum value in the range C(xl, y3), and the minimum value of this gradient vector difference C(xi, yj)? Figure 2 and Figure 4.
As shown in the figure.
次に、上記した勾配ベクトル差の最小値C(Xi、yj
)に対し、あるしきい値Vを設定し、このしきい値V
に対して
C(x i、 y j)≧V
となる画素がある場合、被検査パターンにゝ欠陥有り”
と判定してなるもので、例えばV=40とすれば、第5
図に示す斜線部が欠陥と判定される。Next, the minimum value C(Xi, yj
), set a certain threshold value V, and set this threshold value V
If there is a pixel for which C(x i, y j)≧V, the pattern to be inspected has a defect.
For example, if V=40, the fifth
The shaded areas shown in the figure are determined to be defects.
したがって、第1図に示すように、仮検査パターンに2
11I素分に相当する面積の欠陥がある場合では、±1
画素の位置合せ誤差を考慮した濃度のみを比較する従来
法では、このような欠陥を検出することはできないが、
本発明では完全に検出することができる。Therefore, as shown in FIG.
If there is a defect with an area equivalent to 11I element, ±1
Conventional methods that only compare densities that take into account pixel alignment errors cannot detect such defects;
The present invention allows complete detection.
さらに、第6図は本発明の他の実施例を示し、多値化さ
れた被検査パターンの像1ノに約1画素分に相当する面
積の弧立した欠陥がある場合において、対応する基準パ
ターンの像は全面憂さがOであり、上記と同様にして勾
配ベクトル差の最小値C(xi、yj)を求めると、第
7図に示す値が得られ、このとき、しきい値Vを40と
すれば(V=40)、第7図に示す斜線部の画素が欠陥
として検出されるものである。Furthermore, FIG. 6 shows another embodiment of the present invention, in which when there is an upright defect with an area equivalent to about one pixel in one image of a multi-valued pattern to be inspected, the corresponding standard The image of the pattern has an overall depression of O, and if the minimum value C(xi, yj) of the gradient vector difference is found in the same manner as above, the value shown in FIG. 7 is obtained. At this time, the threshold value V is 40 (V=40), the pixels in the shaded area shown in FIG. 7 are detected as defects.
すなわち、第1図と第3図において、多値化された被検
査パターンの像11と基準パターン(D像12(D濃f
分布f(xt、yj)及びg(xr。That is, in FIGS. 1 and 3, an image 11 of a multivalued inspected pattern and a reference pattern (D image 12
Distributions f(xt, yj) and g(xr.
yj)のみの比較では、例えば第1図に示す被検査パタ
ーンの画素(x5.y、)の濃度は、±1画素の位置合
せ誤差を考慮すると、第3図に示す基準パターンの画素
’ X4 + y4) + (X4゜Y5 ) H(X
4 + Ya) + (x513’4)+ (x51
ysL(X5+Y6) l (xe 1Y4)l (x
61y5)+(x、、y、)の9個の画素の濃度と比較
され、この場合、各画素の濃度を弧立したバラバラのも
のとして比較されるため、W検査パターンの画素(xg
+yiとほとんど同じ濃度のものが基−スターンの画素
(x4+ Y4)+(X4+Y5>+(x417a )
にあるので、被検査パターンの画素(Xa+)’s)は
“欠陥でない”と判定されてしまい、同様にその周辺の
画素についても“欠陥なし”と判定される。ところが、
本発明では勾配ベクトルは面の勾配の大きさと方向を表
わし、その点の濃度が周囲の画素の濃度と如何なる関係
にあるか、換言すれば、濃度分布が如何なる形状をして
いるかを表わす一つの事であることから、例えば第1図
に示す被検査パターンの画素’ ”5 t y、 )は
所謂”飛び出し7ている”と判定するが、これは周囲の
画素との比較の上で形状を判定しているものであり、一
方、第3図に示す基準パターンの画素には所謂“飛び出
し”がなく、したがって、両者は異なるものと判定でき
、このような判定は、位置合せ誤差が相当大きくても可
能になる。つまシ、勾配ベクトルは濃度分布の形状を表
わす一つのりであるから、勾配ベクトルを比較するとい
うことは、2つのパターンの濃度分布の部分的形状の比
較をしていることになり、このことから、基準パターン
にない形状が被検査パターンに現出すれば、位置合せ誤
差が相当大きくてもその違いを見つけることができるも
のである。For example, when comparing only pixel (x5.y,) of the pattern to be inspected shown in FIG. 1, the density of the pixel (x5. + y4) + (X4゜Y5) H(X
4 + Ya) + (x513'4) + (x51
ysL(X5+Y6) l (xe 1Y4)l (x
61y5)+(x,,y,), and in this case, since the density of each pixel is compared as a separate stand-alone pixel, the pixel (xg
The pixel with almost the same density as +yi is the base-stern pixel (x4+Y4)+(X4+Y5>+(x417a)
Therefore, the pixel (Xa+)'s) of the pattern to be inspected is determined to be "not defective", and the surrounding pixels are similarly determined to be "not defective". However,
In the present invention, a gradient vector represents the magnitude and direction of the gradient of a surface, and is a vector that represents the relationship between the density of a point and the density of surrounding pixels, in other words, the shape of the density distribution. For example, the pixel ``5 ty,'' in the pattern to be inspected shown in Figure 1 is determined to be ``protruding'', but this is because the shape is determined by comparing it with the surrounding pixels. On the other hand, there is no so-called "protrusion" in the pixels of the reference pattern shown in Figure 3, so it can be determined that the two are different, and such a determination indicates that the alignment error is quite large. However, since the gradient vector is a graph representing the shape of the concentration distribution, comparing the gradient vectors means comparing the partial shapes of the concentration distributions of two patterns. From this, if a shape that does not exist in the reference pattern appears in the pattern to be inspected, the difference can be found even if the alignment error is quite large.
なお、上記実施例において、例えば第1図に示す多値化
された被検査パターンの像の濃度分布f(xr、yj)
から求められる勾配ベクトルAf計算する仲の式とし2
て、例えばソーベル(5obel )方法により、次式
;
%式%)
から求めても良く、勾配ベクトルBについても同様であ
り、また、比較方法も、両ベクトルA。In the above embodiment, for example, the density distribution f(xr, yj) of the multivalued image of the pattern to be inspected shown in FIG.
The formula for calculating the gradient vector Af obtained from is 2
For example, the gradient vector B may be obtained from the following equation using the Sobel method;
Bの方向のみを比較することも可能である。It is also possible to compare only the B direction.
さらに、本発明によるパターン検査方法は、濃度変化が
緩やかな場合には、欠陥が大きくても検出されないとき
が生じるため、従来方法による直接的な比較検査と併用
すれば、より完全な検査が可能となる。Furthermore, when the pattern inspection method according to the present invention has gradual density changes, even large defects may not be detected, so if used in conjunction with direct comparison inspection using conventional methods, more complete inspection is possible. becomes.
その他、本発明は、本発明の要旨を変えない範囲で種々
変形実施可能なことは勿論である。In addition, it goes without saying that the present invention can be modified in various ways without departing from the gist of the present invention.
以上の説明から明らかなように、本発明によれば、被検
査パターンと基準パターンとの像の濃度分布から求めた
勾配ベクトル?比較してなることから、位置合せ誤差が
ある場合でも1画素程度の欠陥まで検出することができ
るというすぐれたパターン検査方法を提供することがで
きるものである。As is clear from the above description, according to the present invention, the gradient vector ? As a result of this comparison, it is possible to provide an excellent pattern inspection method that can detect defects up to about one pixel even when there is an alignment error.
第1図は本発明に係るパターン検査方法における多値化
被検査パターンの一実施例を示す説明図、第2図は同じ
く多値化被検査パターンから求めた勾配ベクトルのマッ
プヲ表わす説明図、第“3図は多値化被検査パターンに
対応する多値化基準パターンを表わす説明図、第4図は
同じく多値化基準パターンから求めた勾配ベクトルのマ
ツプを表わす説明図、第5図は勾配ベクトル差の最小値
のマツプを表わす説明図、第6図は本発明に係る他の多
値化被検査パターンの説明図、第7図は同じく勾配ベク
トル差の最小値のマツプを表わす説明図、第8図は撮像
装置によって得られたパターンの像を微小な画素に分割
して各画素の濃度に2値化した状態を表わす説明図、第
9図(alは同じく二値化基準パターンの説明図、第9
図(blは同じく二値化被検査パターンの説明図である
。
(x r 、 yρ・・・画素、11・・・多値化被検
査パターンの像、f(x4.y」)・・・a度分布、1
2・・・多値化基準パターンの像、”xi +J)・・
・濃度分布。
出願人代理人 弁理士 鈴 江 武 愚弟1図
第2図
第3図
第4図
第 5図
第6図
第7図
第8図
第9図(a) 第9図(b)FIG. 1 is an explanatory diagram showing an example of a multi-level inspected pattern in the pattern inspection method according to the present invention, and FIG. 2 is an explanatory diagram showing a map of gradient vectors similarly obtained from the multi-level inspected pattern. "Figure 3 is an explanatory diagram showing a multi-value reference pattern corresponding to the multi-value test pattern, Figure 4 is an explanatory diagram showing a map of gradient vectors similarly obtained from the multi-value reference pattern, and Figure 5 is an explanatory diagram showing the gradient vector. An explanatory diagram showing a map of the minimum value of the vector difference, FIG. 6 is an explanatory diagram of another multivalued inspected pattern according to the present invention, and FIG. 7 is an explanatory diagram showing the map of the minimum value of the gradient vector difference. Fig. 8 is an explanatory diagram showing a state in which a pattern image obtained by an imaging device is divided into minute pixels and binarized into the density of each pixel, and Fig. 9 (al is also an explanation of the binarized reference pattern). Figure, No. 9
Figure (bl is also an explanatory diagram of the binarized inspected pattern. a degree distribution, 1
2... Image of multivalue reference pattern, "xi + J)...
・Concentration distribution. Applicant's representative Patent attorney Takeshi Suzue 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 (a) Figure 9 (b)
Claims (2)
パターン検査方法において、前記被検査パターンの像の
濃度分布と基準パターンの像の濃度分布とから求められ
る各々の勾配ベクトルを互いに比較することを特徴とす
るパターン検査方法。(1) In a pattern inspection method in which a pattern to be inspected and a reference pattern are comparatively inspected, gradient vectors obtained from the density distribution of the image of the pattern to be inspected and the density distribution of the image of the reference pattern are compared with each other. Characteristic pattern inspection method.
タから創成してなることを特徴とする特許請求の範囲第
1項に記載のパターン検査方法。(2) The pattern inspection method according to claim 1, wherein the image of the reference pattern is created from design data of the pattern to be inspected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61017829A JPH061489B2 (en) | 1986-01-31 | 1986-01-31 | Pattern inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61017829A JPH061489B2 (en) | 1986-01-31 | 1986-01-31 | Pattern inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62177681A true JPS62177681A (en) | 1987-08-04 |
JPH061489B2 JPH061489B2 (en) | 1994-01-05 |
Family
ID=11954598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61017829A Expired - Fee Related JPH061489B2 (en) | 1986-01-31 | 1986-01-31 | Pattern inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH061489B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01224881A (en) * | 1988-03-04 | 1989-09-07 | Toshiba Mach Co Ltd | Pattern inspecting device |
JP2007101551A (en) * | 2006-10-23 | 2007-04-19 | Hitachi Ltd | Scanning electron microscope |
US7547560B2 (en) * | 2004-05-14 | 2009-06-16 | Agere Systems Inc. | Defect identification system and method for repairing killer defects in semiconductor devices |
JP2010102384A (en) * | 2008-10-21 | 2010-05-06 | Nippon Telegr & Teleph Corp <Ntt> | Partial image association device, partial image association method, and partial image association program |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100386773C (en) * | 2004-12-27 | 2008-05-07 | 欧姆龙株式会社 | Image processing method, substrate inspection method, substrate inspection apparatus and method of generating substrate inspection data |
-
1986
- 1986-01-31 JP JP61017829A patent/JPH061489B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01224881A (en) * | 1988-03-04 | 1989-09-07 | Toshiba Mach Co Ltd | Pattern inspecting device |
US7547560B2 (en) * | 2004-05-14 | 2009-06-16 | Agere Systems Inc. | Defect identification system and method for repairing killer defects in semiconductor devices |
JP2007101551A (en) * | 2006-10-23 | 2007-04-19 | Hitachi Ltd | Scanning electron microscope |
JP2010102384A (en) * | 2008-10-21 | 2010-05-06 | Nippon Telegr & Teleph Corp <Ntt> | Partial image association device, partial image association method, and partial image association program |
JP4688920B2 (en) * | 2008-10-21 | 2011-05-25 | 日本電信電話株式会社 | Partial image association apparatus, partial image association method, and partial image association program |
Also Published As
Publication number | Publication date |
---|---|
JPH061489B2 (en) | 1994-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8126259B2 (en) | Method and apparatus for visual inspection | |
JP2005529388A (en) | Pattern inspection method | |
KR20020089325A (en) | Method and system for detecting defects on a printed circuit board | |
JPH01224881A (en) | Pattern inspecting device | |
JPS6332666A (en) | Method for pattern defect | |
West | A system for the automatic visual inspection of bare-printed circuit boards | |
JP4230880B2 (en) | Defect inspection method | |
KR101022187B1 (en) | Substrate inspection device | |
JPS62177681A (en) | Pattern inspecting method | |
JP2504951B2 (en) | Pattern inspection method | |
IL148828A (en) | Morphological tracking method | |
JP4076906B2 (en) | Appearance inspection method | |
JP2710527B2 (en) | Inspection equipment for periodic patterns | |
KR102583036B1 (en) | Method of inspecting a substrate | |
JPS61151410A (en) | Pattern defect detection and its apparatus | |
JPS6186639A (en) | Pattern inspecting method | |
JP2007309703A (en) | Inspection method of pixel | |
JPH01112468A (en) | Inspection instrument for printed board | |
WO2024204602A1 (en) | Determining device, learning device, determining method, learning method, determining program, and learning program | |
JPS6135303A (en) | Pattern defect inspecting instrument | |
JPH04188745A (en) | Pattern inspecting device | |
JPH0720060A (en) | Device for inspecting defective pattern and foreign matter | |
KR0137728B1 (en) | Method of detecting deficiency by means of image process | |
JPH05223877A (en) | Defect sensing and tye acknowleging system for printed circuit board using graph information | |
JPS6138450A (en) | Method and apparatus for inspecting fault of pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |