JPH061489B2 - Pattern inspection method - Google Patents

Pattern inspection method

Info

Publication number
JPH061489B2
JPH061489B2 JP61017829A JP1782986A JPH061489B2 JP H061489 B2 JPH061489 B2 JP H061489B2 JP 61017829 A JP61017829 A JP 61017829A JP 1782986 A JP1782986 A JP 1782986A JP H061489 B2 JPH061489 B2 JP H061489B2
Authority
JP
Japan
Prior art keywords
pattern
inspected
pixel
image
reference pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61017829A
Other languages
Japanese (ja)
Other versions
JPS62177681A (en
Inventor
泉 笠原
政計 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP61017829A priority Critical patent/JPH061489B2/en
Publication of JPS62177681A publication Critical patent/JPS62177681A/en
Publication of JPH061489B2 publication Critical patent/JPH061489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Character Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばプリント基板あるいは集積回路などの
回路パターンのような2次元パターンを比較検査するに
適用されるパターン検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern inspection method applied to a comparative inspection of a two-dimensional pattern such as a circuit pattern of a printed circuit board or an integrated circuit.

〔従来の技術〕 従来、被検査パターンと基準パターンとを比較し検査す
る比較検査法では、撮像装置によつて得られる被検査パ
ターンの反射光又は透過光による像を微少な画素に分割
し、これら各画素の反射光量又は透過光量または明暗
(以下、濃度という)を1,0に2値化することによつ
て、1,0の値を持つ画素の集合からなる2値化パター
ンを得る一方、基準パターンについても同様に、あるい
は設計データから創成して2値化パターンを得るととも
に、このようにして得られた2値化被検査パターンと2
値化基準パターンとを比較し検査する2値化法が多く用
いられている。
[Prior Art] Conventionally, in a comparison inspection method for comparing and inspecting a pattern to be inspected with a reference pattern, an image by reflected light or transmitted light of the pattern to be inspected obtained by an imaging device is divided into minute pixels, By binarizing the amount of reflected light or the amount of transmitted light or brightness (hereinafter referred to as density) of each of these pixels to 1,0, a binary pattern composed of a set of pixels having a value of 1,0 is obtained. Similarly, the reference pattern is generated in the same manner or from the design data to obtain the binarized pattern, and the binarized inspected pattern thus obtained and the 2
A binarization method for comparing and inspecting with a standardized reference pattern is often used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記した従来の2値化法、すなわち、第
8図に示すように、被検査パターンまたは基準パターン
の像1を微少な画素2…に分割して各画素2…の濃度を
2値化して2値化パターン3を得る手段にあつては、2
値化する際にパターン境界部に1画素程度の凹凸の発生
を避けることができず、このため原理的に数画素程度以
下の欠陥を検出することができなかつた。
However, the above-described conventional binarization method, that is, as shown in FIG. 8, the image 1 of the pattern to be inspected or the reference pattern is divided into minute pixels 2 ... And the density of each pixel 2 ... Is binarized. For the means for obtaining the binary pattern 3 by
It was inevitable to generate irregularities of about 1 pixel at the pattern boundary portion when the value was converted, and therefore, in principle, it was impossible to detect defects of about several pixels or less.

また仮りに、各画素の濃度の2値化に際して、半端がな
く、正確な2値化ができたとしても、被検査パターンと
基準パターンとの間に位置合せ誤差がある場合におい
て、この位置ずれ分を欠陥として判定しないようにする
ためには、被検査パターンの画素と比較すべき基準パタ
ーンの画素の範囲を拡大して位置合せ誤差を補正する必
要がある。例えば、位置合せ誤差が1画素分あるとする
と、対応する画素の他に1画素分隣りの画素についても
比較し、これにより基準パターンと一致すれば欠陥がな
いと判定しなければならない。ところが、第9図(a)で
示す2値化基準パターン4に対し、第9図(b)で示す2
値化被検査パターン5のような場合、2値化被検査パタ
ーン5には2画素分の欠陥6が発生しているのに、位置
合せ誤差がX方向へマイナス1画素分だけ生じているた
め、第9図(a)における画素(X4,Y4)と比較される
第9図(b)におけるX方向への隣りの画素(X4,Y4
は2値化基準パターン4と同じ「1」の出力を生ずるこ
とから、第9図(b)における2画素分の欠陥6は検出さ
れないことになる。
Further, even if the density of each pixel is binarized, even if the binarization can be performed accurately and the binarization can be performed accurately, this misalignment occurs when there is a registration error between the pattern to be inspected and the reference pattern. In order to prevent the minute from being determined as a defect, it is necessary to expand the range of the pixel of the reference pattern to be compared with the pixel of the pattern to be inspected to correct the alignment error. For example, assuming that the alignment error is one pixel, it is necessary to compare not only the corresponding pixel but also the pixel adjacent by one pixel and if there is a match with the reference pattern, it must be determined that there is no defect. However, in contrast to the binarized reference pattern 4 shown in FIG. 9 (a), the binary reference pattern 4 shown in FIG. 9 (b) is used.
In the case of the binarized inspected pattern 5, a defect 6 of 2 pixels has occurred in the binarized inspected pattern 5, but the alignment error has occurred in the minus 1 pixel in the X direction. , The adjacent pixel (X 4 , Y 4 ) in the X direction in FIG. 9 (b), which is compared with the pixel (X 4 , Y 4 ) in FIG. 9 (a).
Produces the same "1" output as the binarized reference pattern 4, so that the defect 6 for two pixels in FIG. 9 (b) is not detected.

このように、位置合せ誤差を考慮して画素の比較範囲を
拡大すると、位置合せ誤差の2倍の大きさまでの欠陥を
見落す可能性があり、このような不都合は、2値化に伴
う誤差を減少させるようにした多値化方式の場合につい
ても生じるといつた問題があつた。
In this way, if the pixel comparison range is expanded in consideration of the alignment error, defects up to twice the size of the alignment error may be overlooked. There was a problem in the case of a multi-valued system in which the noise was reduced.

本発明は、上記の事情のもとになされたもので、被検査
パターンと基準パターンとの間に位置合せ誤差があつて
も1画素程度の大きさまでの欠陥を検出できるようにし
たパターン検査方法を提供することを目的としたもので
ある。
The present invention has been made under the above circumstances, and a pattern inspection method capable of detecting a defect up to a size of about one pixel even if there is an alignment error between a pattern to be inspected and a reference pattern. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

上記した問題点を解決するために、本発明は被検査パタ
ーンの像の濃度分布と基準パターンの像の濃度分布とか
ら求められる各々の勾配ベクトルを互いに比較してなる
ものである。
In order to solve the above-mentioned problems, the present invention compares the respective gradient vectors obtained from the density distribution of the image of the pattern to be inspected with the density distribution of the image of the reference pattern.

〔作用〕[Action]

すなわち、本発明は、上記の手段によつて、勾配ベクト
ルが濃度分布の形状を表わすことから、勾配ベクトルを
比較すれば、被検査パターン及び基準パターンの2つの
濃度分布の部分的形状が比較でき、これによつて、基準
パターンにない形状が被検査パターンに表われると、位
置合せ誤差が相当大きくてもその違いを検出することが
可能になる。
That is, according to the present invention, since the gradient vector represents the shape of the density distribution by the above means, the partial shapes of the two density distributions of the inspection pattern and the reference pattern can be compared by comparing the gradient vectors. As a result, when a shape that does not exist in the reference pattern appears in the pattern to be inspected, the difference can be detected even if the alignment error is considerably large.

〔実施例〕〔Example〕

以下、本発明を第1図から第5図に示す一実施例を参照
しながら説明する。
The present invention will be described below with reference to an embodiment shown in FIGS. 1 to 5.

第1図は被検査パターンの透過光による像11の一部を
多値化方式で表わしたものであり、図中x,yは空間的
位置座標、f(xi,yj)は画素(xi,yj)の濃度分布(透過光
量)をそれぞれ表わしたものである。この場合、多値化
された被検査パターンの像11より求められるgradfに
相当する勾配ベクトルAは、次式で計算され; 第2図にそのマツプを示す。
FIG. 1 shows a part of the image 11 by the transmitted light of the pattern to be inspected by a multi-valued method. In the figure, x and y are spatial position coordinates and f (x i , y j ) is a pixel ( x i , y j ) density distribution (amount of transmitted light). In this case, the gradient vector A corresponding to gradf obtained from the multi-valued image 11 of the pattern to be inspected is calculated by the following equation; The map is shown in FIG.

また、第3図は上記被検査パターンに対応する基準パタ
ーンの透過光による像12の一部を被検査パターンの設
計データから多値化方式で創成したものであり、図中
x,yは空間的位置座標、g(xi,yj)は画素(xi,gj)の濃
度分布をそれぞれ表わしたものである。この場合、多値
化された基準パターンの像により求められるgradgに相
当する勾配ベクトルBは、次式で計算され; 第4図にそのマツプを示す。
Further, FIG. 3 is a diagram in which a part of the image 12 by the transmitted light of the reference pattern corresponding to the pattern to be inspected is created from the design data of the pattern to be inspected by a multi-valued method, where x and y are spaces. The target position coordinates, g (x i , y j ) respectively represent the density distribution of the pixel (x i , g j ). In this case, the gradient vector B corresponding to gradg obtained from the image of the multivalued reference pattern is calculated by the following formula; The map is shown in FIG.

そして、上記した多値化被検査パターンの像11の濃度
分布f(xi,yj)と多値化基準パターンの像12の濃度分布
g(xi,yj)との各々の勾配ベクトルAと勾配ベクトルBを
比較する。このとき、多値化被検査パターンと多値化基
準パターンとの位置合せ誤差を考慮して勾配ベクトルA
(xi,yj)と勾配ベクトルB(xi,yj)及びその隣接する勾配
ベクトルB(xk,yl)とを比較して、それらのベクトル差
の絶対値; |B(xk,yl)−A(xi,yj)| のk=i-1,i,i+1,l=j-1,j,j+1の範囲での最小値をC
(xi,yj)とし、この勾配ベクトル差の最小値C(xi,yj)を
第2図と第4図から求めて第5図に示す。
Then, the density distribution f (x i , y j ) of the image 11 of the multi-valued inspected pattern and the density distribution of the image 12 of the multi-valued reference pattern described above.
Compare each gradient vector A and gradient vector B with g (x i , y j ). At this time, the gradient vector A is taken into consideration in consideration of the alignment error between the multivalued inspection pattern and the multivalued reference pattern.
(x i , y j ) is compared with the gradient vector B (x i , y j ) and its adjacent gradient vector B (x k , y l ), and the absolute value of their vector difference; | B (x k , y l ) −A (x i , y j ) | is the minimum value in the range of k = i-1, i, i + 1, l = j-1, j, j + 1 is C
(x i , y j ), the minimum value C (x i , y j ) of this gradient vector difference is obtained from FIGS. 2 and 4 and shown in FIG.

次に、上記した勾配ベクトル差の最小値C(xi,yj)に対
し、あるしきい値Vを設定し、このしきい値Vに対して C(xi,yj)≧V となる画素がある場合、被検査パターンに“欠陥有り”
と判定してなるもので、例えばV=40とすれば、第5
図に示す斜線部が欠陥と判定される。
Next, a certain threshold value V is set for the minimum value C (x i , y j ) of the gradient vector difference described above, and C (x i , y j ) ≧ V If there is a pixel, the pattern to be inspected is "defective"
If V = 40, for example, the fifth
The shaded portion shown in the figure is determined to be a defect.

したがつて、第1図に示すように、被検査パターンに2
画素分に相当する面積の欠陥がある場合では、±1画素
の位置合せ誤差を考慮した濃度のみを比較する従来法で
は、このような欠陥を検出することはできないが、本発
明では完全に検出することができる。
Therefore, as shown in FIG.
When there is a defect having an area corresponding to a pixel, such a defect cannot be detected by the conventional method of comparing only the densities in consideration of the alignment error of ± 1 pixel, but the present invention completely detects the defect. can do.

さらに、第6図は本発明の他の実施例を示し、多値化さ
れた被検査パターンの像11に約1画素分に相当する面
積の孤立した欠陥がある場合において、対応する基準パ
ターンの像は全面高さが0であり、上記と同様にして勾
配ベクトル差の最小値C(xi,yj)を求めると、第7図に
示す値が得られ、このとき、しきい値Vを40とすれば
(V=40)、第7図に示す斜線部の画素が欠陥として
検出されるものである。
Further, FIG. 6 shows another embodiment of the present invention. In the case where an image 11 of a multi-valued pattern to be inspected has an isolated defect having an area corresponding to about 1 pixel, a corresponding reference pattern of The image has a total height of 0, and when the minimum value C (x i , y j ) of the gradient vector differences is obtained in the same manner as above, the value shown in FIG. 7 is obtained, and at this time, the threshold value V When 40 is set to 40 (V = 40), the pixels in the shaded area shown in FIG. 7 are detected as defects.

すなわち、第1図と第3図において、多値化された被検
査パターンの像11と基準パターンの像12の濃度分布
f(xi,yj)及びg(xi,yj)のみの比較では、例えば第1図に
示す被検査パターンの画素(x5,y5)の濃度は、±1画素
の位置合せ誤差を考慮すると、第3図に示す基準パター
ンの画素(x4,y4),(x4,y5),(x4,y6),(x5,y4),(x5,y5),(x
5,y6),(x6,y4),(x6,y5),(x6,y6)の9個の画素の濃度と
比較され、この場合、各画素の濃度を孤立したバラバラ
のものとして比較されるため、被検査パターンの画素(x
5,y5)とほとんど同じ濃度のものが基準パターンの画素
(x4,y4),(x4,y5),(x4,y6)にあるので、被検査パターン
の画素(x5,y5)は“欠陥でない”と判定されてしまい、
同様にその周辺の画素についても“欠陥なし”と判定さ
れる。ところが、本発明では勾配ベクトルは面の勾配の
大きさと方向を表わし、その点の濃度が周囲の画素の濃
度と如何なる関係にあるか、換言すれば、濃度分布が如
何なる形状をしているかを表わす一つの量であることか
ら、例えば第1図に示す被検査パターンの画素(x5,y5)
は所謂“飛び出している”と判定するが、これは周囲の
画素との比較の上で形状を判定しているものであり、一
方、第3図に示す基準パターンの画素には所謂“飛び出
し”がなく、したがつて、両者は異なるものと判定で
き、このような判定は、位置合せ誤差が相当大きくても
可能になる。つまり、勾配ベクトルは濃度分布の形状を
表わす一つの量であるから、勾配ベクトルを比較すると
いうことは、2つのパターンの濃度分布の部分的形状の
比較をしていることになり、このことから、基準パター
ンにない形状が被検査パターンに現出すれば、位置合せ
誤差が相当大きくてもその違いを見つけることができる
ものである。
That is, in FIGS. 1 and 3, the density distributions of the image 11 of the multi-valued pattern to be inspected and the image 12 of the reference pattern are shown.
By comparing only f (x i , y j ) and g (x i , y j ), for example, the density of the pixel (x 5 , y 5 ) of the pattern to be inspected shown in FIG. Considering the error, the pixels (x 4 , y 4 ), (x 4 , y 5 ), (x 4 , y 6 ), (x 5 , y 4 ), (x 5 ,, y 5 ), (x
5 , y 6 ), (x 6 , y 4 ), (x 6 , y 5 ), (x 6 , y 6 ), and the density of 9 pixels is compared. In this case, the density of each pixel is isolated. The pixels of the pattern to be inspected (x
(5 , y 5 ) pixels with almost the same density as the reference pattern
Since it is in (x 4 , y 4 ), (x 4 , y 5 ), (x 4 , y 6 ), the pixel (x 5 , y 5 ) of the pattern to be inspected is determined to be "not a defect",
Similarly, the surrounding pixels are also determined to be “no defect”. However, in the present invention, the gradient vector represents the magnitude and direction of the gradient of the surface, and represents how the density at that point is related to the density of the surrounding pixels, in other words, what shape the density distribution has. Since it is one amount, for example, the pixel (x 5 , y 5 ) of the pattern to be inspected shown in FIG.
Is judged to be so-called "jumping out", which means that the shape is judged by comparison with surrounding pixels, while the so-called "jumping out" is made to the pixels of the reference pattern shown in FIG. Therefore, it can be determined that they are different from each other, and such a determination is possible even if the alignment error is considerably large. That is, since the gradient vector is one quantity that represents the shape of the density distribution, comparing the gradient vectors means comparing the partial shapes of the density distributions of the two patterns. If a shape not present in the reference pattern appears in the pattern to be inspected, the difference can be found even if the alignment error is considerably large.

なお、上記実施例において、例えば第1図に示す多値化
された被検査パターンの像の濃度分布f(xi,yj)から求め
られる勾配ベクトルAを計算する他の式として、例えば
ソーベル(Sobel)方法により、次式; A(xi,yj)=〔{f(xi+1,yj-1)+2f(xi+1,yj) +f(xi+1,yj+1)-f(xi-1,yi-1) -2f(xi-1,yj)-f(xi-1,yi+1)}, {f(xi-1,yj+1)+2f(xi,yj+1) +f(xi+1,yj+1)-f(xi-1,yj-1) -2f(xi,yj-1)-f(xi+1,yj-1)}〕 から求めても良く、勾配ベクトルBについても同様であ
り、また、比較方法も、両ベクトルA,Bの方向のみを
比較することも可能である。
In the above embodiment, for example, as another formula for calculating the gradient vector A obtained from the density distribution f (x i , y j ) of the image of the multi-valued pattern to be inspected shown in FIG. According to the (Sobel) method, the following expression; A (x i , y j ) = [(f (x i + 1 , y j-1 ) + 2f (x i + 1 , y j ) + f (x i + 1 , y j + 1 ) -f (x i-1 , y i-1 ) -2f (x i-1 , y j ) -f (x i-1 , y i + 1 )}, {f (x i -1 ,, y j + 1 ) + 2f (x i , y j + 1 ) + f (x i + 1 , y j + 1 ) -f (x i-1 , y j-1 ) -2f (x i , y j-1 ) -f (x i + 1 , y j-1 )}], the same is true for the gradient vector B, and the comparison method is limited to the directions of both vectors A and B. It is also possible to compare

さらに、本発明によるパターン検査方法は、濃度変化が
緩やかな場合には、欠陥が大きくても検出されないとき
が生じるため、従来方法にゆる直接的な比較検査と併用
すれば、より完全な検査が可能となる。
Further, in the pattern inspection method according to the present invention, when the density change is gentle, even if a defect is large, it may not be detected. Therefore, if the conventional method is used in combination with a loose direct comparison inspection, a more complete inspection can be performed. It will be possible.

その他、本発明は、本発明の要旨を変えない範囲で種々
変形実施可能なことは勿論である。
In addition, it goes without saying that the present invention can be variously modified and implemented without departing from the spirit of the present invention.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば、被検
査パターンと基準パターンとの像の濃度分布から求めた
勾配ベクトルを比較してなることから、位置合せ誤差が
ある場合でも1画素程度の欠陥まで検出することができ
るというすぐれたパターン検査方法を提供することがで
きるものである。
As is apparent from the above description, according to the present invention, since the gradient vectors obtained from the density distributions of the images of the pattern to be inspected and the reference pattern are compared, even if there is a registration error, about 1 pixel It is possible to provide an excellent pattern inspection method capable of detecting even defects.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るパターン検査方法における多値化
被検査パターンの一実施例を示す説明図、第2図は同じ
く多値化被検査パターンから求めた勾配ベクトルのマツ
プを表わす説明図、第3図は多値化被検査パターンに対
応する多値化基準パターンを表わす説明図、第4図は同
じく多値化基準パターンから求めた勾配ベクトルのマツ
プを表わす説明図、第5図は勾配ベクトル差の最小値の
マツプを表わす説明図、第6図は本発明に係る他の多値
化被検査パターンの説明図、第7図は同じく勾配ベクト
ル差の最小値のマツプを表わす説明図、第8図は撮像装
置によつて得られたパターンの像を微少な画素に分割し
て各画素の濃度に2値化した状態を表わす説明図、第9
図は(a)は同じく二値化基準パターンの説明図、第9図
は(b)は同じく二値化被検査パターンの説明図である。 (xi,yj)…画素、11…多値化被検査パターンの像、f(x
i,yj)…濃度分布、12…多値化基準パターンの像、g(x
i,yj)…濃度分布。
FIG. 1 is an explanatory view showing an embodiment of a multi-valued inspected pattern in a pattern inspection method according to the present invention, and FIG. 2 is an explanatory view showing a map of a gradient vector similarly obtained from the multi-valued inspected pattern. FIG. 3 is an explanatory view showing a multi-valued reference pattern corresponding to the multi-valued inspected pattern, FIG. 4 is an explanatory view showing a map of a gradient vector similarly obtained from the multi-valued reference pattern, and FIG. 5 is a gradient. FIG. 6 is an explanatory view showing the map of the minimum value of the vector difference, FIG. 6 is an explanatory view of another multi-valued inspected pattern according to the present invention, and FIG. 7 is an explanatory view showing the map of the minimum value of the gradient vector difference, FIG. 8 is an explanatory view showing a state in which an image of a pattern obtained by an image pickup device is divided into minute pixels and binarized into the density of each pixel, FIG.
FIG. 9A is an explanatory diagram of the binarized reference pattern, and FIG. 9B is an explanatory diagram of the binarized inspected pattern. (x i , y j ) ... Pixel, 11 ... Image of multi-valued inspected pattern, f (x
i , y j ) ... density distribution, 12 ... multi-valued reference pattern image, g (x
i , y j ) ... concentration distribution.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被検査パターンと基準パターンとを比較検
査するパターン検査方法において、前記被検査パターン
の像の濃度分布と基準パターンの像の濃度分布とから求
められる各々の勾配ベクトルを互いに比較することを特
徴とするパターン検査方法。
1. In a pattern inspection method for comparing and inspecting a pattern to be inspected and a reference pattern, respective gradient vectors obtained from the density distribution of the image of the pattern to be inspected and the density distribution of the image of the reference pattern are compared with each other. A pattern inspection method characterized by the above.
【請求項2】基準パターンの像は、被検査パターンの設
計データから創成してなることを特徴とする特許請求の
範囲第1項に記載のパターン検査方法。
2. The pattern inspection method according to claim 1, wherein the image of the reference pattern is created from design data of the pattern to be inspected.
JP61017829A 1986-01-31 1986-01-31 Pattern inspection method Expired - Fee Related JPH061489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61017829A JPH061489B2 (en) 1986-01-31 1986-01-31 Pattern inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61017829A JPH061489B2 (en) 1986-01-31 1986-01-31 Pattern inspection method

Publications (2)

Publication Number Publication Date
JPS62177681A JPS62177681A (en) 1987-08-04
JPH061489B2 true JPH061489B2 (en) 1994-01-05

Family

ID=11954598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61017829A Expired - Fee Related JPH061489B2 (en) 1986-01-31 1986-01-31 Pattern inspection method

Country Status (1)

Country Link
JP (1) JPH061489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386773C (en) * 2004-12-27 2008-05-07 欧姆龙株式会社 Image processing method, substrate inspection method, substrate inspection apparatus and method of generating substrate inspection data

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224881A (en) * 1988-03-04 1989-09-07 Toshiba Mach Co Ltd Pattern inspecting device
US20050255611A1 (en) * 2004-05-14 2005-11-17 Patterson Oliver D Defect identification system and method for repairing killer defects in semiconductor devices
JP2007101551A (en) * 2006-10-23 2007-04-19 Hitachi Ltd Scanning electron microscope
JP4688920B2 (en) * 2008-10-21 2011-05-25 日本電信電話株式会社 Partial image association apparatus, partial image association method, and partial image association program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386773C (en) * 2004-12-27 2008-05-07 欧姆龙株式会社 Image processing method, substrate inspection method, substrate inspection apparatus and method of generating substrate inspection data

Also Published As

Publication number Publication date
JPS62177681A (en) 1987-08-04

Similar Documents

Publication Publication Date Title
US5774574A (en) Pattern defect detection apparatus
JP3706051B2 (en) Pattern inspection apparatus and method
JP2006038582A (en) Detection of flaw due to regional division of image
JPH0769155B2 (en) Printed circuit board pattern inspection method
JP4230880B2 (en) Defect inspection method
JPH061489B2 (en) Pattern inspection method
JP2504951B2 (en) Pattern inspection method
JPS6186639A (en) Pattern inspecting method
JPH0718811B2 (en) Defect inspection method
JP3260425B2 (en) Pattern edge line estimation method and pattern inspection device
US6240202B1 (en) Appearance inspection method for electronic parts
JP2000321038A (en) Method for detecting fault of pattern
JPH11160046A (en) Appearance inspection method
JPH0772909B2 (en) Welding condition judgment method by visual inspection
JPH0359362B2 (en)
JPS61126455A (en) Image processing method
JP2964594B2 (en) Mark inspection method
JPS6135303A (en) Pattern defect inspecting instrument
JP2001357401A (en) Picture processing method
JP3200748B2 (en) Mark inspection method
JPH0236026B2 (en)
JPH0453253B2 (en)
JPH10160681A (en) Pattern defect detection device and method
JPH0772089A (en) Inspecting apparatus for defect of pattern
JPH1027246A (en) Picture processing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees